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Introduction

Habitat complexes of river valleys are characterized by 
considerable heterogeneity defined as variability of spatial 
and temporal patterns and processes [1]. Environmental 
heterogeneity of the riparian landscape is a result of interfaces 
between terrestrial and aquatic ecosystems, i.e. river fluvial 
activity (erosion, transport, retention of inorganic sediments 
and nutrients), organic-matter dynamics, climatic factors, 
and hydrological relationships between the abiotic and biotic 
elements of the ecosystem [2–8]. The riverine landscapes 
are usually characterized by specific zonal toposequence 
of plant communities as well as great biodiversity, despite 
the rather small proportion of the total watershed area in a 
given region [9–14].

For the last decades, application of geographical infor-
mation systems (GIS) and digital elevation models (DEM) 

has provided very useful tools for studying the biodiversity 
indicators and relationships between topographic and 
ecological characters of different landscapes, including river 
systems (e.g. [13–18]). The GIS facilitates classification of 
natural systems based on linking a variety of spatial com-
ponents or observation results using multivariate canonical 
analyses [8,14,19–23]. Regardless of the scale of the study, 
some spatial elements remain unchanged. The basis of the 
analytical procedures is two groups of topographic attributes 
calculated from the DEM [24–26]: primary topographic 
attributes – slope, aspect, planar (or contour), vertical (or 
profile), and total curvature; and secondary topographic 
attributes – solar radiation (SRAD), and the topographic 
wetness index (TWI).

The approach based on “ecological indicator values” 
(EIV) of plants as predictors of the environment quality has 
widely developed since the first attempt made by Ellenberg 
[27], who defined EIVs, which reflect the realized optima 
for species of Central Europe expressed as ordinal numbers. 
The EIV system provides a very valuable tool for habitat 
calibration and recently it has been applied for modeling 
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Abstract

The goal of the present research was to find correlations between the topographic attributes of a river valley and local 
ground-floor vegetation and its habitat requirements expressed by ecological indicator values (EIV), using the geographical 
information systems (GIS), digital elevation model (DEM), and multivariate statistical analysis. We paid special attention 
to the river course, which determines the differentiation in slope aspects and the amount of solar radiation reaching the 
ground surface. The model object was an almost latitudinal, ca. 4-km-long break section of the Sopot river, crossing the 
escarpment zone of the Central Roztocze Highlands, southeastern Poland. The main material comprised species lists (with 
estimated abundance) for each ca. 200-m-long section, according to the river valley course, separately for the left and right 
riverbanks, 40 sections altogether, ca. 15 000 vegetation records, and physical and chemical soil measurements. A 3-meter 
resolution DEM was derived from a 1:10 000 topographic map. We calculated the correlations between the topographic 
attributes of the valley, species richness, and the EIVs for all the species recognized in each section of the valley. We found 
241 herb plant species in the ground-floor vegetation of the study area. We did not find significant differences between 
the two riversides (61 ±13 species per one section for the left and 63 ±17 for the right side). Thus, the parallel course of 
the river valley does not change the species richness on a more “sunny” and more “shiny” riverbank. However, this factor 
“cooperating” with other topographic attributes of the valley significantly differentiates the shape of species showing vari-
ous requirements for basic habitat resources: light, moisture, soil trophy, reaction, dispersion, and organic-matter content.
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plant distribution at various spatial scales. However, in-
vestigations conducted at the regional and landscape levels 
[15,22,28–32] are still much more common than studies on 
local sites [14,17,21,33].

Our studies were focused on a break section of a small-
scale river valley characterized by an almost latitudinal 
course of the entire analyzed fragment, which is the main 
factor determining the slope aspect and, in consequence, 
the disproportion between the amounts of energy supplied 
to the right and left banks of the river valley. We assumed 
that solar radiation reaching the Earth’s surface is the most 
important environmental factor determining species rich-
ness and diversity on the two riverbanks. The goal of the 
present research was to find correlations between the terrain 
characters of the river valley and local vascular flora and 
its ecological requirements expressed by the EIVs in the 
entire valley and on its right and left sides separately, using 
the GIS, DEM, and multivariate statistical analysis. Finally, 
we have discussed the usefulness of the GIS and DEM for 
studying the relationships between the topographic (abiotic) 
and ecological (biotic) attributes of the riparian vegetation.

Material and methods

Study area and material collection
The study area was a break section (i.e. between the 14th 

and 18th km of the river course) of the Sopot river (IV order 
river), the largest right-side tributary of the upper Tanew 
river, crossing the escarpment zone of the Central Roztocze 
Highlands, southeastern Poland (Fig. 1a). The Sopot river is 
a 24-km-long stream with a catchment area of approximately 
122 km2 and discharge varying from 913 to 1638 dm3 s−1. A 
characteristic feature of the “strict” zone of the river break 
(over the first 1.1 km of the study section) is a large slope of 
the riverbed (19.1‰); over the length of ca. 4 km – 5.3‰, on 
average; a large incision of the valley bottom and presence of 
numerous rock steps and springs, all of which give the valley 
a mountainous character. In the upper part of the study area 
the valley was built of Miocene formations and in the lower 
part – Quaternary formations, on which different types of 
soils have been evolved [11,34,35]. The valley section to be 
analyzed (4 km long; 80.5 ha) is wooded in 99.5% and only 
slightly transformed by human activity (map at the 1:5000 

Fig. 1 The study section of the Sopot river valley. a Distribution of springs. b Distribution of soil complexes. c Distribution of plant 
communities. L1–L20 – left-side sections of the valley. R1–R20 – right-side sections of the valley. Vertical exaggeration = 3.
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scale from 1998; Czarnecka, unpblished data). The main 
character of the vegetation landscape of the steep slopes is 
created by upland mixed fir forest Abietetum polonicum, a 
community of European importance [36]. The remaining 
area (0.5%) is covered by sedge and meadow vegetation 
(Tab. 1). The study valley is characterized by zonal arrange-
ment of soil complexes and plant communities (Fig. 1b,c). 
The most valuable break part of the valley with forests on 
the slopes and river terrace has been preserved since 1958 
in a landscape reserve called “Czartowe Pole” (“The Devil’s 
Field”). The study object was also included in the Natura 
2000 network within both types of protected sites: Special 
Protected Area (PLB 060012) and Special Area of Conserva-
tion (PLH 060018).

The main material comprised species lists (with estimated 
abundance) for each ca. 200-m-long section, according to 
the river valley course, separately for the left and right riv-
erbanks, 40 sections altogether (Fig. 1). We have established 
the frequency and abundance of each vascular plant species 
in the ground-floor vegetation, using a simplified, combined 
scale, where: 1 – sporadic species; 2 – rare and not-abundant 
species (covering <10% of the section area); 3 – frequent and 
abundant species (covering 10–50% of the section area); 
4 – common and very abundant species (covering >50% of 
the section area). To estimate the real habitat conditions in 
the whole study area and each section and the ecological 
scale of particular plant species, we also used other field 
materials: phytosociological relevés in different types of 
plant communities (60 in total), and soil pits (27 in total) 
distributed proportionally to the area, and the diversity of the 
identified communities. Using commonly accepted methods 
[37,38], the following properties were determined for 140 
soil samples: the content of organic matter and/or organic 
carbon, active acidity, calcium carbonate and basic ions (Ca, 
K, Na, Ma, Fe, P, and N in the form of ammonia and nitrate).

Analysis of terrain attributes
Spatial data were obtained from a topographic map at 

the 1:10 000 scale by successive digitization of contour 

lines, elevation points, valley edges and their height. For 
calculation of the terrain attributes, we used tools available 
in the ArcToolbox of the ArcGIS 10 software and the Spatial 
Analyst extension. Using the Topo to Raster tool, we gener-
ated the DEM and its derivatives with a resolution of 3 m 
[39]. Based on the DEM and the derivatives, the following 
commonly used topographic attributes were calculated 
[24–26]: primary – slope, aspect, and planar, vertical, and 
total curvature; and secondary – the SRAD and TWI. Apart 
from the above-listed attributes, we also took into account 
additional primary terrain characters: denivelation (eleva-
tion gradient), total area, flat area (i.e. ≤2° of terrain slope), 
and upslope area (>2° of terrain slope) of a given section. 
Subsequently, each attribute was analyzed for each valley 
section of the river using the Zonal Statistics tool, with 
which a statistic was calculated for each zone defined by a 
zone dataset (in our case, these were particular sections of 
the valley), based on values from the other datasets (DEM, 
slope aspect, planar, vertical and total curvature, SRAD, 
and TWI). A single output value was computed for every 
zone in the input zone dataset. For detailed description, see 
Czarnecka and Chabudziński [14].

Statistical analysis
In the next step, the mean value of specific EIVs in each 

valley section was calculated using a modified formula for 
the weighted average [14]:

where: WA – weighted average, Ai – abundance of the cover of 
the i-th species in a given section of the valley, Ii – ecological 
indicator value for the i-th species, n – number of species 
in the section.

We calculated the correlations of topographic attributes 
of the valley, species richness, and the EIVs for all the spe-
cies in each section. According to the suggestions of some 
authors [21,28,40], we analyzed the EIVs only for one 
vegetation layer, i.e. ground-floor vegetation (pteridophytes 

Plant community Area (%) Soil types Active acidity (pH)
Organic matter/

humus content (%)

Upland mixed fir forest Abietetum polonicum 46.1 Podzolic soil
Rusty-podzolic soil

3.64−5.32
4.07−4.40

0.11−0.65
0.23−2.13

Riverside ash-alder forest Fraxino-Alnetum 21.2 Brown pararendzina
Alluvial soil
Gley podzolic soil
Low peat soil

7.57−7.98
5.53−7.73
4.06−8.15
4.46−8.18

1.20−2.77
0.21−21.61
0.27−13.19

39.53−80.79
Bog alder forest Ribeso nigri-Alnetum 14.2 Low peat soil 5.34−7.75 18.15−85.76
Oak-pine mixed forest Querco roboris-Pinetum 7.0 Rusty-podzolic soil 4.56−6.37 0.81−1.09
Moist mixed coniferous forest Querco-Piceetum 5.7 Low peat soil

Gley podzolic soil
3.51−5.56
4.24−5.49

35.98−90.99
6.49−56.18

Suboceanic pine forest Leucobryo-Pinetum
Subcontinental pine forest Peucedano-Pinetum 

3.2 Podzolic soil 4.74−6.68 0.10−0.61

Secondary pine communities 0.8 Podzolic soil 4.00−4.53 0.14−0.93
Sedge communities 0.3 Low peat soil 5.10−7.11 28.26−77.20
Grassland communities 0.2 Leached brown soil 5.32−6.42 2.07

Tab. 1 Characteristics of the study area of the Sopot river valley ([34,35] and Czarnecka unpblished data).
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and spermatophytes, except for the shrub and tree species). 
The full data set comprises almost 15 000 vegetation records 
taken during the field survey. We took into account the 
following 6 indicator values describing the most typical 
habitat conditions of the species according to Zarzycki 
et al. [41]: light (L), soil moisture (W), trophy (Tr), soil/
water acidity (R), soil granulometry = dispersion (D), and 
organic matter content (H). The EIVs used in the analyzed 
valley were calibrated by adjustment to the range of habitat 
conditions found during the field and laboratory studies. 
The continentality (C) and temperature (T) values were 
purposely not taken into account, as their value is constant 
in a small study area.

To establish whether particular topographic variables 
have or do not have normal distribution, we used the Sha-
piro–Wilk test. Because a majority of the values of the 
analyzed attributes did not show a normal distribution, 
Spearman’s rank correlation coefficients (r) were calculated 
between the number of species and the mean value for a 
specific EIV in each section and all topographic attributes 
of the valley. The mean and sum value of the primary and 
secondary topographic attributes were taken into account. 
The correlation analysis was performed for the entire valley 
section and separately for both riverbanks, due to the varied 
slope aspect and terrace asymmetry (cf. Fig. 1). All statistics 
were calculated with the use of Statistica PL.

To analyze the relationships between weighted averages 
for the particular EIV of local vascular flora and topographic 
attributes of the valley, we also used multivariate ordina-
tion methods in Canoco version 4.5 [19,20]. According 
to the length of the gradient from preliminary detrended 
correspondence analysis (DCA), a linear model was used – 
redundancy analysis (RDA). A manual procedure with 499 

Monte Carlo significance permutation tests was used to find 
the minimum number of statistically significant variables. 
The eigenvalues and percentages of floristic and topographic 
variance explained by the first four axes were calculated. 
Finally, the pattern obtained from the classification was 
transferred onto a graph with sample groups marked in the 
RDA. The first two axes were shown on the graph.

Results

Correlations between species richness and topographic attributes
In total, we found 241 herb plant species (spermatophytes 

and pteridophytes) in the ground-floor vegetation of the 
study area. The average number of species per one section 
was variable (mean ±standard deviation = 62 ±15) and 
ranged from 32 (section R1) to 99 (R3). We did not notice 
significant differences between the two riversides (61 ±13 
for the left, 63 ±17 for the right). Species richness increased 
significantly with the rise of the total area (r = 0.52) and the 
flat area (r = 0.67) of a given section; the correlation with 
the upslope area was weaker for the total study area (r = 
0.34), but stronger for the left riverside (r = 0.64; Tab. 2). The 
number of species was not correlated with terrain denivela-
tion but it decreased significantly with the mean slope (r = 
−0.49), CP_mean (r = −0.36), CT_mean (−0.33 < r < −0.48) 
and CT_sum (−0.50 < r < −0.61). In turn, species richness 
was positively correlated with CV_mean (0.49 < r < 0.56) 
and CV_sum (0.57 < r < 0.58).

The lowest number of species (≤50 species) was recorded 
in sections, in which at least two of the following three 
factors were combined: average slope >10°, denivelation 
>20 m, proportion of flat area <10% (sections: L1−3, L19−20, 

Ecological indicator values

Topographic
attributes

Number of species L W Tr R D H

All Left Right All Right All Right All Left Right All Right All Right All Right

TA 0.52*** 0.48*

FA 0.67*** 0.51* 0.38* 0.36* 0.33* 0.56** 0.53*

UA 0.34* 0.64** −0.51* −0.65** 0.48* −0.51* −0.54*

DN −0.54*** −0.80*** −0.43** −0.70*** −0.53* −0.53* −0.45** −0.59** −0.46** −0.59**

SL_mean −0.49** −0.49** −0.58** −0.60** −0.46** −0.49** −0.37* −0.52* −0.56*

CP_mean −0.36* −0.33* −0.46* −0.32*

CP_sum −0.35* −0.34*

CV_mean 0.56*** 0.49* 0.56**

CV_sum 0.58*** 0.58* 0.57** 0.46*

CT_mean −0.33* −0.48* −0.63** −0.84*** −0.51** −0.82***

CT_sum −0.50* −0.54* −0.61** −0.47* −0.72*** −0.58** −0.75***

SRAD_mean 0.48* −0.56* −0.48* −0.64** −0.65**

SRAD_sum 0.46** 0.69*** 0.47*

TWI_mean 0.69*** 0.72*** 0.63** 0.37* 0.48* 0.48** 0.66** 0.42* 0.43** 0.47** 0.59 0.46** 0.66**

TWI_sum 0.57*** 0.71*** 0.47*

Explanations: All – all sections of the valley; Left – left sections of the valley; Right – right sections of the valley; TA – total area; FA – 
flat area; UA – upslope area; DN – denivelation; SL_mean – mean slope; CP_mean – mean planar curvature; CP_sum – sum planar 
curvature; CV_mean – mean vertical curvature; CV_sum – sum vertical curvature; CT_mean – mean total curvature; CT_sum – sum 
total curvature; SRAD_mean – mean solar radiation; SRAD_sum – sum solar radiation; TWI_mean – mean topographic wetnes index; 
TWI_sum – sum topographic wetnes index. Significance level: * 0.01 < P ≤0.05; ** 0.0001 < P ≤ 0.01; *** P ≤ 0.0001.

Tab. 2 Statistically significant correlation coefficients between topographic attributes and ecological indicator values of ground-floor 
vegetation in the Sopot river valley and its opposite riverbanks.



17© The Author(s) 2015 Published by Polish Botanical Society Acta Soc Bot Pol 84(1):13–22

Czarnecka et al. / River course versus species richness

R1−2, R4). The highest species richness (≥75 species) was 
characteristic for sections with the largest proportion of the 
flat area (>20%, in some sections even >40%); in this case, 
denivelation and the mean slope are less important (L7, 
L9−10, L16, R9, R18−20). Section R3 is an exception (99 spe-
cies; mean slope >10°; flat area = 16.7%), as it comprises the 
only afforested fragment of the valley slope overgrown with 
grassland community with the share of some thermophilous 
elements (cf. Fig. 1c).

The vascular ground flora displayed a great number of 
high correlations between species richness and the second-
ary topographic attributes for the entire valley or at least for 
the individual banks. A different effect of the SRAD_mean 
on the species richness was observed for both riverbanks: 
positive for the left (r = 0.48) and negative for the right one 
(r = −0.56), i.e. for the bank with domination of the southern 
and northern aspects and their derivatives, respectively. This 
is correlated with the disproportion between the amounts 
of energy reaching the surface of ground-floor layer during 
vegetation season (April−October) in the right- and left-side 
sections of the river valley, 150 kWh m−2 on average, which is 
similar along the entire valley (Fig. 2). The SRAD_sum and 
TWI_sum were not significant for the right-side sections of 
the valley, while the mean TWI had a highly positive impact 
on the number of the species for all the sections studied 
(r = 0.69), and the left and right banks separately (r = 0.72 
and r = 0.63, respectively).

Correlations between species diversity and topographic attributes
The topographic attributes exert a different effect on the 

ecological diversity of flora expressed by the EIVs (Tab. 2). 
The relationships differed between the valley banks; they 
were much stronger and more significant for the right side 
(for all indicators except the Tr value). The denivelation, 
which was not significant for the species richness, had a 
negative impact on the share of species with higher require-
ments for light (−0.54 < r < −0.80), soil humidity (−0.43 < r 
< −0.70), trophy (r = −0.53), acidity (r = −0.53), dispersion 
(−0.45 < r < −0.59), and humus content (−0.46 < r < −0.59), 
especially on the right bank. The mean slope plays a similar 

role for species diversity. The upslope area affects negatively 
the L, W, D, and H values (−0.51 < r < −0.65), but positively 
the Tr value (r = 0.48) on the left riverside.

The higher the mean total curvature of the right valley 
slope, the significantly lower the number of species with 
higher values of the L (r = −0.63), W (r = −0.84), D (r = 
−0.51), and H (r = −0.82) indicators. In general, slightly 
lower correlations were found for the CT_sum: L (r = 
−0.47), W (r = −0.72), D (r = −0.58), and H (r = −0.75). The 
SRAD_mean was negatively correlated with the value of L 
(r = −0.48), W (r = −0.64), and H (r = −0.65) for the right 
riverbank while the SRAD_sum influenced significantly only 
the Tr value on the left bank (r = 0.47), i.e. the bank with 
the northern aspect and its derivatives. A similar situation 
was observed for the TWI_sum only for the Tr value in the 
left-side sections (r = 0.47). In contrast, the correlations for 
the TWI_mean were more frequent and higher: L (0.37 < 
r < 0.48), W (0.48 < r < 0.66), Tr (r = 0.42), R (r = 0.43), D 
(r = 0.47), and H (0.46 < r < 0.66).

The RDA analysis revealed topographic attributes of the 
valley that were the most significant for species richness and 
diversity (Tab. 2, Fig. 3). The analysis confirmed the positive 
correlation between the number of species in the sector and 
its total area and, in particular, with the flat area and the 
sum and mean TWI (correlation with axis 1). These factors 
were equally significant, which was evidenced by the length 
of their vectors. There was a considerably lower correlation 
between the same axis and the CT_sum. The D value was 
highly correlated with the TWI_mean and CV_sum. The 
values of the other EVIs (L, H, W, R, and Tr) were inter-
related and positively correlated with axis 2. Denivelation 
and upslope area had a reverse vector, and the vectors of the 
CP_sum and SL_mean were shorter. All the factors were 
negatively correlated with axis 1 (Fig. 3). The CP_mean, 
CT_mean, and CT_sum were negatively correlated with axis 
2. The alignment of the particular sections of the valley along 
the axes and vectors of the investigated attributes indicates 
which attributes exert an impact on the species number and 
their ecological diversity in each section.
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Fig. 2 Amounts of solar energy supplied for the left and right riverbanks and trend line equations for mean SRAD along the Sopot 
river valley.
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 The cumulative percentage of ground-floor species and 
topographic variance explained by the first two RDA axes 
was 57.4%. For all the variables analyzed for 40 valley sec-
tions, the sum values of the Monte Carlo test and forward 
selection of species–topographic relationships explained 

73.2% of the variety; for statistically significant variables 
see Tab. 3. There was a statistically significant relationship 
between the occurrence of species and the gradients of both 
RDA canonical axes (P < 0.01). F ratio for the first canonical 
axis was even higher (4.25; P = 0.002).
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Fig. 3 Ordination diagram showing the result of the RDA for species richness, ecological indicator values and topographic attributes 
for all sections of the Sopot river valley. Eigenvalues: Axis 1 – 19.10, Axis 2 – 11.22, Axis 3 – 7.13, Axis 4 – 4.61. NS – number of species. 
Remaining abbreviations as in Tab. 2.

All sections Left bank Right bank
Variable Lambda A F ratio Lambda A F ratio Lambda A F ratio

No. of species 0.08 4.19** 0.15 1.98** 0.10 2.99**
Flat area 0.05 1.51*
SRAD_mean 0.03 1.64**
CT_sum 0.02 1.49*
CT_mean 0.02 1.40*
H 0.17 7.97** 0.20 4.60** 0.22 5.07**
L 0.09 4.26** 0.15 3.86** 0.14 3.87**
W 0.04 2.78** 0.07 1.84** 0.07 2.12**
Tr 0.05 2.41** 0.05 1.78** 0.06 2.02**
R 0.03 1.43* 0.005 1.78**
D 0.02 1.62*

Tab. 3 Results of the Monte Carlo permutation tests and forword selection for relations between 
the ground-floor vegetation, primary and secondary topographic attributes and ecological 
indicator values in the Sopot river valley.

Significance level: * 0.01 < P ≤0.05; ** 0.0001 < P ≤0.01. Explanations as in Tab. 2.
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Ground-floor vegetation on two riverbanks
The ordination diagrams for both riversides showed 

varied significance of the topographic attributes analyzed in 
the individual sections of the valley. For the left riverbank 
(northern aspect and its derivatives), the following variables 
are positively correlated with axis 1 (Tab. 3, Fig. 4): CT_sum, 
W, H, L; a significantly weaker correlation was found for the 
CP_sum and CT_mean. This is characteristic for sections 
L11–L15, L17, and L18. The SL_mean and CP_mean are 
negatively correlated with axis 1. These factors are important 
for sections L19 and L20, and less important for L1–L3. The 
following variables are positively correlated with axis 2: the 
number of species, total and flat area, TWI_sum, TWI_mean, 
and, more weakly, CV_mean. These factors are the most 
important in the case of sections L9 and L10. The vectors 
for the Tr and R have a similar length, whereas that for D 
is considerably longer and similar to vectors W and H cor-
related with axis 1. With its position, section 16 is related to 
the group of sectors correlated with axis 1, i.e. L17 and L13 
in particular, but section L16 exhibits a significant share of 
species associated with heavier soil formations, e.g. loams, 
clayey sands, and clays. The greatest importance for the 
ground-floor vegetation in sections L6–L8 is attributed to the 
SRAD_sum, upslope area, denivelation, and SRAD_mean, 
which are negatively correlated with axis 2. The aforemen-
tioned factors play a lesser role in sections L4 and L5.

For the left bank, the cumulative percentage of ground-
floor species and topographic variance explained by the 
first two RDA axes was 54.9%. The Monte Carlo test of 
significance of the first canonical axis showed the value 
33.8%. There were 7 statistically significant variables shown 
by the forward selection of species–topographic relation-
ships (Tab. 3).

On the right side of the valley (southern aspect and its 
derivatives), the highest positive correlation with axis 1 was 
observed for the following attributes: denivelation, CT_sum, 
CT_mean, and SRAD_mean; a weaker correlation was found 
in the case of the upslope area, SL_mean, CP_mean and 
CP_sum, SRAD_sum, and total area. These factors have the 
most substantial role in sections R4–R8 and R13. A nega-
tive correlation with axis 1 is exhibited by the D value and 
TWI_sum. The latter factor seems to have an impact on the 
ground-floor vegetation in sections R9–R12 and R14–R16. 
Three EIVs, i.e. L, W, and H have the strongest correlation 
with axis 2 and are statistically significant for species diver-
sity. The share of species with high requirements for light, 
moisture, and humus content exhibits a strong correlation 
with the TWI_mean, CV_mean, and CV_sum, a slightly 
weaker relationship with the flat area (section R17). This is 
particularly important in sections R18–R20. The position 
of sections R1–R3 in the graph indicates their distinctness 
from the others. The Tr and R values are important for the 
flora of these sections (Tab. 3, Fig. 5).

The cumulative percentage of ground flora and topo-
graphic attributes for the right riverside (southern aspect 
and its derivatives) explained by the two first RDA axes 
was 58.8%. The Monte Carlo test of significance of the first 
canonical axis showed the value 24.9%. Forward selection of 
the relationships between the ecological variables revealed 
5 statistically significant variables.

Discussion

Out of the primary topographic attributes [24–26], the 
following ones seem to be of great ecological relevance for 
ground-floor vegetation: elevation, slope (surface gradient), 
aspect (surface orientation), and planar, vertical, and total 
curvatures. In the present study, we also found other terrain 
characters to be important for species richness and diversity: 
the total area of a given section of the river valley, share of 
the flat area (i.e. floodplain terrace), and share of the upslope 
area in the sections. Despite the specific zonal toposequence 
of soil complexes and forest communities in the valley, we 
found significant differences between the ground-floor 
vegetation on the opposite riverbanks.

Elevation gradients (denivelations) determine soil vari-
ables, species distribution, vegetation production levels, 
and patterns of disturbance [3,17,18,42,43]. Surprisingly, 
the denivelation of the Sopot river valley (incision into the 
substratum: mean = 20 m, max = 27 m) does not alone influ-
ence significantly the species richness but shapes the values 
of all ecological indicators for ground-floor vegetation: L, 
W, Tr, R, D and H, particularly for the more “sunny” right 
bank. That terrain attribute was not significant for species 
richness and ecological variety of flora in another river 
valley, the Szum river, crossing the escarpment zone of the 
same highland region, similar in its mountainous character 
but incised in the bedrock for only 10 m on average; max 
= 15 m [14].

We found other primary attributes to be significantly 
important for both richness and diversity of the ground-floor 
vegetation. The species richness was positively correlated 
with the total area of a given section and first of all with 
the proportion of the flat area for the entire study area. 
The width of the floodplain terrace seems to be of great 
importance for the species richness because of the presence 
of the richest hygrophilous and nitrophilous vegetation, i.e. 
ash-alder forests Fraxino-Alnetum and bog alder forests 
Ribeso nigri-Alnetum. Their occurrence is promoted, from 
the riverbed side, by sedimentation of heavier and hence 
more nutrient-rich mineral formations: loams, clayey sands, 
heavy and silty clays [34,35]. This is also evidenced by sig-
nificant correlations between the flat area and some EIVs: 
Tr, D, and H; the intercorrelations are noticeably higher for 
the right riverbank.

Significant negative correlations were found for the mean 
slope in the individual valley sections and all of the study 
EIVs: L, W, Tr, R, D, and H. The correlations were usually 
higher for the right riverbank, which is characterized by 
southern aspect and its derivatives. The upslope area also 
influences the decrease in the share of species with higher 
requirements for light, humidity, heavier soil formations, and 
humus content. Greater slopes, higher insolation, and lower 
humidity offer less favorable conditions for accumulation 
and humification of organic matter. Soils in such conditions 
are more acidic and poorer podzolics overgrown with dif-
ferent coniferous forests, first of all upland mixed fir forest 
Abietetum polonicum [11,12,35].

On the right-side bank, a positive influence of vertical 
curvatures on the species number and the increase in species 
with higher requirements for light was noted. In contrast, 
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the total curvatures contributed significantly to the decrease 
in the share of species with higher L, H, D, and H values. 
This indicates that the slopes of the valley are dominated by 
convex rather than concave forms. Simultaneously, we also 
found negative correlations between the planar curvature and 
the species number, and the Tr and R values. This implies that 
the planar curvature of the contour lines has more “ridges” 
than “valleys”, which promotes divergence of flowing water 
over the convergence of water [24–26]. This situation, locally 
together with the narrow terrace and water velocity, reduces 
the repository role of the river, thereby leading to reduction 
of the nutrient content and reaction of soil [4,5,7].

The SRAD values are significantly correlated with the 
number of species and diversity of ground-floor vegetation 
in the study river valley. This secondary topographic attribute 
is highly variable from place to place due to changing slope 
and aspect [17,18,44]. In the present study, the decisive 
condition shaping the energy amounts delivered for both 
riverbanks was the almost parallel course of the valley in a 
greater part of the analyzed fragment. The disproportion is 
on average 150 kWh m−2, in favor of the right-side section. 
That is approximately one fifth of the total amounts of solar 
energy reaching the ground-floor layer during the vegeta-
tion season on the left-site bank. On the right riverside, the 
mean SRAD has a negative impact on the species number 
and share of species with higher light, humidity, and organic 
matter content requirements. In turn, on the more “shiny” 
left riverside, the sum SRAD promotes highly the rise of 
species richness and the trophy level of soils.

Since exact measurement of the water regime is very 
difficult, the TWI derived from DEM is commonly used 
in analyses of relationships between abiotic and biotic 
environmental characters. The TWI correlates well with 
soil attributes such as horizon depth, groundwater table, silt 
and organic matter contents, and thereby serves as a good 
indicator of habitat productivity [18,23,42,45,46]. In our 

research, the TWI, particularly its mean values, is signifi-
cantly positively correlated with the species abundance and 
all the EIVs studied. As a rule, the TWI was more important 
for the ground flora on the right (more “sunny”) than the left 
(more “shiny”) riverbank, with the exception of the Tr value.

Among the EIVs, the R value seems to be most frequent 
subject of studies. However, some authors found during 
field measurements that pH values for some ecological 
groups of species were different than those expected from 
Ellenberg’s scale, which strongly limits the use of the R values 
and requires re-calibration [28–30,33,47]. The well-known 
influence of soil acidity and calcium content on species 
occurrence [33] may also apply to the study area due to the 
presence of the Ca-rich formations of various origins and 
age (2.5–89% of CaCO3 content). The diverse water-bearing 
horizons of these formations result in approximately a nine-
fold differentiation of water mineralization [11,35].

In conclusion, we have to stress that the GIS, DEM, and 
multivariate ordination methods have become a useful tool 
for detection of species richness and distribution of their 
ecological groups in correlation with primary and secondary 
topographic attributes of a given terrain, including riparian 
landscapes. We have also proved that the EIV system, which 
has been widely applied for modeling plant distribution at 
large spatial scales, i.e. on the global or regional levels, may 
be used on a local level, e.g. in a minor river valley and its 
particular banks. In the light of our study, the course of the 
river valley which determines the differentiation in slope 
aspects and, in consequence, between the amount of solar 
radiation reaching the ground-floor vegetation, does not 
change the species richness on a more “sunny” and more 
“shiny” riverbank. However, this factor “cooperating” with 
other topographic attributes may significantly differentiate 
the shape of herb species showing various requirements for 
basic habitat resources: light, moisture, soil trophy, reaction, 
dispersion, and organic matter content.
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