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Introduction

Horizontal gene transfer (HGT), the exchange of genetic 
material between non-mating organisms, is widespread in 
prokaryotes and, to a lesser extent, in unicellular eukaryotes 
[1–3]. Most of the evidence for HGT in eukaryotes comes 
from genes derived from bacteria, describing transfers 
between phagotrophic, unicellular eukaryotes and their 
bacterial prey [1,4]. In the last few years, horizontal transfer 
in multicellular eukaryotes has been increasingly reported 
[5–8]. Plants in particular have been recognized as donors 
and targets of HGT involving the three domains of life [5,9]. 
Of the genetic exchanges reported between multicellular 
eukaryotes, the frequency of HGT between flowering plants 
is surprisingly elevated [10–16]. Most cases of plant-to-plant 
HGT comprise mitochondrial sequences (introns or genes) 
that were transferred to the mitochondrial genome of another 
angiosperm [15–20].

This review focuses on plant-to-plant HGT events involv-
ing the three DNA-containing compartments in plant cells, 

with emphasis on transfers between angiosperm mitochon-
dria, especially those involving host-parasite relationships.

HGT among plants: impact in each 
of the three genomes

Horizontal transfers among angiosperms has been in-
creasingly recognized and slowly accepted by the scientific 
community. HGT between two plants may involve any of 
the three DNA-containing compartments, though certain 
genomes are more prone to genetic exchanges than others 
(Fig. 1).

Mitochondria-to-mitochondria HGT
Angiosperm mitochondrial genomes (mtDNAs) en-

gage in HGT remarkably often compared to all other 
organellar genomes and most nuclear genomes (Fig. 2) 
[10–12,15–18,20–27]. Several properties of plant mitochon-
dria and their genomes contribute to this propensity for HGT. 
Plant mitochondria are capable of importing DNA or RNA 
[28,29] and readily undergo fusion [30,31]. Furthermore, 
plant mtDNAs have an active homologous recombination 
system [32,33] that is reflected in their structurally dynamic 
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Abstract

This review focuses on plant-to-plant horizontal gene transfer (HGT) involving the three DNA-containing cellular com-
partments. It highlights the great incidence of HGT in the mitochondrial genome (mtDNA) of angiosperms, the increasing 
number of examples in plant nuclear genomes, and the lack of any convincing evidence for HGT in the well-studied plastid 
genome of land plants. Most of the foreign mitochondrial genes are non-functional, generally found as pseudogenes in 
the recipient plant mtDNA that maintains its functional native genes. The few exceptions involve chimeric HGT, in which 
foreign and native copies recombine leading to a functional and single copy of the gene. Maintenance of foreign genes in 
plant mitochondria is probably the result of genetic drift, but a possible evolutionary advantage may be conferred through 
the generation of genetic diversity by gene conversion between native and foreign copies. Conversely, a few cases of nuclear 
HGT in plants involve functional transfers of novel genes that resulted in adaptive evolution. Direct cell-to-cell contact 
between plants (e.g. host-parasite relationships or natural grafting) facilitate the exchange of genetic material, in which 
HGT has been reported for both nuclear and mitochondrial genomes, and in the form of genomic DNA, instead of RNA. 
A thorough review of the literature indicates that HGT in mitochondrial and nuclear genomes of angiosperms is much 
more frequent than previously expected and that the evolutionary impact and mechanisms underlying plant-to-plant HGT 
remain to be uncovered.
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and rearranged genomes [34–36], allowing for a high fre-
quency of intracellular gene transfer (IGT) of chloroplast 
and nuclear DNA into the mitochondria [37,38]. Plant 
mitochondrial genomes have generally very low substitution 
rates [39,40] and relatively large and variable sizes (from 
222 kb to 11.3 Mb) [41–43]. Regardless of the genome 
length, plant mtDNAs encode only 37–67 genes surrounded 
by long intergenic regions of, mostly, unknown origin with 
no similarity to any other sequenced DNA [41]. These large 
intergenic regions facilitate the acquisition of foreign DNA 
without disruption of the expression of native genes.

In most cases, foreign genes acquired by plant mito-
chondria are mitochondrial genes donated by another 
angiosperm species via mitochondria-to-mitochondria 
horizontal transfer (Fig. 1). Only rarely foreign genes from 
a non-land plant [44] or from prokaryotes [15] were found 
in plant mtDNAs.

The most frequently documented case of HGT in multicel-
lular eukaryotes, and the first one to be reported for plants, 
involves an intron present in the mitochondrial gene cox1 
of flowering plants, which had spread among many diverse 
angiosperms via an estimated 73 separate plant-to-plant 
transfer events (Fig. 2) [16,45]. This constitutes the most 
rampant case of horizontal transmission known among 
multicellular, if not all eukaryotes, with multiple lines of 
evidence strongly supporting the highly frequent horizontal 
transfer of this intron [16,19,45,46].

 In the past two decades, more than 24 different an-
giosperm species were found to contain foreign genes in 
their mitochondrial genomes (not counting cox1 intron 
transfers). From those, two well-studied angiosperm lineages 
stand out for their extraordinarily large numbers of foreign 

mitochondrial genes (Fig. 2). The complete sequence of the 
~3.9 Mb mtDNA of Amborella trichopoda revealed the pres-
ence of two mitochondrial genome equivalents from other 
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Fig. 1 Horizontal gene transfers (HGT) between two plant species. Solid black lines depict the number of reported HGT events between 
those cell compartments. Thicker lines indicate more frequent events than thinner lines. Dashed black and grey lines depict putative 
transfers or lack of evidence for such transfers, respectively. mt: mitochondria; cp: chloroplast; nu: nucleus.

to
ta

l
(g

en
es

 +
 co

x1
 in

tro
n)

Am
bo

re
lla

Ra
ffle

sia
ce

ae

mt-to-mt
HGT

cp-to-cp
HGT

to
ta

l

Ra
ffle

sia
ce

ae

to
ta

l 
(g

en
es

 +
 tr

an
sp

os
on

s)

nu-to-nu
HGT

0

40

80
100
120

20

60

140
160
180
200

Nu
m

be
r o

f f
or

eig
n 

ge
ne

s

Fig. 2 Number of foreign genes transferred by HGT between 
nuclear (nu), chloroplast (cp) and mitochondrial (mt) genomes of 
angiosperms, respectively. It is possible that several foreign genes 
were transferred together in a single HGT event. Blue, orange and 
green bars represent coding genes, cox1 introns and transposable 
elements, respectively.
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angiosperms (~80 mitochondrial genes; Fig. 2), one from 
mosses and three from green algae – all acquired by HGT 
[15]. Foreign genes in Amborella mtDNA are predominantly 
pseudogenes, while the native homologs remain intact and 
presumably functional [15]. A next-generation sequencing 
study on three endophytic holoparasites of the angiosperm 
family Rafflesiaceae uncovered a minimum of 16 foreign 
mitochondrial genes (Fig. 2) presumably obtained from 
their host plants in a number of, both ancient and recent, 
independent horizontal transfers [47]. In contrast to Ambo-
rella, a fraction of the foreign genes appear to be functional 
in the parasite and may have replaced the native genes via 
homologous recombination [47].

Most foreign mitochondrial transfers, including those in 
Amborella and holoparasites within the Rafflesiaceae, were 
inferred to occur as genomic DNA, with no evidence of 
RNA-transfer followed by retrotranscription [15,23,24,47]. 
Evidence for this comes from the presence of introns, long 
tracts of foreign mitochondrial sequences encompass-
ing genes and intergenic regions, or unedited cytidine 
nucleotides at sites known to undergo RNA editing in plant 
mitochondria.

Nuclear genes
An increasing number of reports on plant nuclear genes 

horizontally transferred to the nuclear genome of a foreign 
plant have been published (Fig. 1). Nuclear-to-nuclear 
transfers involve both genes [22,48–52] and transpos-
able elements [14,53,54] exchanged between angiosperms 
(Fig. 2) and also between bryophytes and ferns [55]. The most 
striking example of nucleus-to-nucleus HGT involves the 
holoparasitic plant Rafflesia cantleyi (Rafflesiaceae), whose 
nuclear genome contains a minimum of 31 genes obtained 
from its plant host, Tetrastigma rafflesiae (Vitaceae) [22]. 
The foreign genes, transferred as DNA, are expressed and 
many of them are probably functional [22].

Given their high abundance in nuclear genomes and their 
ability to move and become functional in a new host genome 
[56], transposable elements are often maintained in the 
recipient genome after being horizontally transferred [57]. 
Therefore, transposable elements, and other forms of self-
ish DNA, are expected to be the predominant type of DNA 
transferred among eukaryotes once enough comparative data 
is available across this domain of life. Nuclear-to-nuclear 
plant HGT likely occurs in a higher (even extremely higher) 
frequency than we are able to detect today given the paucity 
of plant nuclear genome sequences available for comparison. 
It is likely that most nuclear transfers are non-functional and 
therefore transient, disappearing before detection.

Plastid genes
Chloroplast genomes (cpDNAs) from photosynthetic 

eukaryotes are only rarely involved in HGT. This is likely not 
an underestimation because cpDNAs have been thoroughly 
sequenced across the diversity of the eukaryotic tree of 
life and phylogenetic analyses of plastid genes intensively 
performed [5,58]. Even though it is an unusual event, a few 
confirmed cases of foreign plastid genes in algal cpDNAs 
exist [59–62], whereas no convincing evidence is available 
for HGT between angiosperm plastid genomes and only 

few examples are available for horizontal transfers of plastid 
genes involving different compartments in two plant species 
(Fig. 1).

Angiosperm plastid genomes are highly resistant to 
acquiring genes from other cellular compartments, as well 
as from other organisms. Two examples of IGT into to the 
plastid genome of angiosperms include a mitochondrial 
fragment and possible retrotransposon in the cpDNA of 
Daucus carota [63,64] and a 2.4 kb mitochondrial segment 
transferred to an intergenic spacer in the cpDNA of the 
milkweed Asclepias syriaca [65]. The limited acquisition of 
sequences from other compartments or other organisms by 
angiosperm chloroplasts relates to their particular proper-
ties: the absence of plastid fusion or uptake mechanisms, 
and the reduced plastid genome with minimal intergenic 
regions. However, once a foreign DNA fragment enters the 
plastid, this DNA can be incorporated into the cpDNA by 
homologous recombination [35,66].

There are a few examples of horizontally transferred 
plastid genes found in angiosperms, but it is not always 
clear in which cellular compartment they reside or whether 
the transfer occurred directly from the chloroplast genome 
of the donor (Fig. 1). A cp-to-cp HGT of the plastid gene 
rps2 identified in parasitic angiosperms of the genus Phe-
lipanche [13] cannot be ruled out (Fig. 2). However, the 
recently sequenced plastid genome of P. ramosa [67] showed 
that the foreign copy of rps2 is not present in its cpDNA. 
In other cases, foreign plastid genes were located in the 
mitochondrial genomes of the fabid Phaseolus vulgaris 
[68], the early-diverging angiosperm Amborella trichopoda 
[15], the holoparasite Sapria himalayana [47], and in the 
Solanaceae Hyoscyamus niger [69]. The route by which these 
plastid genes entered the recipient mitochondria remains 
unknown, but given the frequency of mt-to-mt HGT, it has 
been proposed that plastid genes were first transferred to 
the mitochondrial genome within the donor plant by IGT 
and then horizontally transferred via mitochondrial HGT. 
Likewise, the presence of foreign plastid genes in the nuclear 
genome of the holoparasite Rafflesia lagascae (Rafflesiaceae) 
has been described [70]. IGT from the chloroplast to the 
nucleus of the host followed by nucleus-to-nucleus HGT 
could have occurred.

A thorough study of the three genomes of plant parasites 
in the holoparasitic plant family Rafflesiaceae indicated that 
mitochondrial HGT is more frequent than nuclear HGT in 
these host-parasite relationships, with no strong evidence 
for plastid-to-plastid transfers [47].

Mechanisms of HGT among plants

A long-standing question in plant evolutionary biology re-
lates to the mechanisms of gene transfer among angiosperms. 
Postulated natural mechanisms that facilitate HGT include 
direct transmission involving parasitic or epiphytic plants, 
tissue grafts, illegitimate pollination, or indirect transmission 
via a vector intermediate, such as virus, bacteria, insects, and 
fungi [5,11,12,16,18,21,25,71]. These proposed mechanisms 
can explain the horizontal transfer across the three cellular 
compartments (Fig. 1).
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The frequency of HGT events between plant mitochondria 
is biased towards host-parasite systems [51], even though 
more than 55 mitochondrial genomes from free-living angio-
sperms have been sequenced and only a draft assembly of the 
mtDNA of the parasitic plant Rafflesia lagascae is available 
[70]. This bias suggests the importance of direct physical 
contact as a mechanism for plant-to-plant HGT. Parasitic 
plants form vascular connections with the host plant that 
allow transfer of water, nutrients, proteins, mRNAs, and 
pathogens [72–74]. Even though the exchange of genomic 
DNA in host-parasite relationships has not been shown, it 
is not hard to imagine that DNA fragments can occasionally 
travel through the haustorium.

A few studies focused on an experimental model of HGT 
through grafting. Natural grafting may enable HGT between 
two plants [9,15]. In a recent study, three HGT events 
were observed on axillary shoots of grafted cotton plants, 
but the genetic variations were not stably inherited across 
three generations [75]. Two research groups recreated HGT 
by grafting two lines or species of tobacco and found that 
nuclear genomes, entire chloroplasts and organellar DNA 
travelled across the graft junction through plasmodesmata 
[71,76–78]. These observations demonstrate that plant 
grafting can result in the exchange of DNA from the three 
DNA-containing compartments.

Regardless of how mitochondrial genes physically reach 
a recipient plant, a mitochondrial-fusion model for HGT 
in plants has been proposed [15]. According to this model, 
plant mitochondrial HGT occurs by capture of entire mito-
chondria from foreign, donor plants, followed by fusion of 
native and foreign mitochondria, and then recombination of 
their genomes. The fusion of foreign and native mitochondria 
seems to be restricted to phylogenetically related taxa, such 
as those that belong to the Viridiplantae, due to putative 
incompatibilities in the mechanism of mitochondrial fusion 
with other lineages [15]. This restriction would explain 
the almost exclusive occurrence of foreign mitochondrial 
genes from plants integrated in angiosperm mitochondrial 
genomes.

To study the cellular and molecular processes of plant-to-
plant transfers, experimental assays recreating HGT events 
have been undertaken [69,71,76–78]. In one study, the effects 
of mitochondrial fusion followed by mtDNA recombination 
were assessed in a cybrid (cytoplasmic hybrid) plant between 
two Solanaceae [69]. It has been known for decades that 
mitochondrial genomes recombine after protoplast fusions 
between two plant species [79]. Recently, the complete 
sequence of the mtDNA of a cybrid plant indicated that the 
two parental genomes recombined intensely after protoplast 
fusion to form an intensely chimeric mtDNA that encodes 
a single allele of most of its genes, including nine chimeric 
genes [69].

Outcomes of HGT in plants

The evolutionary implications of HGT in land plants are 
still largely unknown. Examples of putative adaptive roles of 
HGT in plants have been recently reviewed [7,8]. Most cases 
involve genes obtained from bacteria [80–83], viruses [81] 

and fungi [6,81], and reside in the plant nuclear genome. 
Only a handful of nuclear genes were acquired through 
plant-to-plant HGT [22,48,55], and a few of those represent 
novel, functional genes in the recipient genome that may 
lead to ecological adaptations [48,55].

Horizontal transfers between flowering plant mito-
chondria generally results in the initial duplication of a 
mitochondrial gene, in which two different copies (the 
foreign and the native) co-exist for some time in the recipient 
mtDNA. Over time, this initial situation may have different 
outcomes (Fig. 3):
 (i) deletion of the foreign gene copy: in this case, the 

process of HGT goes unseen (silent HGT);
 (ii) deletion of the native gene copy once the foreign copy 

becomes functional in the recipient genome (replace-
ment HGT);

 (iii) both copies are maintained in the recipient mtDNA 
(duplicative HGT);

 (iv) homologous recombination and gene conversion 
between the two copies lead to a single functional 
chimeric copy of the gene (chimeric HGT).

Foreign mitochondrial genes are commonly found as 
extra genes, coexisting with native mitochondrial copies of 
the same gene (duplicative HGT). In those cases, transferred 
genes usually become pseudogenes while the native alleles 
remain functional. Occasionally, the foreign and native copies 
may undergo continuous or discontinuous gene conversion, 
leading to one or two chimeric gene copies, but often with 
a single functional allele (chimeric HGT). The functional 
chimeric gene may translate into a protein with novel 
residues in the recipient genome. This increase in genetic 
diversity through HGT could impact the evolution of plant 
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mitochondria [20,23]. A duplicative HGT and differential 
gene conversion (DH- DC) model has been postulated [23] in 
which gene conversion of foreign (from other organisms or 
organelles) and native genes generates mitochondrial genetic 
variability. A striking case of chimeric HGT has been recently 
discovered in an extensive survey of the mitochondrial cox1 
gene across almost 900 angiosperms (Sanchez-Puerta et al., 
unpublished). A divergent short region of the gene cox1 has 
most likely been horizontally acquired and gene converted 
about 20 times during the evolution of the angiosperms 
examined. The chimeric cox1 genes are the only cox1 alleles 
present in the mtDNAs analyzed and are therefore most likely 
functional (Sanchez-Puerta et al., unpublished).

In a few cases, a gene that has been functionally trans-
ferred to the nuclear genome of the recipient angiosperm 
is reacquired by its mtDNA via HGT (recapture HGT). On 
the other hand, introducing a novel gene into angiosperm 
mitochondria is uncommon because plant mitochondria 
contain a reduced gene repertoire, unless it brings a gene 
that was, in turn, acquired from another cell compartment, 
such as a plastid or nuclear gene (as discussed in the previ-
ous section).

In the plant mtHGTs described to date, no clear evidence 
for an adaptive gain of function was found. It is likely that 
genetic drift rather than selection has fixed mitochon-
drial HGT events. Most foreign genes are non-functional 
pseudogenes due to truncation of the gene or presence of 
premature stop codons, while those that have a complete 

open reading frame may not be significantly expressed 
or efficiently edited (Fig. 3). About nine cases have been 
reported where chimeric [10,23] or foreign [47] genes are 
full-length, transcribed and edited in the recipient mtDNA 
suggesting they are functional (plus the 20 chimeric cox1 
genes described above; unpublished results). The chimeric or 
foreign functional genes do not show any apparent increase 
in fitness due to the genetic diversity introduced by HGT. 
On the contrary, HGT could impair overall gene expression 
through gene conversion with a foreign allele or when two 
alleles (a foreign and a native) are simultaneously present 
and functional in a single mitochondrion [69].

Conclusions

Little is known about the functional implications of 
horizontal gene transfer among plants, in addition to the 
real incidence of nuclear and mitochondrial HGT in the 
plant kingdom. This phenomenon raises a number of ques-
tions regarding the extent and mechanism of the exchange 
of genetic material between plants, its consequences for 
transgene containment, and the co-evolution of organellar 
DNA with the nuclear genome. The current accelerated 
generation of comparative genomic data will contribute to 
quickly uncover evolutionary aspects of plant-to-plant HGT, 
such as the expected prevalence of nuclear HGT.
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