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Introduction

Parasitism comes in many guises, transient or obligate, ex-
tracellular or intracellular. Transient parasites are free-living 
or symbiotic organisms that are turning to parasitism upon 
a set of favorable opportunistic conditions. These organisms 
do not rely exclusively on parasitism for their survival nor 
are they always well-equipped to the task. Obligate parasites, 
on the other hand, cannot thrive without hosts and, by 
necessity, came up over the course of their evolution with 
the strategies and the tools to facilitate infection [1]. While 
the modes of action (extracellular or intracellular) and levels 
of specialization differ between various parasites, the goal 
remains the same: to benefit at the expense of the host.

The road to parasitism is littered with acquisitions and 
losses [2–6]. Intuitively, functions and strategies that can help 
avoid, disrupt or even disable the hosts’ defenses are valuable 
targets for acquisition by parasites, even more so when their 
survival depends on it. What is not developed intrinsically 
over time can be acquired sometimes quickly by horizontal 
transfer of foreign genetic material. Parasites can gain new 
functions by capturing useful genes from their hosts (e.g. 
[7–10]), from co-pathogens or co-symbionts (e.g. [11,12]), 
from other species during transit (e.g. [13]), or from other 

various sources (e.g. [14–17]). Conversely, functions that are 
no longer necessary are often discarded. This is especially 
true for intracellular parasites, whose switch from external 
to internal environments shifted many functions from neces-
sary to accessory. Given their internalization, intracellular 
parasites are constantly pressured to adapt to the responses 
of their host(s), which in turn may lead to accelerated rates 
of evolution compared to their free-living relatives [18–20].

Due to their reduced and/or highly adapted nature, the 
physiological features of parasites are often cryptic, which 
hinders taxonomical classification. Two well-known ex-
amples are the malaria-causing agent Plasmodium and the 
once enigmatic Microsporidia, which have undergone several 
rounds of taxonomical revisions [21,22]. Helicosporidia, the 
subject of this minireview, is another protist lineage whose 
position within the tree of life has long remained elusive. 
First characterized in 1921 [23], Helicosporidians were in 
consequence over time classified as sporozoan, myxospo-
ridean, fungal and protozoan parasites before their position 
within the green algae was first hinted at nearly 80 years 
later based on morphological similarities with Prototheca 
wickerhamii, a non-photosynthetic trebouxiophyte [24]. This 
affiliation was soon corroborated by molecular phylogenetic 
inferences based on nuclear-encoded actin and rRNA genes 
[25] and further confirmed with additional plastid [26,27], 
mitochondrial [28] and nuclear data [29–31].

Helicosporidians are the first reported green algae that 
infect insects [23,24]. These entomopathogens are found 
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in the outside environment as cysts surrounded by a thin 
pellicle and composed of three ovoid cells wrapped within 
a helicoidal filamentous one [24]. The relatively small heli-
cosporidian cysts (sometimes referred as spores in the older 
literature), up to 6 µm wide, are ingested per os and dehisces 
in the host’s gut at the start of the invasive stage to liberate 
the four cells within [32]. The long filamentous cell is then 
uncoiled and attaches itself to the host epithelium with the 
help of the barbed protuberances located at its extremities. 
Upon successful breach of the epithelial barrier, the ovoid 
cells invade the hemolymph wherein they will replicate dur-
ing the vegetative stage [24]. Despite their mode of replication 
within insect hosts, helicosporidian vegetative cells can also 
be cultured in vitro on limited nutrients media suggesting 
that, unlike many parasites, they have retained the metabolic 
pathways required for saprobic growth. For more information 
on the morphology and lifecycle of Helicosporidia, we refer to 
the readers to the educated description by Boucias et al. [24] 
and the thorough review by Tartar [32]. In this minireview, 
we will focus on the genomic features of Helicosporidia.

Helicosporidians are of particular interest for our under-
standing of the genetic changes that occur during the gradual 
transition to parasitism. This lineage emerged recently and 
is part of a green algal lineage that encompasses free-living, 
symbiotic and parasitic organisms [31]. Helicosporidia are 
members of the trebouxiophycean order Chlorellales, whose 
best-known genera include Nannochloris, the type species 
Chlorella and the achlorophyllous Prototheca [33]. The latter 
has been reported to sometimes infect humans and other 
mammals under opportunistic conditions [34]. The Chlo-
rellales order originated circa 350 million years ago (mya), 
within which the Prototheca and Chlorella genera diverged 
somewhere between 200 to 350 mya [35]. Helicosporidians 
are closely related to the genus Prototheca, but as can be seen 
in Fig. 1, their surprisingly fast rate of evolution renders 
molecular clock inferences based on 18S rDNA somewhat 
unreliable. Nevertheless, Helicosporidia are bound to have 
arisen after the late Paleozoic/early Mesozoic eras, likely 
within the last 200 million years or so, making them one of 
the youngest parasitic lineages known. In comparison, the 
well-known parasitic lineages from Giardia, Microsporidia 
and Plasmodium arose 2.2, 1.2 and 1 bya, respectively [36,37]. 
The recent transition from free-living to insect pathogen in 
Helicosporidia thus offers the opportunity to shed some light 
onto the early stages of parasitism in this lineage.

The Helicosporidium organelle genomes 
are present and conserved

Organelles are often the target of major modifications in 
parasites. Severe alterations to organelles can force organ-
isms towards alternate lifestyles while changes in lifecycles 
can impact organelles to the point that these can become 
barely recognizable over time. Following internalization, 
the chloroplast is often victim of severe atrophy, for the 
capability to harness sunlight and convert it to energy is 
limited, if not absent within the confines of the host. Keeping 
a functional photosynthetic apparatus in this environment 
is rarely beneficial if not deleterious. In the apicomplexan 

Plasmodium, the relict organelle corresponding to the plastid 
is so derived that it took decades before it was finally identi-
fied as a remnant of a photosynthetic organelle [38–40]. The 
functions encoded within have been greatly diminished and 
the apicoplast genome has retained a limited set of genes 
allowing for its replication and maintenance [41,42]. It is 
unclear, however, if the Plasmodium plastid was already 
reduced prior to its adaptation to parasitism or if its reduc-
tion is a consequence of its pathogenic lifestyle. The blood 
vessels carrying the erythrocytes that these parasites infect 
are iron-rich environments favorable to heme synthesis 
but are almost systematically shrouded in darkness, such 
that a photosynthetic Plasmodium species would have little 
reason to exist.

Not surprisingly, the entomopathogenic helicosporid-
ians are also non-photosynthetic. Losing photosynthetic 
capability however, by itself, does not define a parasite. 
Many free-living lineages never had this ability and the loss 
of atmospheric CO2 fixation capability occurred indepen-
dently and recurrently across many photosynthetic lineages, 
reverting the organisms to heterotrophy. The closest known 
relatives of Helicosporidia from the Prototheca genus (Fig. 1) 
are also non-photosynthetic and, while sometimes parasitic, 
they can do so only under opportunistic conditions [43]. The 
Helicosporidium sp. plastid genome has been streamlined to 
a greater extent than that of Prototheca wickerhamii (Junbiao 
Dai, personal communication) but not as much as that of 
the apicoplast from Plasmodium falciparum [27,38]. As one 
would expect, the Helicosporidium plastid gene losses mainly 
affect those associated with the fixation of atmospheric 
carbon dioxide, i.e. none of the genes coding for products 
involved in it has been retained, but it also lacks all genes 
coding for ATP synthases that are present in Prototheca 
([27,44]; Fig. 2) and four ribosomal proteins (Rpl23, Rps2, 
Rps9 and Rps18) that are found in other green algae. The 
Helicosporidium plastid genome is compact and arrayed with 
a single replication origin (inferred by GC-skew analyses 
[27]), suggesting an optimization towards efficiency and a 
reduction in the amount of energy spent per replication, but 
it is unknown if its streamlining is still actively ongoing or 
if it has reached a certain equilibrium.

Modifications to the mitochondrion can also have a 
drastic, much more potent impact on parasites. As the prin-
cipal energy factory of the cell, any evolutionary trend that 
leads to the loss of ATP production will severely affect the 
parasite and increase its host dependency. In many parasites, 
the mitochondrion has been severely overhauled, losing its 
genome in the process. Those highly reduced organelles, 
referred to as mitosomes or hydrogenosomes, are involved 
in only a few of the original mitochondrial pathways [45,46]. 
Mitosomes are involved principally in iron–sulfur cluster 
assembly [47] and are incapable of oxygenic respiration, 
such that mitosome-bearing parasites like Microsporidia 
or Giardia have to rely either on the alternate glycolysis and 
pentose phosphate pathways for ATP production or on the 
energy that they hitchhike from their hosts to power all of 
their biological functions [45,48]. Hydrogenosomes, like 
those found in Trichomonas, are similarly reduced but are 
further distinguished by their ability to generate molecular 
hydrogen [49].
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This is not the case for Helicosporidia. Helicosporid-
ians can use oxygen as a terminal electron acceptor, as 
indicated by their successful growth in oxygenic conditions 
on nutrients-limited petri dishes [24], and have retained a 
mitochondrion with a full genome similar to other free-
living, early-diverging green algal lineages [28]. In fact, if 
we make abstraction of the Chlorophyceae, a later-diverging 
lineage with mid- to heavily-modified mitochondrial ge-
nomes [50], one could describe the circular, 49.3 kbp-long 
Helicosporidium mitochondrial chromosome as a typical 
green algal mitogenome. Perhaps the most salient feature in 
the otherwise somewhat unremarkable Helicosporidium mi-
tochondrial genome is the presence of a trans-spliced group 
I intron. Trans-spliced group I introns are rare (e.g. [51] 
and references within) but have little to do with parasitism.

The Helicosporidium nuclear genome is compact

We often think about parasite genomes in terms of re-
duction, for the evolutionary pressures applied on them 
to stay small is intuitive, whether to facilitate replication 
or minimize energetic expenses. A caveat of that way of 
thinking is that we sometimes make involuntary shortcuts 
when comparing with free-living organisms. Quite often, 
when the genome of the parasite is smaller, we say that it 
has been reduced. This is true for many instances, but is it 
always the case? In the green algae, judging by size alone 
is not enough. Most genome sizes were estimated from C-
values (Fig. 3), which are not always accurate. For example, 
the Ostreococcus genome was thus once estimated at around 
100 Mbp [52], or one order of magnitude larger than its real 
size [53]! Even if the sizes are accurate, many free-living algae 
harbor genomes that are bloated with repeated elements (e.g. 
[54,55]) that can propagate rapidly upon the right conditions 

and which have little effect on the overall metabolic profile 
of the species. Comparisons based on the total number of 
genes are therefore preferable but not necessarily accurate 
either. Automated gene prediction algorithms can struggle 
with their proper detection, sometimes grossly under- or 
overestimating their presence by the thousands [55,56], 
and we lack the manpower to manually curate all of the 
incoming onslaught of genomic data. Furthermore, a greater 
gene count is not necessarily synonymous with a greater 
metabolic potential, as duplications have occurred many 
times throughout evolution. Without looking at the genes 
themselves, inferences about parasitic reduction, free-living 
expansion or a mixture of both processes cannot be made 
without prior knowledge of the state that was present in the 
common ancestor.

By glancing quickly at sizes and gene numbers alone 
(Fig. 4), the Helicosporidium nuclear genome (12.4 Mbp as-
sembled; 17 Mbp estimated [31]) appears to have shrunken 
down to almost a third of that of the free-living Coccomyxa 
(49 Mbp; [57]) and the symbiotic Chlorella (46 Mbp; [58]) 
and encodes a gene set that is about 40% smaller than that 
of its relatives. However, when looking at their respective 
metabolic profiles (Fig. 4), the picture that emerges is quite 
different. The core green algal metabolic pathways are all 
present in Helicosporidium and the only clear reduction has 
been the loss of its photosynthetic ability (Fig. 4). But even 
here the reduction is not complete and Helicosporidium has 
retained all of the genes involved in the storage of sugars as 
starchy polymers. The lower gene count in Helicosporidium 
can be attributed at least in part to the presence of fewer 
paralogous gene copies and to the absence of non-essential 
alternate metabolic branches synthesizing compounds that 
are either accessory or produced via other pathways. Other 
factors that contribute to the small size of the Helicosporidium 
genome are the limited number of introns, about on par 
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Fig. 3 Estimated green algal genome sizes in the Streptophyta and Chlorophyta. Genomes that were sequenced are lettered in black, 
with Helicosporidium lettered in red. Genomes whose sizes were estimated based on their 1C-values are lettered in gray. Estimated 
1C-values for algae from the Streptophyta (Charophyceae) were inferred from Kapraun ([52]; only the smallest representatives were 
selected) whereas others from the Chlorophyta (Prasinophyceae, Trebouxiophyceae, Chlorophyceae, Ulvophyceae) were retrieved from 
the RBG Kew Algae DNA C-values database (http://data.kew.org/cvalues). Dark and light shades in the histogram bars correspond to 
lower and upper 1C-value size estimates. The histogram is color-coded according to the underlying cladogram depicting the branching 
order between these lineages.
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Fig. 4 Distribution of KEGG metabolic pathways among sequenced green algal nuclear genomes. a The concentric rings, from the 
outside to the inside, are: Chlamydomonas reinhardtii, Volvox carteri f. nagariensis, Helicosporidium sp., Chlorella variabilis NC64A, 
Coccomyxa subellipsoidea C-169, Micromonas sp. RCC299, Micromonas pusilla, Ostreococcus tauri, Ostreococcus lucimarinus. Each bar 
in the concentric rings corresponds to a unique protein in the overarching pathways. KEGG orthology identifiers (KO) indicated at the 
start and end of each arc correspond to the order in Tab. S1. Color gradients indicate the respective number of each protein-coding 
gene in the corresponding organisms. The gradient is a heat map standardized per pathway for visual balance. The absence of a protein-
coding gene is indicated by a white color, whereas the pink to purple gradient (pink, red, brown, orange, gold, green, cyan, blue, purple) 
indicate the relative number of gene copies per pathway. The KEGG metabolic pathways are: Ami: amino acids; Car: carbohydrates; Cof: 
cofactors and vitamins; Ene: energy; Fol: folding, sorting and degradation; Gly: glycan; Lip: lipids; Nuc: nucleotides; Rep: replication 
and repair; Sec: secondary metabolites; Sig: signal transduction; Ter: terpenoids and polyketides; Tsc: transcription; Tsl; translation; 
Tsp; transport. The cladogram in the center schematizes the relationships between the prasinophytes (in purple), trebouxiophytes (in 
green) and chlorophycean algae (in orange). Assembled genome sizes (in Mbp) are indicated above the corresponding branches; values 
for picoprasinophytes are from Ostreococcus tauri and Micromonas sp. RCC299. b Zoom-in of the major Helicosporidium losses in the 
KEGG energy-related pathways. The corresponding KEGG orthology identifiers (KO) indicated under the corresponding blocks are 
further described in Tab. S1.
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with picoprasinophytes and roughly three times less than 
in the other Trebouxiophyceae and Chlorophyceae, and the 
dearth of transposable elements [31]. Helicosporidium lacks 
the Dicer and Argonaute proteins hypothesized to suppress 
the propagation of transposable elements (TEs) [59], and it is 
unclear if the RNA interference machinery was lost because 
its function was accessory.

So, did the Helicosporidium genome shrink over time, 
was it the other trebouxiophycean genomes that have ex-
panded or perhaps a bit of both? Almost concurrently 
with the publication of the Helicosporidium genome, Gao 
and co-authors reported the genome of another free-living 
Trebouxiophyceae, Chlorella protothecoides, assembled at 
22.9 Mbp with a maximum estimated size of 27.6 Mbp 
[60]. The C. protothecoides genome is also quite compact 
and displays features that are intermediates between the 
Helicosporidium and C. variabilis/Coccomyxa genomes. In 
particular, like Helicosporidium, multi-copy genes are fewer 
in C. protothecoides than in the other trebouxiophycean 
genomes, suggesting that expansion by duplication may have 
occurred in this lineage [60]. The variation in size observed 
in the Trebouxiophyceae is not limited to this lineage and all 
green algal classes feature a mixture of species with small, 
medium or large genomes (Fig. 3). The problem is that we 
actually don’t know what the genomic state of the green algal 
ancestor was, but here we infer that it was likely small. The 
genomes of prasinophytes occupying the most basal branches 
of the Chlorophyta phylum tend to be on the smaller scale 
and, while charophycean genomes in the Streptophyta have 
been somewhat stigmatized as humongous (many of the early 
ones investigated were indeed quite large [61]), species with 
genomes in the 100 Mbp range also exists [52] and, again, 

tend to branch at the base of the clade. We cannot rule out 
that the ancestral genome of the green algae may have been 
bloated and then reduced repeatedly and independently over 
time, but the opposite scenario is more parsimonious and 
thus, we find it more likely. Considering the above, we think 
that the Helicosporidium genome did not really experience 
much reduction, aside from a few clear photosynthetic and 
other gene losses, and that it has retained a genome whose 
features are probably closer to the ancestral ones than that 
of Coccomyxa and C. variabilis.

Our picture of the evolution of Helicosporidia is far from 
complete however. The Helicosporidium genome reported 
corresponds to the one with the shortest branch in our 18S 
rDNA tree (Fig. 1) and may thus represent one of the less 
derived helicosporidians. Looking at the other species may 
reveal greater levels of specialization and/or host dependency 
and help identify the components that are important for their 
infection strategies. Helicosporidium sp. was found to harbor 
numerous chitinases that can help breach its invertebrate host 
gut epithelium but also featured over 850 unique predicted 
proteins that were found to be expressed and for which no 
homology was found [31]. It is unclear if these transcripts 
are functional or the result of transcriptional noise, but 
their unicity in some cases may reflect novel or derived-
beyond-recognition components potentially involved in 
pathogenicity. In that regard, sequencing the genomes of 
the closest known relatives of Helicosporidia from the genus 
Prototheca would most likely provide interesting insights, 
considering that these related species can also parasitize 
various hosts upon favorable conditions, potentially with 
the help of shared genetic components.
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