
Introduction

Changes in the environment, such as drought, salinity, high 
or low temperature, are an important factor which affects the 
growth of crops and the volume of crop yields [1–3]. Very 
important legume grown and consumed extensively world-
wide is pea [4]. As a rich source of proteins, carbohydrates, 
fibre, vitamins and minerals, peas are important in human 
nutrition [5]. Pea is the fourth leading legume in terms of 
consumption in the world after soybean, peanuts and bean 
[6]. One of the major abiotic stress often occurs in Europe is 
osmotic stresses induced with polyethylene glycol (within −0.5 
MPa). The earliest metabolic change caused by water stress is 
a decreased amount of polysomes [7]. Once the polysomes 
have been disaggregated, the plant growth is inhibited due to 
a slower protein synthesis rate [7–9]. Considerable reduction 
in the amount of polysomes in plant tissues is observable after 
osmotic stress lasting for just 20–30 minutes [10]. Decrease 
of the content of polysomes in response to abiotic stresses is 
connected with the process of “switching” the expression of 
genes from those participating in the growth and development 

of plants under unstressed conditions to the ones active in 
response to stress [11].

In plant tissues, polysomes can occur as free polysomes 
(FP), endoplasmic reticulum membrane-bound polysomes 
(MBP) [12], cytoskeleton-bound polysomes (CBP) [13,14] 
and cytoskeleton-membrane-bound polysomes (CMBP) [15]. 
Changes in the distribution of polysomes between the particu-
lar fractions reflect changes in the complement of proteins, 
as each population of polysomes is engaged in the synthesis 
of specific proteins [16]. Thus, the FP population is mainly 
involved in the synthesis of soluble proteins of the cytoplasm, 
cellular nucleus, mitochondria and peroxisomes [17]; the 
MBP population is engaged in the production of secretory 
proteins, lysosome proteins and the proteins which are an 
integral component of the plasmatic membrane and intracel-
lular membranes, including the endoplasmic reticulum [16,17]; 
finally, the CBP and CMBP populations are responsible for 
the synthesis of cytoskeleton and stress proteins [16,18–21]. 
The largest share in the total polysome pool consists of the 
CBP population, which sometimes reaches 70% of the total 
polysome content [22]. Polysomes contain mRNAs, which may 
undergo selective translation, result in modification of protein 
synthesis in response to stress conditions in plants [23,24].

The objective of this study was to indicate differences in 
the composition of polysome-bound proteins and in the 
products of in vitro translation in pea (Pisum sativum L.) seeds 
germinating under unstressed conditions and under long- and 
short-term osmotic stress (−0.5 MPa) followed by post-stress 
recovery.
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Material and methods

 Plant material and germination under normal and osmotic stress 
conditions

The experiments were conducted on Pisum sativum L. cv. 
six-week TOR seeds, supplied by Torseed S.A. (Toruń, Poland). 
Seeds were surfaced disinfected in 1% sodium hypochloride 
for 3 minutes and washed with tap water and sterile water. 
Disinfected and intact seeds were placed on Petri dishes with 
two layers of Whatman 2 filter paper No. 1 (Whatman, Maid-
stone, Kent, the UK) wetted with 40 ml distilled water and 
germinated in the dark at 20°C for 48 (C48), 72 (C72) and 96 
hours (C96). After 48 hours, some seeds germinated under un-
stressed conditions (distilled water), whose roots were ≥1 mm, 
were transferred for next 24 h to osmotic stress conditions with 
polyethylene glycol (PEG), which caused decrease of water 
potential to −0.5 MPa (S72; 48 h distilled water + 24 h osmotic 
stress). After short-term osmotic stress, early seedlings of pea 
were transferred again to unstressed germination conditions 
for another 24 hours – recovery (SR96; 48 h distilled water + 24 
h osmotic stress + 24 h distilled water). At the same time, other 
pea seeds were germinated under long-term osmotic stress 
conditions (−0.5 MPa) at 20°C for 96 hours (S96). Having 
fixed the time of germination, sprouts or early seedlings (ac-
cording to Gong et al. [25]) were isolated from seeds and used 
for further tests. All determinations were repeated three times.

Polysome isolation
The tissue (400 mg) was homogenized in 3 ml of cyto-

skeleton-stabilizing buffer C [22], filtered and centrifuged 
at 27000 × g for 10 min. Buffer C consist of 5 mM HEPES 
(N-2-hydroxyethylpiperazine-N"-2-ethanesulfonic acid), 10 
mM Mg(OAc)2 (magnesium acetate), 2 mM EGTA [ethylene 
glycol-bis (aminoethyl ether) N,N,N",N"-tetraacetic acid], 1 
mM PMSF (phenylmethylsulfonyl fluoride) adjusted to pH 
7.5 with 9.8 mM KOH. This buffer allows sequential isolation 
of four polysome populations [26]: FP, MBP, CBP and CMBP. 
The supernatant polysomes included FP and, to prevent their 
degradation by RNAse, the samples were adjusted to buffer 
U, consisting of 200 mM Tris-HCl, pH 8.5, 50 mM KOAc 
(potassium acetate), 25 mM Mg(OAc)2, 2 mM EGTA, 100 
mg/ml heparin, 2% PTE (polyoxyethylene-10-tridecyl ether, 
a non-ionic detergent) and 1% DOC (sodium deoxycholate) 
[27] by adding 1/4 vol. of 4× concentrated of buffer U and held 
on ice prior to further processing. The remaining polysomes 
were in the pellet and were sequentially solubilized as followed. 
The pellet was resuspended in 3 ml of buffer C + 0.5% PTE to 
disrupt membranes, centrifuged for 10 min at 27000 × g to 
leave MBP in the supernatant (again converted to buffer U to 
maintain polysome integrity). All the other polysomes were 
still in the pellet. This pellet was next resuspended in 3 ml of 
buffer C + 200 mM Tris-HCl, pH 8.5 to disrupt the polysome-
cytoskeleton interaction and centrifuged for 10 min at 27000 × 
g to leave CBP in the supernatant (again converted to buffer U). 
The final pellet was resuspended in 4 ml of 1× concentrated of 
buffer U and re-centrifuged to release CMBP. All supernatant 
fractions (FP, MBP, CBP, CMBP) were layered on a 0.5 ml “pad” 
of 50% (w/v) sucrose in buffer B [50 mM Tris-HCl, pH 7.5, 20 
mM KOAc, 10 mM Mg(OAc)2] and centrifuged for 90 min at 
300000 × g in Beckman 65 Ti rotor. Sprouts or early seedlings 
of pea were also homogenized in buffer U [27] to solubilize 
total polysomes.

Polysomes protein separation with the Laemmli method
The content of protein was determined using Bradford’s 

method [28]. The polysome pellets were resuspended in 0.15 
ml of lysis buffer, consisting of 0.125 M Tris-HCl pH 6.8, 4% 
SDS, 10% 2-merkaptoethanol, 20% glycerol and 0.05% bromo-
phenol blue. The resuspended polysomes were boiled at 95°C 
for 4 min and centrifuged at 27000 × g for 3 min, after which 
they were cooled to 0–4°C.

Proteins connected with the total polysome pool and with 
particular polysome fractions were separated in 12% SDS-
PAGE on an electrophoretic apparatus Mini-PROTEAN GEL 
II (Bio-Rad). Each time, 40 μg of protein was applied to 
each lane. Electrophoresis was run for 45 min at the tem-
perature of 0–4°C and 200 V, using electrode buffer contain-
ing: 0.025 M Tris-HCl pH 3, 0.192 M glicyne and 1% SDS. 
The gels were fixed in 5% solution of trichloroacetic acid 
(TCA) for 30 min, then stained for 90 min with Coomassie 
Blue according to Laemmli [29], consisting of 0.1% Coomassie 
Blue R-250, 40% methanole and 10% acetic acid. When the 
protein had been stained, the gels were destained using a 
solution containing 25% of methanol and 10% of acetic acid. 
The gels were scanned with the Labscan 5.0, using an Image 
Scanner (Amersham). For the analysis of the gels, ScanGel 1.0 
(Kucharczyk) was used.

Electrophoresis and Western Blotting of in vitro synthesized proteins 
Sediments of the total ribosomal fraction and of particular 

populations of polysomes, i.e. FP, MBP, CBP and CMBP were 
dissolved in 0.05 ml of 0.5% PTE solution and centrifuged. 
For each sample, optical density (OD) was determined at the 
wavelengths of 260 and 330 nm. The difference between the 
result at 330 nm and the one at 260 nm was the value of the 
OD of a given sample. For an in vitro translation reaction, 2.0 
OD of polysomes were needed.

Polysomes (2.0 OD) were mixed with the components of a 
translation mixture according to the instruction attached to 
the “Rabbit Reticulocyte Lysate System” (Promega), incubated 
at 30°C for 90 min, and then mixtures were placed on ice to 
stop the reaction. The content of a protein was established with 
Bradford’s method [28]. The reagent mixture was dissolved in 
a lysing reagent (the contents as above) in a 1:4 ratio, heated 
at the temperature of 95°C for 4 min, centrifuged at 27000 × g 
for 3 minutes and chilled to 0–4°C. The biotinylated proteins 
were separated in 12% SDS-PAGE according to Laemmli [29]. 
20 μg of the protein was applied to each lane. The control 
sample, with which it was possible to eliminate the so-called 
background effect, contained all the components of the transla-
tion mixture (except polysomes) as well as the luciferase RNA 
standard.

The biotinylated proteins separated by electrophoresis 
transferred to polyvinylidene difluoride membrane (PVDF; 
Immobilon-P of the pore diameter equal 0.45 μm; Millipore). 
The electrotransfer was conducted at fixed voltage of 100 V 
for 60 min at 15–20°C. The buffer for the transfer contained 
25 mM Tris, 192 mM glicyne, 20% methanole, 0.1% SDS. 
Afterwards, biotinylated proteins were visualized by binding 
Streptavidin-HRP, followed by chemiluminescent detection 
(TranscendTM Chemiluminescent Translation Detection Sys-
tem; Promega) and scanned using Labscan 5.0 software on 
an ImageScanner (Amersham). To determine the apparent 
weight of the translated biotinylated proteins, biotinylated 
protein standards (Bio-Rad) were used. For analysis, ScanGel 
1.0 (Kucharczyk) was run.



187

© The Author(s) 2012 Published by Polish Botanical Society

Brosowska-Arendt and Weidner / Translational capacity of polysomes

Results

SDS-PAGE showed that small-molecule proteins – less than 
40 kDa (Fig. 1) – dominated among the ribosomal proteins 
bound with the total population of polysomes as well as with 
their particular fractions, such as FP, MBP, CBP and CMBP. In 
the profile of polysomal proteins isolated from early pea seed-
lings grown under unstressed conditions and under long-term 
osmotic stress (−0.5 MPa), obtained after 96 hours of seed ger-
mination, qualitative and quantitative changes were observed. 
It was found out that in response to the osmotic stress the 22.0, 
96.5 and 105.3 kDa proteins, absent in the control samples, 
bound with the total population of polysomes. It is noteworthy 
that these proteins (22.0 and 105.3 kDa) also bound to all frac-
tions of polysomes (FP, MBP, CBP and CMBP) isolated from 
seeds germinated under stress conditions. Besides, in response 
to stress conditions, plants produced such proteins that bound 
to specific polysomal fractions, e.g. the 50.3 kDa protein which 
bound to the FP population, 58.9 kDa – to CMBP, and 101.4 
kDa – to FP, CBP and CMBP. In turn the 23.0 kDa protein, 
which was present in pea seeds germinating under unstressed 
conditions, under osmotic stress was absent, both from the 
total polysomal population and from any of the polysomal 
fractions (Fig. 1). Furthermore, it was also observed that under 
the effect of water stress, the amounts of 23.5, 24.9, 50.3, 58.9 
and 110.0 kDa proteins bound with the total population of 
polysomes increased in comparison with the control (Fig. 1). 
Some other proteins of the particular polysomal populations 
formed during the water stress of −0.5 MPa also occurred in 
either larger or smaller quantities than in the control. The 
proteins bound with MBP were observed in smaller amounts 
while the ones bound with FP increased (Tab. 1).

In vitro translation primed by total polysomes and their 
particular fractions (FP, MBP, CBP and CMBP) indicated that 

there were differences in the newly synthesised proteins, both 
during the seed germination under the unstressed conditions 
and between the control sample versus the samples treated 
with osmotic stress. These differnces were both quantitative 
and qualitative. During the germination under the unstressed 
conditions, the in vitro synthesis of 108.2 and 158.3 kDa 
proteins decreased, while that of 20.7 and 21.9 kDa proteins 
increased (Fig. 2). Under the effect of both long- and short-
term osmotic stress (S96, S72), the 20.7, 21.9, 26.6, 108.2 and 
158.3 kDa proteins were observed to be synthesized more ef-
fectively, and therefore appeared in larger quantities than under 
the unstressed conditions (C96, C72, respectively). However, 
during the recovery after the short-term osmotic stress (SR96), 
the synthsis of these proteins decreased in comparison with the 
sample exposed to the stress (S72).

With respect to in vitro translation which involved particular 
populations of polysomes isolated from 96-hour pea seedlings 
grown under the unstressed conditions and under long-term 
water stress of the intensity of −0.5 MPa, differences were 
mainly observed between the 108.2 and 158.3 kDa proteins. 
In pea seedlings grown under the unstressed conditions, the 
108.2 kDa protein was synthesized mainly by the MBP as well 
as CBP and CMBP fractions, while the 158.3 kDa protein – by 
the FP, MBP, CBP populations and, only weakly, by CMBP. For 
comparison, in pea seedlings growing under long-term osmotic 
stress, the 108.2 kDa protein was synthesized in vitro mainly by 
the MBP and CBP populations and, to a smaller extent, by the 
FP and CMBP fractions, while the 158.3 kDa protein – by the 
MBP and CBP populations. It was also demonstrated that the 
most important differences between the osmotic stress and con-
trol samples appeared in the proteins which were synthesized 
on the CBP population. In response to the stress conditions, 
these proteins (>66 kDa) were more intensively synthesized 
than under the unstressed conditions (Fig. 3).

Fig. 1 SDS-PAGE of proteins bound to the total polysomal population and to particular polysomal fractions: FP, MBP, CBP and CMBP, isolated 
from embryonic tissue after 96 h of pea seed germination under unstressed (control) and long-term osmotic stress (−0.5 MPa) conditions. 
Molecular weight (kDa) of protein markers are given to the left. Black arrowheads – proteins which were absent under stress conditions; black 
frames – differences between proteins within a given sample; grey arrows – proteins different in quantities between control and stress samples; 
white arrowheads – proteins which were joined to polysomes during stress. P – total polysomal population.
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Discussion

The PEG used in our experiments is a neutral polymer 
which binds water, thus simulating soil drought stress [30,31]. 
Scientific experiments which simulate naturally ocurring 
conditions enable us to expand our knowledge of a given 
environmental stress factor and plant reactions to this stress, 
thus making it possible to obtain crops which are more tolerant 
to a given stress factor.

Osmotic stress inhibits the process of seed germination 
and subsequent plant growth [32–37] as well as the process 
of polysome formation [36,38,39]. Changes in the profiles of 
polysomes, which contain mRNAs undergoing translation, 
enable us to follow very precisely the rate of in vivo synthesis 
of proteins in cells [40].

The changes in the composition of polysomal proteins 
presented in this paper may play an important role in the 
regulation of translation under stress conditions and can 
result in the differentiated translational activity of particular 
fractions of polysomes, which had been demonstrated earlier 
[19,20,39,41,42]. The end products from in vitro translation 
of polysomes also reflect the activity of mRNAs that respond 
to stress [43]. Synthesis of most proteins under environmental 
stresses is reduced but translation of individual mRNA spe-
cies is differentially regulated [23,44–46]. Kawaguchi et al. 
[45] showed that less than 1% of the stress-induced mRNAs 
increased significantly in polysome association, what can sug-
gest that proteins encoded by this mRNAs were synthesized at 
higher levels during stress conditions. In turn on Shenton et 
al. [47] suggested that under low intensity of oxidative stress 

Control Osmotic stress −0.5 MPa
Protein (kDa) P FP MBP CBP CMBP P FP MBP CBP CMBP

110.0 + + + + + + + + +
105.3 − − − − − + + + + +
101.4 + − + − − + + + + +
96.5 − + + + + + + +
77.8 + + + + + + +
67.4 + + + + + + + + +
58.9 + + + + − + +
50.3 + − + + + + + +
46.1 + + + + + + + + +
32.0 + + + + + + + + +
30.5 + + + + + + + + +
28.0 + + + + + + + + +
25.0 + + + + + + +
24.9 + + + + +
23.5 + + + + + + + +
22.9 + + + + + − − − − −
22.0 − − − − − + + + + +
20.2 + + + + + + + +
19.9 + + + + + + + + +
18.3 + + + + + + + + +
17.3 + + + + + + + + +

Tab. 1 Differences in proteins associated with the total population of polysomes and with their particular fractions: FP, MBP, CBP, CMBP, 
isolated from embryonic tissue after 96 h of germination under unstressed (control) and long-term osmotic stress (−0.5 MPa) conditions.

Fig. 2 Chemiluminescent detection of biotinylated proteins which 
were synthesized in vitro by total polysomal isolated from embryonic 
tissue of pea seeds germinated  under unstressed conditions after 48 h 
(C48), 72 h (C72), 96 h (C96), under long-term (S96; 96 h osmotic 
stress) and short-term (S72; 48 h distilled water + 24 h osmotic stress) 
osmotic stress (−0.5 MPa) and during recovery after short-term 
osmotic stress (SR96; 48 h distilled water + 24 h osmotic stress + 
24 h distilled water) separated by SDS-PAGE. Biotinylated proteins 
were visualized by binding Streptavidin-HRP, followed by chemilu-
minescent detection. Differences between the proteins are presented 
in the boxes and the arrows indicate precisely these protein fractions.

“+” – presence; “−” – absence; “ ” – increased; “ ” – decreased of amount of a protein fraction joined with the total polysomal population and/
or particular polysomal fractions in an experimental sample.
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translation of stress protective proteins increased, whereas 
under high intensity – mRNAs increased in polyribosome 
association but translation activity does not increased. Under 
the influence of osmotic stress, in this study, some proteins 
were synthesized in vitro more intensively by the total popula-
tion of polysomes than in the optimal conditions too. Higher 
translational activity of polysomes during cold acclimation of 
wheat seedlings and wounding of potato tubers, compared to 
the control conditions, was also observed by Perras and Sarhan 
[48] and Morelli et al. [49], respectively. The most important 
change was the more effectively synthesis of five polypeptides 
under stress, suggesting that their higher expression was as-
sociated with tolerance capacity to this stress. The expression 
of specific proteins during stress conditions may be determined 
by presence of IRES (internal ribosome entry site) at mRNAs 
5’ UTR region. Spriggs et al. [50] described that 10–15% of all 
mRNAs may be translated by IRES and there is coordinated 
translation of subsets IRESs during stress. This is probably 
alternative mechanisms of translation initiation selectively 
recruit mRNAs to polysomes during cell stress.

Davies et al. [19] described important role of the cytoskel-
eton in the translation process in plants. They suggested that 
initiation or elongation of the translation process, or else both 
of these stages, were faster on the cytoskeleton-bound poly-
somes (CBP and CMBP) than on polysomes not bound with 
the cytoskeleton (FP, MBP). Changes in translational activity 
may be determined by dynamics of the actin cytoskeleton. 
Depolimerization of actin filaments (e.g. under stress condi-
tions) reduce translational activity, because components of the 
translational machinery (e.g. polysomes, initiation factors) are 
dispersed. In turn on, association of translational components 
with cytoskeleton may prevent diffusion of factors and thus 
increase translational activity [51]. The highest translational 
activity under water stress, in this study, was also demonstrated 
by the CBP. Higher translational activity of the CBP popula-
tion than that of the FP or MBP fractions in bean tissues had 

been shown previously by Klyachko et al. [41]. Their results 
confirmed some subsequent findings reported by Weidner 
et al. [20], who observed that most of exogenous 14C-amino 
acids were incorporated, in the embryonic tissue of pea, in the 
newly formed polypeptide chain, synthesized with the CMBP 
population. They claimed that the CBP population may play an 
important role in the synthesis of the so-called stress proteins 
[20,21]. According to Kosowska et al. [36], there must be some 
mechanism of regulating translation which is activated in seeds 
germinating under osmotic stress that enables synthesis of spe-
cific proteins despite the total protein synthesis being reduced.
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