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Introduction

Phyllotaxis patterns of leaves or modified leaves in general 
on a plant stem are classified into several types and each type 
as well as its transformation are rich in diversity. Distichy 
and simple spiral patterns have one leaf at each node, while 
decussate and whorled patterns have multiple leaves at a 
node. Each spiral direction occurs with equal probability 
[1]. Some plants may have interestingly variable patterns, 
e.g., a female catkin of Betula alba, an ear of Plantago major, 
bracts of Pl. media [1], a vegetative shoot of Abies balsamea 
[2], gynoecium of Magnolia acuminata [3,4], capitulum of 
Carlina acaulis [5], primary vascular system of Anagallis 
arvensis [6], areoles of the family Cactaceae [7]. Thus there 
is no doubt that not all phyllotaxis properties are genetically 
determined. Independently of the diversity problems, simple 
spiral phyllotaxis in itself is especially noted not only for 
its predominant occurrence but because divergence angles 
between successive leaves are precisely fixed at a very special 
value. The spiral arrangement is so precise that Hirmer par-
ticularly called it “spiral phyllotaxis with precise divergences” 
to distinguish from variable counterparts related to distichy 
and decussate systems [8]. It is interesting to note that, in 
the family Cactaceae, the tribe Cacteae in which the simple 
spiral pattern dominates has more precise divergence angles 
than other tribes in which the decussate pattern occurs with 
high frequency [7].

Normally, the divergence angle of a simple spiral pattern 
is intriguingly close to the golden angle αgold = 360/(1 + τ)  
137.508°, which is the smaller one of the two angles created 
by sectioning the circumference of a full circle according to 
the golden proportion: 1:τ = τ − 1:1  1:1.618.

The invariability of divergence angle was already remarked 
by Bravais and Bravais [9] (p. 69, 106): “By direct measure-
ments, we find constantly an angle differing very little from 
137° or 138°, and this precision may be very surprising if we 
note that on a stem of average size, for example a centimeter 
in diameter, the arc of 1° does not exceed the 8 hundredth 
of a millimeter, a quantity almost inappreciable to the naked 
eye.”. “The genetic spiral extends to the underground stem 
by keeping the same invariable divergence, and even to 
the organs of the flower.”. The accurate occurrence of the 
limit divergence αgold was underscored by van Iterson [10]. 
Comparing with his theory, he wrote (p. 247): “However, 
especially in cases of the contact 1 and 2 at the apex, the 
trouble becomes apparent. While the theory allows all 
divergences between 180° and 128.5° as possible for this 
contact, one finds only divergences between 137° and 142°, 
namely a great approach to the limit divergence of the main 
sequence.”. The uniqueness of the golden angle was strongly 
supported by Hirmer and his colleagues (see references 
cited in [11]). To cite an example, for composite flowers of 
Rudbeckia laciniata, Lepachys pinnatifida, Chrysanthemum 
millefoliatum, Bidens leucantha, Galinsoga parvifiora, Cin-
eraria lobata and others, it was argued that the number of 
ray florets tends to be Fibonacci numbers like 5, 8, 13, 21, 34 
because the ray florets are regularly arranged with the golden 
angle [8]. The universality of the golden angle was directly 
demonstrated by Fujita [11], who measured divergence 
angles in bud sections of thirty species of flowering plants 
with one degree accuracy. Showing distribution curves 
conspicuously peaked at 137° or 138°, he remarked: “From 
these data we can see that the peak point of the variation 
curve of divergence comes strongly close to the limit value, 
though with a large variation width. In other words, in the 
regular spiral arrangement, the divergence follows the limit 
value, as Hirmer claims, independently of the numbers of 
conjugate parastichies.”. Snow suggested that the golden 
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angle might have some biological advantage by referring to 
the difficulty of van Iterson underlined by this result of Fujita 
[12]. As for sample variance, it was reported for young shoots 
of Erigeron sumatrensis that each shoot has an individual 
deviation from the golden angle and the mean average was 
137.499° ±0.212° [13]. The first quantitative analysis of floret 
patterns of Helianthus was made by Ryan et al. [14]. They 
reported systematic and persistent fluctuations of ±5° about 
the ideal value and concluded that capitula do not possess a 
uniquely defined growth center. As reported for Helianthus 
annuus [15], divergence angles of mature leaves are not 
measured with a better accuracy because of secondary twist 
of the stem. As a matter of fact, secondary deformation of 
the phyllotaxis pattern generally causes apparent fluctuations 
in divergence angle [16]. Therefore, measured angles may 
depend on the procedure to determine the center position 
of the phyllotaxis pattern [17]. Accordingly, a true deviation 
from the ideal value αgold is almost always bound to be hidden 
beneath various practical errors by chance. Nevertheless, by 
whatever mechanism it occurs, there is no doubt that any 

particular real life system has a more or less definite devia-
tion from the mathematical ideality αgold = 137.50776… . 
The present study makes a first attempt at detecting and 
assessing a statistically significant deviation from the ideality 
for a representative system of spiral phyllotaxis. To suppress 
statistical errors in a systematic manner, a large number of 
divergence angles have to be collected from an individual 
sample. Inflorescences of the Asteraceae are the best suited 
to this end. In fact, as it turns out, they are perhaps the one 
and only subject with which to achieve the purpose. This 
paper reports that accuracy in divergence angle of Helian-
thus annuus amounts to as high as ~0.001°. Although this 
may seem implausible at first, it is immediately obvious by 
observing how regularly Fibonacci numbers (1, 2, 3, 5, 8, 
13, 21, 34, 55, 89, 144, 233, 377, 610, 987, etc.) are arranged 
in Fig. 1 and Fig. 2. The measurement results of this study 
reinforce evidence for the accurate constancy of divergence 
angle to an unquestionable degree and may shed new light 
on the fundamental problem of phyllotaxis.

Fig. 1 A sunflower head with divergence angle α  137.513 ±0.003°. Disk florets are numbered algorithmically [16]. They are formed 
counterclockwise inward. Adapted from Yellow sunflower 001/Wikimedia Commons.
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Material and methods

The divergence angle α is evaluated by measuring the 
angle PnOPn+q subtended by two arbitrary florets Pn and 
Pn+q, where O denotes a fixed center [9]. Solving

for α,

This is the main formula used in this study. The angle 
PnOPn+q is measured in the direction of the genetic spiral, 

that is, the imaginary spiral connecting all the florets in 
increasing order of the index n, so that the divergence angle 
αn(q) is a positive number. On the right-hand side of Equa-
tion (1), an integer multiple of full turns, 360p in degrees 
of arc, is subtracted to reduce the total angle qα (>360°) to 

a net angle within ±180°. The angle PnOPn+q is calculated 
from the xy-coordinates of two vectors OPn and OPn+q. The 
coordinates of the floret position Pn are digitally read from 
photographic images published in media file repositories, 
which are now of ideal quality incomparable with any figures 
in published papers. For indexing and data collection, the 
algorithm described previously was applied [16]. As the 
angle PnOPn+q comprises q divergence angles, the effect of 
secondary disturbances on each divergence angle is averaged 
out when the integer q is large enough. As a rough guide, the 
standard error in measuring PnOPn+q is typically less than 
1 degree. Accordingly, accuracy of αn(q) is less than about 
1/q degree. As αn(q) turns out to be very close to the golden 
angle, it is not necessary but convenient to employ Fibonacci 
numbers for q and p in the above formula, namely (q, p) = 
(1,0), (2,1), (3,1), (5,2), (8,3), (13,5) and so on.

Fig. 2 A large sunflower head with α  137.507 ±0.001°. The phyllotaxis fraction is as high as 377/987. Florets are formed clockwise 
inward. Adapted from Sunflower Closeup Hungary/Wikimedia Commons.

∠𝑃𝑃𝑃𝑃!𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃!!! = 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 − 360𝑝𝑝𝑝𝑝	   (1) 

𝛼𝛼𝛼𝛼!(𝑞𝑞𝑞𝑞)   =    (∠𝑃𝑃𝑃𝑃!𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃!!! +   360𝑝𝑝𝑝𝑝)/𝑞𝑞𝑞𝑞.	   (2) 



82© The Author(s) 2015 Published by Polish Botanical Society Acta Soc Bot Pol 84(1):79–85

Okabe / Extraordinary accuracy in floret position of Helianthus annuus

Results

The divergence angle αn(q) was evaluated for disk florets 
of Fig. 1. The n-dependence of αn(q) is qualitatively similar 
for any value of q, whereas the variation range depends 
on q. In Fig. 3, αn(233) is plotted against the floret index n 
representatively. The mean and standard deviation of αn(233) 
are 137.5139 ±0.0041, 137.5145 ±0.0038, 137.5080 ±0.0060, 
137.5000 ±0.0155 for n ≤ 100, 100 < n ≤ 200, 200 < n ≤ 300, 
300 < n, respectively. Thus, αn(q) is robustly constant over a 
wide range of n. This is surprising and not at all self-evident 
because the hundreds of florets were formed under varying 
conditions. The mean variation is about the same order as 
statistical errors, namely 0.01° at most. To suppress statisti-
cal noise including measurement error in PnOPn+q, florets 
near the center were excluded from the statistical analysis. 
Tab. 1 presents the mean α  and standard deviation σ of αn(q) 
evaluated by using the first 400 florets of Fig. 1. The constant 
mean indicates that the florets are formed in accordance with 
a fixed divergence angle 137.51°. On the other side, the 
standard deviation σ decreases as q increases, as expected. 
If the deviation σ is interpreted as a result of q independent 
random variations of individual divergence angles δα [cf. 
Equation (1)], then

This is a standard result of statistical theory. The results 
for large q in Tab. 1 are consistent with this relation for 
δα   0.06°, which is also remarkable. The deviation σ for 
a small q represents the persistent fluctuations mentioned 
in Introduction, which therefore does not follow this rela-
tion. Owing to σ being suppressed systematically, the mean 
value begins to show a clear sign of deviation from the ideal 
value, that is, α  − αgold > 1.5σ. See Fig. 3 and Tab. 1. This 
is supported by consistent results in Tab. 2 and Tab. 3 for 
other independent samples. Tab. 4 presents the results for 

a larger sample of Fig. 2. Tab. 5 is for a packing pattern of 
mature seeds. The seed pattern has an order of magnitude 
larger values of σ and δα, while the deviation α  − αgold is 
not affected comparatively. Thus it appears that the floret 
patterns are not altered substantially by the growth that 
follows their establishment.

These results indicate that the deviation α  − αgold is robust 
and typically of the order of a 10−3 degree. To suppress σ to 
this order, the sample size, or q for Equation (3), has to be 
larger than ~100 even when δα is as small as 0.05°. Thus, in 
hindsight, the necessary condition for detecting the deviation 
is barely satisfied for outer florets of the sunflower capitula. 
It is not asserted from the present study alone whether the 
higher accuracy of α  − αgold  10−4 in Tab. 4 is due to a large 
capitulum size or just a coincidence. It is interesting to see 
whether the minute individual difference identified in this 
study is used as a fingerprint of each plant. In fact, the flower 
head of Fig. 1 is distinguished from that of Fig. 2 by their 
different divergence angles, though the difference of 0.007° 
is too small to be noticed without special attention.

Discussion

Schwendener, Church and van Iterson attempted to 
explain the tendency to the limit divergence αgold by postu-
lating that contact parastichies tend to cross at right angles 
(p. 248 [10]; p. 340 [18]; see also [19]). They were criticized 
because the predicted angles are too close to αgold to test 
empirically [8] and when the predicted deviation is large 
enough it is disproved by observation [20]. As a matter of 
fact, the crossing angles of contact parastichies are not even 
constant. The angle Pn+34PnPn+55 in Fig. 1 varies from 116° 
for n = 0 to 49° for n = 444. In fact, divergence angles remain 
constant independently of the crossing angles of parastichies.

100 200 300 400
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Fig. 3 The divergence angle αn(233) for the pattern of Fig. 1 is plotted against the floret index n. The ideal golden angle of 137.508° is 
indicated by a dashed line.

𝜎𝜎𝜎𝜎 ≈ 𝛿𝛿𝛿𝛿𝛿𝛿𝛿𝛿/ 𝑞𝑞𝑞𝑞.	   (3) 
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Roberts [21] proposed to make up deficiencies of phyl-
lotaxis models [22,23]. One of them concerns the accuracy 
problem. His remark applies to any model based on the 
premise that the position of a new primordium is determined 
by the existing primordia. The difficulty has been left unad-
dressed in recent models [24,25]. The pattern in which Pn 
has contact with Pn−q and Pn−q' is called a (q,q') system. In any 
pattern, including a (1,2) system, a correct model should 
put P3 at the golden section point in the largest gap between 
P1 and P2 (Appendix S1). To account for this, Roberts 
proposed to modify the premise such that the position of 
a new primordium (e.g., P3) is determined not by its near 
neighbors (e.g., P1 and P2) but by older primordia remotely 
located from it (e.g., P0 and P−2). In a word, it is equivalent 
to postulating that internal or “chemical” contact of the 
organs is of higher order than it appears from the outside. 
To meet the accuracy observed in this study, the chemical 
contact has to be supposed as high as (89,144), even if the 
pattern appears to be (34,55). Take Fig. 1 for example. The 
mean and standard deviation of Pn−89OPn and Pn−144OPn 
are −1.3 ± 0.6 < 0 and 2.0 ± 0.7 > 0, respectively. The fact that 
the former (latter) is negative (positive) means that Pn lies on 
the negative (positive) side of OPn−89 (OPn−144). Accordingly, 

q α σ √qσ α  − αgold ( α  − αgold)/σ

1 137.5054 2.2337 2.234 −0.0024
2 137.5115 1.1829 1.673 0.0038 0.003
3 137.5130 0.6575 1.139 0.0052 0.08
5 137.5132 0.2970 0.664 0.0055 0.02
8 137.5126 0.1337 0.378 0.0048 0.04

13 137.5121 0.0605 0.218 0.0043 0.07
21 137.5130 0.0294 0.135 0.0053 0.18
34 137.5135 0.0147 0.086 0.0057 0.39
55 137.5136 0.0089 0.066 0.0059 0.66
89 137.5139 0.0064 0.061 0.0062 0.96

144 137.5142 0.0047 0.056 0.0064 1.4
233 137.5142 0.0040 0.061 0.0064 1.6

Tab. 1 Divergence angles of disk flowers of a sunflower.

The mean α  and standard deviation σ of the divergence angle 
αn(q) are evaluated for first 400 disk flowers of Fig. 1. The ideal 
golden angle is given by αgold = 137.50776°. The first row for q = 1 
corresponds to the standard method of evaluating the angle between 
successive florets.

q α σ √qσ α  − αgold ( α  − αgold)/σ

1 137.5143 2.9275 2.928 0.0065

34 137.5113 0.0182 0.106 0.0035 0.19

55 137.5117 0.0113 0.084 0.0039 0.34

89 137.5121 0.0078 0.073 0.0043 0.56

144 137.5125 0.0053 0.064 0.0048 0.90

233 137.5126 0.0042 0.064 0.0048 1.1

Tab. 2 Divergence angles of disk flowers of a sunflower.

The mean α  and standard deviation σ of the divergence angle αn(q) 
for 400 disk flowers of a sunflower head with about 580 florets and 
a parastichy pair of (34,55).

q α σ √qσ α  − αgold ( α  − αgold)/σ

1 137.4909 2.7422 2.742 −0.0169

34 137.4988 0.0251 0.147 −0.0089 −0.36

55 137.4984 0.0171 0.127 −0.0094 −0.55

89 137.4986 0.0134 0.127 −0.0092 −0.68

144 137.4988 0.0096 0.115 −0.0090 −0.93

233 137.4987 0.0047 0.072 −0.0091 −1.9

Tab. 3 Divergence angles of disk flowers of a sunflower.

The mean α  and standard deviation σ of the divergence angle αn(q) 
for 330 disk flowers of a sunflower head with about 380 florets and 
a parastichy pair of (34,55).

q α σ √qσ α  − αgold ( α  − αgold)/σ

1 137.5067 2.2778 2.278 −0.0010

55 137.5072 0.0067 0.050 −0.0006 −0.09

89 137.5072 0.0043 0.041 −0.0006 −0.14

144 137.5072 0.0028 0.034 −0.0006 −0.21

233 137.5071 0.0022 0.034 −0.0006 −0.29

377 137.5070 0.0016 0.032 −0.0008 −0.46

610 137.5069 0.0013 0.031 −0.0009 −0.67

987 137.5071 0.0010 0.031 −0.0006 −0.64

q α σ √qσ α  − αgold ( α  − αgold)/σ

1 137.5117 5.077 5.077 0.0039

34 137.5112 0.0256 0.149 0.0034 0.13

55 137.5112 0.0204 0.151 0.0034 0.17

89 137.5119 0.0175 0.165 0.0041 0.24

144 137.5125 0.0163 0.196 0.0047 0.29

233 137.5126 0.0153 0.234 0.0049 0.32

Tab. 4 Divergence angles of disk flowers of a sunflower.

The mean α  and standard deviation σ of the divergence angle αn(q) 
for 1161 florets among the total number of about 1700 in Fig. 2.

Tab. 5 Divergence angles of sunflower seeds.

For a seed packing. The mean α  and standard deviation σ of the 
divergence angle αn(q) for 400 seeds of a sunflower head with about 
550 florets and a parastichy pair of (34,55).

http://pbsociety.org.pl/journals/index.php/asbp/rt/suppFiles/asbp.2015.007/0
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Pn lies between the narrow angle Pn−144OPn−89  3° (in the 
gap Pn−55OPn−34  8°). See Fig. 1. P377 lies between P233 and 
P288. For the sake of argument, let it be assumed that Pn is 
determined by Pn−89 and Pn−144 (i.e., P377 by P288 and P233). Then 
their interaction, of whatever sort, has to be such as to meet 
the following requirements. (i) Constancy problem. For 
each sample, the angle Pn−qOPn is fixed independently of the 
floret n. (ii) Individuality problem. The fixed angle Pn−qOPn 
varies for each sample. The former refers to the robustness of 
αn(q) – cf. Fig. 3. This is evidenced by Pn−34OPn = −4.5 ±0.5, 

Pn−55OPn = 3.2 ±0.5 and Pn−89OPn = −1.3 ±0.6 for Fig. 1. The 
latter refers to the sample dependence of αn(q). Remark that 
αn(q) by Equation (2) is given by the angle PnOPn+q, which 
is determined by the assumed interaction. To illustrate (ii), 

Pn−89OPn = −1.3 ± 0.6 for Tab. 1 is contrasted with Pn−89OPn 
= −2.8 ±1.2 for Tab. 3. For reference, the pattern of Fig. 2 
has Pn−89OPn = −1.86 ±0.38, whereas the exact golden angle 
αgold gives Pn−89OPn = −1.8090. Furthermore, (iii) the angles 
satisfy the following relation:

where, for the normal phyllotaxis, q and q' are successive 
Fibonacci numbers. The above (i) signifies that αn(q) is 
independent of n. This relation signifies that αn(q) is inde-
pendent of q, which is obvious from Tab. 1–Tab. 5. Indeed, 
for the left-hand side of the last equation, the pattern of Fig. 1 
gives 360.0 ±6.2 for (q,q') = (2,3), 359.8 ±28.8 for (34,55), 
355.6 ±62.8 for (89,144) and so on. To sum up, the observed 
results indicate that all angles Pn−qOPn are determined by 
a single constant αn(q) = α, which is minutely specific to an 
individual sample. Thus, Roberts’ proposal creates more 
difficult problems.

The riddle of phyllotaxis is why the constant α is αgold = 
137.508°. The theoretical difficulty stems from the funda-
mental premise that divergence angles are determined by 
the existing primordia, or that the phyllotaxis system is “a 
dynamical system” (in the technical sense of mathematical 
physics) in that the angle PnOPn−1 is determined by the 
preceding Pm’s (i.e., m < n). This has been an unchallenged, 
working hypothesis since early times. There is a contrasting 
approach of explaining special traits of living things, accord-
ing to which the robustness of divergence angles may be 
explained without understanding the molecular mechanism 
of developmental processes of primordia formation. It can 
be simply that plants have evolved so as to generate lateral 
organs at fixed intervals of angle and so the divergence angle 
is pre-determined independently of the existing primordia. 
Hence, it would be instructive to revisit the original motiva-
tion of the phyllotaxis models, which is stated in the opening 
paragraphs of van Iterson [10].

“The times are over when we content ourselves with 
describing and classifying manifestations of the plant world 
with great accuracy. Since the theory of evolution has taught 
us to consider a number of peculiarities of inner and outer 
constructions as functional for the plants, we have made 
efforts to explain morphological facts as manifestations of 
adaptation more and more. Although we are taken certainly 
too far in this endeavor, it cannot be denied that this way 
of treatment has produced the finest results and stimulated 
many new studies. In addition to this line of research, now 

a second has developed, in which, setting aside the question 
of functionality, one seeks to bring various manifestations 
into causal relationship, and whereby one seeks to interpret a 
property as the mechanical necessary consequence of certain 
others. Thereby the first way of treatment loses none of its 
importance, as natural selection will retain only a preservable 
one from different forms which are possible for mechanical 
reasons. Therefore those special cases in that functionality 
is least pronounced and different possibilities make their 
appearance in most complete forms will be most suitably 
carried through with the mechanical way of understanding.

Now, there are few morphological facts showing such 
regularity and peculiarity as the phenomena of phyllotaxis, 
as they became well-known to us particularly by the works 
of Schimper and Braun, A. and L. Bravais, and just right 
here the functionality is not at all obvious1). So it is un-
derstandable that the most thorough attempts of carrying 
out a mechanical explanation have been made in this field. 
Here is pointed out only phyllotaxis theories of Hofmeister, 
Airy, Delpino, Schwendener and Church, among which 
Schwendener’s theory is the most well-known and surely 
the most important.”.

The footnote mentions a conceivable function of phyl-
lotaxis: “1) Although Wiesner believes to see in the preference 
of the main sequence an adaptation to light environment, 
but it seems to me the proof is not given in his work.”.

Thus, the apparent lack of functionality was an initial 
motivation for pursuing the second, causal approach, a 
mechanical explanation of phyllotaxis. However, the first, 
evolutionary approach was recently revisited with a sug-
gestion that the arrangement with the golden angle is the 
most functional when it comes to be rearranged in ranked 
patterns complying with Schimper–Braun’s rule [26] (for an 
animated demonstration see [27]). At any rate, the presented 
results are rather compatible with a conventional view that 
the divergence angle is an inherited characteristic with which 
natural selection has to do. Evolutionary perspectives should 
not be readily dismissed on superficial grounds.

Last but not least, although the present study was devoted 
exclusively to the key problem of the most typical case, 
qualitative diversity in phyllotaxis should not be disregarded 
[1–7]. From a broad perspective, there is also good reason 
to consider that the golden angle is a necessary consequence 
of developmental dynamics of the shoot apical meristem. 
Although phyllotaxis patterns are species-specific, the 
pattern often changes for no apparent reason. Qualitative 
diversity of phyllotaxis patterns due to ontogenetic changes 
are well explained by geometrical considerations in terms 
of variable-sized primordia [28] and dislocations in regular 
patterns [3]. The causal approach since Hofmeister, in which 
evolution plays, if any, only a minor role, can provide a 
parsimonious explanation for all phyllotaxis phenomena, 
including the most striking phenomenon of the golden angle 
in spiral phyllotaxis.

𝑞𝑞𝑞𝑞∠𝑃𝑃𝑃𝑃!!!!𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃! − 𝑞𝑞𝑞𝑞!∠𝑃𝑃𝑃𝑃!!!𝑂𝑂𝑂𝑂𝑃𝑃𝑃𝑃! = ±360°	   (4) 
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