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Introduction

Horizontal gene transfer (HGT) refers to the movement 
of genetic information between distinct species. Being 
different from vertical genetic transmission from parent 
to offspring, HGT circumvents normal mating barriers 
and may introduce novel genes into recipient genomes. As 
such, HGT may not only accelerate the genome evolution 
of recipient organisms, but also allow recipients to explore 
new resources and niches [1–4].

HGT was once thought to be frequent only in prokaryotes 
and certain unicellular eukaryotes [2,5]. During the past 
decade, horizontally acquired genes have been found in all 
major multicellular eukaryotic lineages (plants, animals, and 
fungi) [6–9], suggesting that HGT has occurred throughout 
the history of eukaryotic evolution and is critical for the 
adaptive evolution of some multicellular lineages. Here, we 
review cases of HGT in land plants, and discuss the genetic 
mechanisms and evolutionary importance of HGT in plant 
evolution. In particular, we focus on acquired genes of 
adaptive significance in plants, rather than genes that are 
selectively neutral or nearly neutral [10,11]. Because intracel-
lular gene transfer (IGT) from organelles (mitochondria and 
plastids) to the nucleus has been discussed in multiple other 
articles [12–14], it will not be considered here.

Mechanisms of HGT in plants

A complete and successful HGT requires that a foreign 
gene first enters cells of the recipient organism, be integrated 
into the recipient genome and then transmitted to the off-
spring [7]. Because the physical isolation of germ cells may 
prevent foreign genes from being transmitted to the offspring 
[15,16], plants and animals were traditionally regarded to 
be resistant to HGT [3,15]. Nevertheless, the occurrence of 
HGT in all major eukaryotic lineages suggests that no barrier 
to HGT is insurmountable in eukaryotes [7]. Specifically 
for plants, their meristems, which represent the germline 
equivalent but can be formed through de-differentiation of 
somatic cells, are less protected and may result in a higher 
susceptibility to HGT [16]. Several mechanisms have also 
been proposed regarding how HGT may occur in plants 
[6,7,16–18] (Fig. 1).

INTIMATE PHYSICAL ASSOCIATION. Sustained 
contact such as symbiosis, parasitism, epiphytism, pathogen 
infection or plant grafting may offer opportunities to gene 
transfer. In particular, parasitism has been reported in 
several cases of HGT in plants [6,18–23]. In most of these 
documented examples, genes were transferred from host 
to parasitic plants. For instance, multiple mitochondrial 
and nuclear genes of Rafflesiaceae, a family of parasitic 
plants, were reportedly acquired from their host Tetrastigma 
(Vitaceae) [19–21]. Similar cases have also been observed 
in other parasitic plants such as Cistanche deserticola (Oro-
banchaceae) [23], Orobanche aegyptiaca (Orobanchaceae) 
and Cuscuta australis (Convolvulaceae) [18], all of which 
acquired genes from their hosts. Considering the main direc-
tion of nutrient transmission from host to parasitic plants, 
it is possible that genetic material may be carried within, 
thus offering opportunities for HGT to parasitic plants. 
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However, even if gene transfer in the opposite direction 
(from parasitic to host plants) may be rare, there are still 
cases that have been reported. For instance, Mower and his 
colleagues described two HGT cases of the mitochondrial 
atp1 gene from parasitic flowering plants, Cuscuta and 
Bartsia (Orobanchaceae), to their host plants of Plantago 
(Plantaginaceae) [22]. Therefore, the link between HGT 
direction and nutrient flow is not universal.

ILLEGITIMATE POLLINATION. This hypothesis pre-
sumes that pollen grains of one flowering plant species 
may germinate on the stigma of another species and, after 
pollination, some genes from the former may happen to be 
integrated into the latter species [16,24,25]. Such genetic 
materials may have been delivered to egg cells via elon-
gated pollen tubes and, in some cases or under laboratory 
conditions, whole plastid and/or mitochondrial genomes 

Fig. 1 Mechanisms of HGT in land plants. Several mechanisms may facilitate HGT in plants, some of which are shown here. a The 
intimate physical association of the parasite Cuscuta with host plants offers opportunities for gene transfer. b Pollen germination on 
stigma of Cyananthus (as shown by image of fluorescence labeled callose. Photo courtesy of Yang Niu, Kunming Institute of Botany). 
Genetic materials may be delivered to egg cells via elongated pollen tubes. c Aphids may serve as a gene transfer agent between two 
plant species (photo courtesy of Jianwen Zhang, Kunming Institute of Botany). d Horizontal transfer of entire genomes between green 
plants may be explained by mitochondrial fusion. e Weakly protected zygote may serve as an entry point for foreign genes into the moss 
genome according to the weak-link model.
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are involved [24,26]. Based on available data, HGT due to 
illegitimate pollination may happen between closely related 
species such as different Alloteropsis grasses [25], or even 
members from different genera of the grass family Poaceae 
[27,28].

TRANSFER AGENTS. Vectors such as viruses, bacteria, 
fungi or insects could transfer genes between organisms. 
Although concrete evidence is still scarce by now, the pos-
sibility that a vector with a wide host range may serve as 
a gene transfer agent between two unrelated plant species 
should not be dismissed prematurely [6,16].

MITOCHONDRIAL FUSION. HGT in land plant mito-
chondria is frequent and sometimes involves large pieces of 
DNA or even whole genomes (discussed below). Mitochon-
drial fusion has been suggested as a mechanism to explain 
these observations [29]. The mitochondrial genomes of green 
plants may be incompatible with those of fungi or animals, 
thus limiting the donors of mitochondrial fusion events to 
other green plants [29].

THE WEAK-LINK MODEL. To explain how foreign 
genes may overcome the isolation of germ cells and reach the 
offspring, Huang recently proposed a weak-link model [7]. 
This model suggests that foreign genes may enter recipient 
cells at weakly protected unicellular or early developmental 
stages of the lifecycle (e.g. zygotes, embryos or spores). 
These stages represent the weak link in recipient organisms 
for the entry of foreign genes. Subsequent cell prolifera-
tion and differentiation may spread foreign genes to other 
tissues, including germ cells. As such, foreign genes could 
ultimately be transmitted to the offspring and then fixed in 
the population through drift or positive selection on newly 
acquired functions [7].

Some of the above mechanisms (e.g., illegitimate pollina-
tion) are only applicable to plants, whereas others (physical 
association and weak-link model) may explain HGT from 
miscellaneous donors such as viruses, fungi and prokary-
otes. These mechanisms also are not mutually exclusive. 
For instance, the entry of weakly protected unicellular or 
early developmental stages of land plants may be facilitated 
by transfer agents or physical associations. In other words, 
transfer agents, intimate physical association, and illegitimate 
pollination concern how foreign genes may be carried from 
donor to recipient organisms, while the weak-link model 
focuses on how the barrier of germ cells may be circumvented 
and foreign genes be integrated into recipient genomes. Even 
boundaries of these mechanisms may not be clear-cut. For 
example, a common host plant could serve as an intermediate 
vector for horizontally transferred genes between different 
parasites [16,30].

Currently, our knowledge about how HGT happened in 
land plants is still limited. Future work and new technologies 
are needed in this research area.

The impacts of HGT on land plant evolution

HGT in plant colonization of land
Fossil data and molecular evidence suggest that land 

plants emerged from a pioneer green algal ancestor about 

480–500 million years ago [31]. Compared with aquatic 
environments, terrestrial habitats brought many challenges 
to early land plants (e.g., desiccation, UV radiation, and 
microbial attack). During their colonization of land, plants 
evolved some complex regulatory systems, body plans, and 
other phenotypic novelties that facilitated their adaptation 
and radiation in a hostile terrestrial environment [32,33]. The 
origin and evolution of these novelties were aided through 
acquisition of genes from other organisms [32–34].

The phenylpropanoid pathway is responsible for the 
production of compounds such as flavonoids and lignin. 
The first and essential step of the phenylpropanoid pathway 
is catalyzed by phenylalanine ammonia lyase (PAL) [35,36]. 
At 2009, Emiliani et al. reported that plants acquired the PAL 
gene from soil bacteria or fungi during their early stages of 
land colonization [32]. Given the role of lignin in xylem 
formation and flavonoids in protecting plants from microbial 
infection and/or UV radiation, the acquisition of PAL might 
have been crucial for plant adaptation to terrestrial environ-
ments. A more comprehensive genome analysis of the moss 
Physcomitrella patens identified 57 gene families that were 
transferred from prokaryotes, fungi or viruses to the most 
recent common ancestors of land plants or green plants [33]. 
These genes are involved in some essential or plant-specific 
activities such as xylem formation, plant defense or nitrogen 
recycling [33,34]. Nineteen of these identified gene families 
also appear to be specific to mosses, suggesting that recent 
HGT events may not be rare. Further analyses also show that 
the origin of plant auxin biosynthesis was shaped by HGT 
[37]. Since these acquired genes were identified based on 
analyses of a single genome using stringent phylogenomic 
approaches, it is reasonable to believe that more horizontally 
acquired genes will be found in land plants [34].

The origin of vascular tissues is a significant event in 
land plant evolution. By ensuring long-distance transport 
of water, nutrients and organic compounds and increasing 
the mechanical support for plants, vascular tissues enable 
land plants to overcome some of the major challenges in 
terrestrial habitats (e.g., anchorage of plants in the ground, 
absorption of water and nutrients, support for upright 
growth) [33,38]. Several horizontally acquired genes are 
involved in the development of vascular tissues. For instance, 
the vein patterning 1 (VEP1) gene in land plants, presum-
ably acquired from bacteria, is involved in vascular strand 
formation [33,39]. Most recently, Yang et al. investigated the 
evolution of TAL-type transaldolase (TAL) gene and found 
that land plant TAL genes are derived from actinobacteria 
[40]. TAL is ubiquitous in land plants and positively selected 
[40]. Transgenic experiments in rice showed that TAL 
is specifically expressed in vascular tissues. Importantly, 
knockdown of TAL expression leads to fewer, smaller and 
immature vascular bundles in culms, suggesting that the 
acquisition of TAL genes have played a pivotal role in plant 
vascular development and, therefore, adaptation to land 
environments.

HGT in phototropic response and C4 photosynthesis
Millions of years after the initial plant invasion of land, 

vascular plants arose (during Silurian) [41]. Ferns dominated 
the earth’s land surface antecedently, and their dominance 
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was then replaced by angiosperms. Surprisingly, ferns did 
not die out. Instead, they mostly adapted to a shade-dwelling 
habit created by angiosperms-dominated forest canopies 
and then went through another round of diversification, 
which led to the emergence of the majority of living ferns. 
Neochrome, a novel chimeric photoreceptor derived from 
the fusion of red-sensing phytochrome and blue-sensing 
phototropin modules [42,43], is considered as a key innova-
tion that allows ferns to thrive under low-light conditions 
[44,45]. In order to understand the origin of fern neochrome, 
Li and his colleagues [46] performed some comprehensive 
phylogenetic analyses of neochrome and related gene fami-
lies. After ruling out other causes (e.g., phylogenetic artifacts 
and independent origins), they concluded that neochrome 
originated in hornworts and then was transferred to ferns 
horizontally. This finding suggests that HGT may have had 
a profound evolutionary impact on the diversification of 
ferns and, without it, the fern lineages we see today would 
likely be dramatically different.

 C4 photosynthesis evolved multiple times from C3 ances-
tors independently [47]. HGT also has affected the evolution 
of C4 photosynthesis in Poaceae [25]. Alloteropsis, a genus 
of the grass family that includes five C4 species and one C3 
subspecies (A. semialata subspecies eckloniana), is an excel-
lent example for studying the evolution of C4 photosynthesis 
[48,49]. Christin and his colleagues [25] reported that two 
essential genes of the C4 pathway in Alloteropsis grasses 
were acquired from other C4 taxa within the same family 
(Poaceae). A reasonable mechanism for the gene transfer 
events in Alloteropsis grasses was illegitimate pollination. 
This study also demonstrates that, even without sustained 
physical associations like parasitism or epiphytism, occa-
sional contact such as pollination may offer opportunities 
for HGT in flowering plants.

HGT in plant organellar genomes

Although HGT to plastid genomes has rarely been re-
ported (but see [50,51]), mitochondrial genes of land plants 
are subject to widespread, sometimes in a large scale, gene 
transfers [24,52,53]. For instance, up to 41% of mitochondrial 
genes in the parasitic family Rafflesiaceae were reportedly 
subject to HGT events [21]. Such massive mitochondrial 
gene transfers in Rafflesiaceae are not entirely unexpected, 
considering the frequent reports of HGT in plant mitochon-
drial genes and in parasitic plants.

An unprecedented case of HGT in flowering plants is 
related to Amborella trichopoda (Amborellaceae), a basal 

flowering plant. The mitochondrial genome of Amborella 
reportedly contains six genome equivalents of foreign mi-
tochondrial DNA, including entire mitochondrial genomes 
from three green algae and one moss [29]. What makes 
Amborella so rich in foreign mitochondrial genes? The 
authors postulated that direct contact between Amborella 
and epiphytes, meristem regeneration through wounding, 
mitochondrial fusion, as well as a lower rate of DNA loss 
might have contributed to the large number of foreign genes 
in Amborella mitochondrial genome [17,29]. On the other 
hand, the distinctive phylogenetic position of Amborella (it 
diverged the earliest from other lineages of flowering plants 
[54]) allows researchers to confidently detect genes acquired 
from other plants [17]. The massive HGT in Amborella also 
highlights the tendency of plant mitochondrial genomes to 
take up foreign DNA, for there is no evidence of HGT in 
the chloroplast genome of Amborella [17,29].

HGT of mitochondrial genes is traditionally consid-
ered neutral or nearly neutral and, therefore, insignificant 
for plant adaptive evolution. However, because acquired 
mitochondrial genes can be transferred to the nucleus or 
recombine with endogenous organellar DNA fragments, 
they may increase genetic variation of the recipient plant 
taxon [14,55,56]. Indeed, it has been demonstrated that gene 
acquisition and subsequent recombination/gene conversion 
led to some mosaic mitochondrial genes in plants [53,55,56]. 
Therefore, it is premature to dismiss the functional implica-
tions of mitochondrial HGT.

Conclusions

The foregoing cases suggest that HGT happened in all 
major land plant lineages (mosses, ferns and flowering 
plants). The acquired genes may also be derived from dif-
ferent donor groups including viruses, bacteria, fungi, and 
other plants [6,33,57,58]. Many other cases of HGT have 
been reported in land plants, but cannot be detailed here 
[37,52,59–64]. To sum up, while HGT in plants may not be 
as frequent as in prokaryotes or unicellular eukaryotes, it still 
plays an important role in some essential or plant-specific 
activities and has had a significant impact on the evolution 
of land plants. In the end, it should be noted that most of the 
HGT cases discussed above were detected through analyses 
of whole genomes or transcriptomic data. In view of the 
increasing amount of genomic data that become available, 
we will have a better understanding of the frequency and 
the role of HGT in land plants.
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