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Introduction

Contamination of the environment with heavy metals, 
including Cd, is a serious problem of the modern world. Cad-
mium toxicity in plants leads to the generation of oxidative 
stress, chlorosis, inhibition of photosynthesis, disturbances 
in mineral homeostasis, increased rate of mutations and 
initiation of apoptotic and necrotic processes [1–3]. The 
described toxic symptoms lead to inhibition of plants growth 
and decrease in the obtained yield. Moreover, Cd might ac-
cumulate in crop plants and enter human organisms through 
the food chain [4]. One of the common responses of plants 
to cadmium stress is enhanced production of ethylene [5–8]. 
However, the exact role of the observed Cd-dependent induc-
tion of this hormone’s production is still unrecognized. It is 
known that ethylene constitutes an important stress-related 
signaling molecule [9]. There are individual reports stating 
that it mediates Cd-dependent growth inhibition, hydrogen 
peroxide accumulation and programmed cell death (PCD) 
[7,10–12]. In mustard plants ethylene has been shown to 
participate in sulfur dependent alleviation of Cd toxicity 
through stimulation of antioxidant system [7,13].

Due to the important role of ethylene in flowering, fruit 
ripening and response of plants to stress factors several 
inhibitors of its synthesis and perception were developed. 
One of the commonly used inhibitor is Co, which affects the 
activity of a key enzyme in ethylene’s biosynthesis pathway 
– 1-aminocyclopropane-1-carboxylic acid oxidase (ACO) 
[14]. However, although relatively low concentration of Co 
might be beneficial for plants, higher concentrations exhibit 
toxic effect [15,16]. This metal has been shown to inhibit 
plants growth, cause oxidative stress, DNA damage and 
disturbances in photosynthesis [16–20]. Excess of Co also 
leads to alterations in germination, sex ratio, photoperiodism 
and uptake of other elements [16].

In the previous study we have shown that cadmium stress 
causes induction of ethylene biosynthesis and elevated ex-
pression of several genes associated with signaling pathways. 
Interestingly the promoters of Cd-induced genes contained 
cis-acting elements connected with ethylene signaling [6]. 
The aim of present study was to investigate the effect of Co, 
as a potential ethylene inhibitor, on soybean seedlings sub-
jected to short term cadmium stress. The conducted research 
includes evaluation of the impact of Co on soybean growth 
parameters, viability, ethylene production and expression 
of six Cd-induced genes.
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Abstract

Contamination of the environment with heavy metals such as Cd is a serious problem of modern world. Exposure of 
plants to Cd leads to oxidative stress, inhibition of respiration and photosynthesis, increased rate of mutation and, as a con-
sequence, stunted growth and yield decrease. One of the common reactions of plants to cadmium stress is over-production 
of ethylene, however the exact role of this hormone in plants response to Cd is still unrecognized. The aim of the present 
study is evaluation of the impact of an ethylene synthesis inhibitor, Co, on the response of soybean seedlings to cadmium 
stress. The experiments included measurements of growth, cell viability, ethylene production and expression of genes 
associated with cellular signaling in soybean seedlings exposed to CdCl2 (with Cd in a concentration of 223 μM) and/or 
CoCl2 (with Co in concentration of 4.6 μM). Surprisingly, the results show that Co has no effect on ethylene biosynthesis, 
however, it affects cell viability and expression of Cd-induced genes associated with plant signaling pathways. The affected 
genes encode mitogen-activated protein kinase kinase2 (MAPKK2), nitrate reductase and DOF1 and bZIP2 transcription 
factors. The role of Co in plants response to cadmium stress and its potential use as an ethylene inhibitor is discussed.
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Material and methods

Plant material, growth conditions and treatment procedures
If not stated differently the reagents were purchased at 

Sigma-Aldrich company (St. Louis, Missouri, USA). The 
applied growth conditions, Cd and Co concentrations and 
treatment periods were based on previous studies [6,21].

Soybean (Glycine max L cv. Nawiko) seeds were surface 
sterilized with 75% ethanol for 5 min and for 10 min with 
1% sodium hyperchlorite. Seeds were washed for 30 min, 
soaked in distilled water for 2 h and germinated on Petri 
dishes with moistened blotting paper for 48 h. Germinated 
seedlings were transferred to new Petri dishes and treated 
with 5 ml of either: distilled water (control), 4.6 μM Co in 
CoCl2 solution (corresponding 10 μM CoCl2), 223 μM Cd in 
CdCl2 solution (corresponding to 25 mg l−1) or combined Cd 
and Co (corresponding to 4.6 μM and 223 μM respectively). 
After 3 and 6 hours of treatment seedlings root tips (100 mg) 
were cut off and frozen in −80°C for RNA isolation. Due to 
the lack of significant effect in shorter treatment periods 
(data not shown) the measurements of roots growth and 
cell viability were carried out after 24 hours.

If not stated differently the measurements were performed 
on samples from 3 independent experimental repetitions, 
each sample consisted of a pool of 20 seedlings.

Measurements of growth parameters
After 24 hours of treatment the roots of soybean seedlings 

were straightened and their length was measured with the 
use of ruler. The fresh and dry weight of roots was measured 
on the WPS60/C scale (RadWag, Radom, Poland). The fresh 
weight was evaluated immediately after cutting off, while the 
dry weight was measured after 72 h of incubation at 55°C.

Estimation of cell viability
The measurements of cell death were carried out accord-

ing to the modified method described by Lehotai et al. [22]. 
After 24 hours of treatment with appropriate solutions root 
tips (200 mg) of soybean seedlings were cut off and incu-
bated 20 min in 0.25% Blue Evans solution. Root tips were 
washed 3 times with distilled water and homogenized with 
1.2 ml of 1% of SDS dissolved in 50% ethanol. The samples 
were incubated for 15 min at 50°C and centrifuged 15 min 
at 12 000 g. The absorbance of supernatant was measured 
with Biomate 3S spectrophotometer (Thermo Scientific, 
Waltham, USA) at λ = 600 nm.

Measurements of ethylene biosynthesis
The ethylene production was measured with the use 

of ethylene detector ETD-300 (Sensor Sense, Nijmegen, 
The Netherlands). Soybean seedlings were placed in Petri 
dishes on two layers of filter paper moistened with 5 ml of 
either distilled water (control), 4.6 μM Co in CoCl2 solu-
tion, 223 μM Cd in CdCl2 solution or combined Cd and Co 
(corresponding to 4.6 μM and 223 μM, respectively). The 
bottom part of the dish was covered with a Plexiglas plate 
with an inlet and outlet for gas flow, and tightly closed. The 
flow from each cuvette was directed into a photoacoustic 
cell where ethylene was quantified. The measurements were 
conducted in the dark during 24 hours, in stop-and-flow 

mode, with each cuvette being alternatively flushed with a 
flow of 3 l h−1. The amount of produced ethylene was detected 
every 12 minutes. As a control from the obtained emission 
rates the levels of ethylene in a cuvette containing moistened 
filter papers without seedlings was also measured. A detailed 
description of the system has been given previously [23]. 
The obtained results were analyzed with the use of Valve 
Controller software and expressed as nl per hour per 1 g 
of roots fresh weight. Measurements were performed on 
samples from 3 independent experimental repetitions; each 
sample consisted of a pool of 10 seedlings.

Measurements of genes expression
The RNA was isolated from 100 mg of frozen root tips 

with the use of TriReagent according to the manufacture’s 
instructions. The concentration of the obtained RNA was 
evaluated on NanoCell Accessory coupled with spectropho-
tometer Biomate 3S (Thermo Scientific, Waltham, USA).

For the reverse transcription 1 μg of RNA was purified 
with Deoxyribonuclease Kit and processed with the use of 
Reverse Transcription Kit (Thermo Scientific Fermentas, 
Waltham, USA): incubated with 1 μl oligo dT (100 µM, 0.5 
µg/µl) at 65°C for 5 min followed by the incubation with 4 μl 
of 5× Reaction Buffer, 1 μl of RiboLock™ RNase Inhibitor 
(20 u/µl), 2 μl of 10 mM dNTP Mix and 1 μl of RevertAid™ 
Reverse Transcriptase at 42°C for 10 min. The reaction was 
stopped by incubation at 70°C for 10 min. The obtained 
cDNA was diluted 5×.

The measurements of genes expression were carried out 
with the use of real-time PCR reaction performed on Rotor-
Gene 6000 Thermocycler (Qiagen, Venlo, The Netherlands). 
The primers (listed in Tab. 1) were designed on the basis of 
sequences accessible in Soybase.org with the use of Primer3 
software (http://bioinfo.ut.ee/primer3-0.4.0/). The reaction 
mixture contained 0.1 μM of each primer, 1 μl of diluted 
cDNA, 10 μl of Power SYBR Green PCR Master Mix (Ap-
plied Biosystems, Foster City, California, USA) and DEPC 
treated water (BioShop, Burlington, Canada) to the total 
volume of 20 μl. The real-time PCR reaction started with 
initial denaturation at 95°C for 5 min, followed by 13 cycles 
of touchdown PCR (15 s at 95°C, 20 s at 68°C decreasing by 
1°C each cycle and 30 s at 72°C) and 45 cycles of 10 s at 95°C, 
20 s at 55°C and 30 s at 72°C. The reaction was finalized by 
denaturation at a temperature rising from 72°C to 95°C by 
one degree every 5 s.

The relative gene expression was calculated with the use 
of Pfaffl equation [24] based on the efficiency and Ct values 
determined by Real-time PCR Miner [25]. Ubiquitin was 
chosen as reference gene. Measurements were performed 
on samples from 2–3 independent experimental repetitions; 
each sample consisted of a pool of 20 seedlings.

Statistical analysis
For evaluation of statistically significant differences the ob-

tained data was analyzed with the use of ANOVA (α = 0.05). 
In the case of the measurements of genes expression, due 
to the non-normal distribution of data, Mann–Whitney U 
post-hoc test has been used. In all the other cases Scheffe’s 
test has been applied. Results, which showed no statistically 
significant differences, are marked with the same letter.

http://bioinfo.ut.ee/primer3-0.4.0/
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Results

Treatment with Cd for 24 hours caused inhibition of roots 
length and dry weight (Tab. 2). In turn Co had no effect 
on any of the growth parameters. At this time point there 
were also no differences in the viability of cells in the roots 
of control seedlings and seedlings treated with Co (Fig. 1). 
However, treatment with Cd caused increase in the Evans 
Blue uptake providing a significant increase in cells mortality. 
The cells mortality increased even stronger in the case of the 
roots of seedlings treated simultaneously with Cd and Co.

Application of Cd lead to augmented ethylene biosynthesis 
starting from the 5th hour of treatment (Fig. 2). After 24 h 
the levels of ethylene were four times higher in the roots 
of seedlings exposed to Cd than in the roots of control 
seedlings and reached 8 nl/h × fresh weight. Co had no 
significant effect on ethylene production neither in control 
nor Cd-treated seedlings.

Accordingly to our previous study [6] treatment with 
CdCl2 for 3 h caused increase in the expression levels of genes 
encoding aminocyclopropane-1-carboxylic acid synthase 
(ACS), mitogen-activated kinase kinase2 (MAPKK2) and 
DOF1 and MYBZ2 transcription factors (Fig. 3). Present 
research shows that Co diminished the Cd-dependent 
induction of MAPKK2 and DOF1 expression (Fig. 3b,c).

 Longer (6 h) exposure to Cd resulted in elevated levels of 
mRNA encoding nitrate reductase (NR), ACS and MYBZ2 
and bZIP62 transcription factors (Fig. 4). Co caused aug-
mentation of Cd-dependent induction of NR gene (Fig. 4b) 
and at the same time decrease in Cd-dependent stimulation 
of gene encoding bZIP62 transcription factor (Fig. 4d).

Discussion

Although Cd caused significant reduction of roots length 
and dry weight after 24 hours of application, Co did not affect 
any of the measured growth parameters (Tab. 2). Treatment 
with Cd also led to the increase in the amount of dead cells 
in the roots soybean seedlings (Fig. 1). Application of Co 
additionally increased Cd toxicity as the amount of dead cells 
was significantly higher in seedlings treated with both Co and 
Cd than in the seedlings treated with only Cd (Fig. 1). Co is 
known to have beneficial effects on plant growth at moderate 
levels [15], however, it is possible that the combined effect 
of Co and Cd leads to the aggravation of the metals’ toxicity. 
Indeed, combination of Cu and Zn was shown to be more 
toxic to black lentil than the separate effect of both heavy 
metals, while combined Cd and Pb stress was found to be 
more harmful to mustard plants than application of Cd or 
Pb alone [26,27]. In higher concentrations Co is toxic. It 
was shown to inhibit plants growth, germination rate, cause 
leaf fall, hamper photosynthesis and respiration and lead 

Gene number in Soybase.org Primers Encoded protein

Glyma05g37410 Left: TGTGCTATGCCAACATGGAT
Right: GAGGTATGGGGGAGTGAGGT

1-aminocyclopropane-1-carboxylate synthase (ACS)

Glyma17g06020 Left: AGCAGGTGCTGAAGGGTCTA
Right: TTCCTGGCTTCCATTGATTC

mitogen-activated protein kinase kinase 2 (MAPKK2)

Glyma13g02510 Left: AAATCCCATGCAAGCTCATC
Right: GGTGCACCCCTTTGAAGTAA

nitrate reductase (NR)             

Glyma13g42820 Left: AAGCCAAAACTTGGAGCAGA
Right: CCTTGTCGACGGAGGAATTA

DOF1 transcription factor

Glyma11g11450 Left: GAATCGACCCTGCAACTCAT
Right: ACCCAAACTGCAAACGAAAC

MYBZ2 transcription factor 

Glyma06g08390 Left: GCCCCATTGCTGTTCCTCATGT
Right: GCTGAGACTGGGCTCCCAACA

bZIP62 transcription factor

Glyma20g27950 Left: GAAGTCGAAAGCTCCGACAC
Right: TGTT TTGGGAACACATCCAA

ubiquitin – reference gene 

Tab. 1 Sequences of primers used for the real-time PCR reaction.

Experimental 
variant

Roots length 
(mm)

Roots fresh 
weight (mg)

Roots dry 
weight (mg)

Control 43 ±1a 54 ±4a 2.9 ±0.2a

CoCl2 47 ±5a 62 ±8a 3.3 ±0.3a

Cadmium 30 ±2b 53 ±3a 2.7 ±0.1b

Cadmium+CoCl2 28 ±1b 50 ±3a 2.7 ±0.2b

Tab. 2 Growth parameters of the roots of soybean seedlings.

The results are means of 3 independent experiments ±SE. Results 
which showed no statistically significant differences are marked 
with the same letter (a or b).

Fig. 1 Mortality of cell of soybean seedling roots represented as 
uptake of Evans Blue dye. The results are means of 4 independent 
experiments ±SE. Results, which showed no statistically significant 
differences, are marked with the same letter (a, b or c).
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to DNA damage as well as decrease in RNA levels [16–20]. 
One admitted function of Co is to impair ethylene synthesis 
at various concentrations, treatment durations and plant 
species, by inhibiting ACC oxidase [28–32]. Surprisingly 
in the applied experimental conditions Co had no effect 
on hormones production (Fig. 2). It is possible that the 
inhibitory action of Co requires longer treatment periods 
or higher concentrations. Indeed, in the majority of studies 
performed by other researchers Co was applied for several 
days [28,30–32]. In the research conducted by Koehl et al. 
[29] tobacco suspension culture was also treated with Co 
for short time periods (3, 9 and 24 h), however, the applied 
CoCl2 concentration was much higher (100 μM) and the 
inhibitory effect on ethylene biosynthesis was noticed only 
after 9 h of treatment [29]. It is also possible that ethylene 
is synthesized without the participation of ACC oxdiase – 
a target gene for Co inhibitory action. It has been shown 

that ACC might be oxidized nonenzymatically through 
superoxide anion generated in response to wounding [33].

In our previous study we have demonstrated that Cd 
causes induction of several genes associated with plant signal-
ing pathways [6]. Application of Cd for 3 h induced expres-
sion of genes encoding 1-aminocyclopropane-1-carboxylic 
acid synthase (ACS), mitogen-activated kinase kinase2 
(MAPKK2) and DOF1 and MYBZ2 transcription factors, 
while 6 h long treatment led to the increase in the expression 
of nitrate reductase (NR), ACS, MYBZ2 and bZIP62 genes. 
In the present study the influence of Co on the expression 
of mentioned, signaling associated genes after the same 
treatment has been evaluated.

Interestingly the results of present research show that Co 
influences expression of a key enzyme engaged in ethylene 
synthesis: 1-aminocyclopropane-1-carboxylic acid synthase. 
The genes expression was slightly repressed after 3 h (Fig. 3a) 

Fig. 2 Production of ethylene in roots of control soybean seedlings (dark square), seedlings treated with Co (light square), seedlings 
treated with Cd (dark circle) and seedlings treated with Cd and Co (light circle). The ethylene production is presented in nanoliters per 
hour in one gram of roots fresh weight. The results are means of 3 independent experiments ±SE. 

Fig. 3 Relative expression of gene encoding 1-aminocyclopropane-1-carboxylic acid synthase (a), mitogen-activated kinase kinase2 
(b), DOF1 transcription factor (c) and MYBZ2 transcription factor (d) in soybean seedlings treated with appropriate solutions for 3 h. 
The results are the means of 2–3 independent experiments ±SE. Results, which showed no statistically significant differences, are marked 
with the same letter (e, f or g).
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and up-regulated after 6 h of treatment (Fig. 4a). Therefore 
it is possible that Co affects ethylene biosynthesis not solely 
by inhibiting ACC oxidase.

The obtained results also show that Co reversed the Cd-
dependent induction of genes encoding MAPKK2 (Fig. 3b) 
and DOF1 transcription factor (Fig. 3c) after 3 h as well as 
gene encoding bZIP62 transcription factor (Fig. 4d) after 
6 h of treatment. A possible explanation of the described 
phenomenon is the inhibitory effect of Co on Cd uptake. In-
deed, Co was shown to reduce Cd uptake in bush beans and 
green alga Chlamydomonas reinhardatii [16,34]. However, in 
the referenced experiments the treatment times were much 
longer (21 and 60 days respectively). In the present study 
Co was applied for short time (3, 6 or 24 h) and even after 
24 h did not reverse the Cd-dependent inhibition of roots 
growth (Tab. 2). Moreover, application of Co for 24 h led to 
the intensification of Cd toxicity expressed by higher cells 
mortality (Fig. 1). Therefore, it is unlikely that Co caused 
a significant reduction of Cd uptake. The measurements of 
genes expression also showed that, after 6 h of treatment Co 
led to strong augmentation of Cd-dependent induction of 
NR gene (Fig. 4b).

The impact of Co on the expression of analyzed genes 
might lead to altered Cd sensing. There are several reports 
implying that MAPK cascades are involved in the transduc-
tion of Cd signals. Stimulation of various MAPKs by Cd 
has been observed in rice, alfalfa and Arabidopsis plants. 
Moreover, MPK6 identified in Arabidopsis plants, was shown 
to participate in Cd-dependent initiation of programmed cell 
death (PCD) [10,35–38]. Therefore, observed in the present 
research alterations in MAPKK2 expression in response to 
Co might lead to disorders in the transduction of Cd signal 
and contribute to exacerbation of Cd toxicity.

There are reports stating that both applied metals, Cd 
and Co, cause inhibition of nitrate reductase activity after 
long treatment times [17,39–41]. Interestingly, the pres-
ent study shows that short-term cadmium stress causes 
induction of NR gene, which is strongly augmented by 
Co (Fig. 4b). Nitrate reductase is an important enzymes 
engaged in nitrogen metabolism – it catalyses reduc-
tion of nitrates to nitrites [42]. Therefore, the observed 
stimulation of NR expression might constitute a defense 
mechanism, which aims to sustain nitrogen homeostasis. 
Nitrate reductase is also one of the enzymes engaged in NO 
formation [42]. Accumulation of NO in response to Cd 
has been observed in various plant species [43], however, 
its role is still debatable. The treatment with nitric oxide 
donor, SNP, caused attenuation of chlorophyll degradation 
and oxidative stress in plant exposed to Cd [44,45]. Nitric 
oxide also mediates induction of several signaling associ-
ated genes in response to short-term cadmium stress [46]. 
On the other hand NO contributes to Cd toxicity through 
increase in Cd uptake [1, 47]. The observed Co-dependent 
induction of NR gene might lead to over-production of 
NO, however, the exact role of such induction would need 
further investigation.

Increase in DOF1 and bZIP62 mRNA levels in response 
to Cd [6] and the fact that DOF1 was induced by drought 
stress in amaranth roots and bZIP62 conferred tolerance to 
low temperatures and salt stress in transgenic Arabidopsis 
plants, suggests that both transcription factors are involved 
in the regulation of genes expression under various stress 
conditions [48,49]. Therefore, observed in the present study 
Co-dependent decrease in DOF1 and bZIP62 expression 
might lead to alterations in the expression pattern of Cd-
responsive genes.

Fig. 4 Relative expression of gene encoding 1-aminocyclopropane-1-carboxylic acid synthase (a), nitrate reductase (b), MYBZ2 
transcription factor (c) and bZIP62 transcription factor (d) in soybean seedlings treated with appropriate solutions for 6 h. The results 
are the means of 2–4 independent experiments ±SE. Results, which showed no statistically significant differences, are marked with the 
same letter (e, f, g or h).
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