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The key event in the history of life on our planet was the 
enslavement of a cyanobacterium by a eukaryotic host cell. 
This process, known as the primary endosymbiosis, resulted 
in the first plastids [1]. Primary plastids have two envelope 
membranes and occur in the three following eukaryotic 
lineages: glaucophytes, red algae and green plants, the 
latter including green algae and land plants. According to 
the modern systematics, all the primary plastid-containing 
groups constitute the supergroup Archaeplastida (formerly 
Plantae), which, in contrast to other supergroups such as 
Excavata, the SAR clade and Opisthokonta, was created by 
endosymbiotic event [2].

The current issue of Acta Societatis Botanicorum Poloniae 
(ASBP) contains nineteen papers: fourteen reviews and five 
original articles. The series of these invited papers has a spe-
cial purpose. Last year, we had celebrated 90th anniversary 
of our journal and this was acknowledged on the covers of 
the subsequent four issues. This year, 2014, opens the last 
decade leading to the even more noble anniversary – to the 
journal’s centennial. Editors of ASBP would like to celebrate 
this special occasion by publishing a few issues dedicated 
to the hottest topics in plant science in the next decade. 
This issue is meant to be the first. Its leading theme is the 
Evolution of Plant Cells, the subject often neglected in the 
textbooks on Plant Cell Biology, which deal mainly with the 
properties of a cell of a higher plant, often forgetting its long 
and complicated evolutionary history.

In the first paper, Mackiewicz and Gagat [3] discuss 
the monophyly of Archaeplastida from the perspective of 
phylogenies of plastid and host genes. An updated view on 
the origin of primary plastids, is provided by Ku et al. [4]. In 
this review, the authors discuss such important topics as the 
cyanobacterial source of primary plastids, the physiological 
context of their establishment, and the current controversies 
surrounding interpretations of the trees for primary plastid 
origin. According to one of the recent hypotheses, the cya-
nobacterial ancestor of primary plastids received some help 
during its initial evolution from a concomitant chlamydial 
endosymbiont [5]. This hot topic is critically discussed by 
Deschamps [6].

The next three papers deal with distinct aspects of plant 
cell evolution. By using bioinformatics methods, Petrželková 
and Eliáš [7] demonstrate drastic reduction in the number of 
Rab GTPase genes in red algae. The absence of Rab5 suggests 
a significant modification or degradation of the endocytotic 
pathway in these algae. In turn, Sanchez-Puerta [8] presents 
available data on the participation of mitochondrial, plastid, 
and nuclear genomes in horizontal gene transfer between 
distinct plant species with a special emphasis on mitochon-
drial genomes. The paper by Krenz et al. [9] is devoted to 

stromules, the peculiar extensions of the envelope of primary 
plastids. They critically review current data on the topic and 
include new GFP-based results on the induction of stromules 
by plant viruses.

According to the traditional view, all primary plastids, 
i.e. those of glaucophytes, red algae, and green plants, have 
prokaryotic origin. An alternative evolutionary scenario 
is discussed by Kim and Maruyama [10]. They argue that 
the plastids of green plants evolved from eukaryotic algae 
(glaucophytes or red algae) via secondary endosymbiosis. 
Eukaryotic alga-derived plastids are characteristic for several 
other protist lineages such as Euglenophyceae, chlorarach-
niophytes, dinoflagellates, cryptophytes, Ochrophyta, and 
haptophytes [2].

Multicellularity evolved on multiple occasions within 
Archaeplastida [11]. Niklas et al. [12] propose a new look at 
the quantification of complexity in multicellular organisms, 
including representatives of green plants. In their study they 
show how the number of possible cell phenotypes increase 
over evolutionary time, producing significantly more com-
plexity in the structure and function of multicellular plant 
organism.

In addition to primary endosymbiosis, the second key 
event in the evolution of Eukaryotic life on the Earth (which 
also involved archaeplastid representatives), was the inva-
sion of land by one of the green algal lineages. The new 
environment provided significant challenges for these new 
inhabitants, such as water stress, UV radiation and lack of 
mechanical support, resulting in the evolution of interesting 
adaptations. From this perspective, Banasiak [13] describes 
evolution of the main components of the cell wall in land 
plant cells. In turn, Wang et al. [14] review the examples of 
the impact of horizontal gene transfer on land plant evolu-
tion, which include among others, the synthesis of flavonoids 
and lignins, the origin of vascular tissues, and the evolution 
of C4 photosynthesis in Poaceae.

The Archaeplastida persist not only as autotrophs, but 
also as numerous parasitic forms. Parasites have been found 
in land plants (e.g. Cuscuta, Epifagus, Striga), green algae 
(e.g. Helicosporidium), and red algae (e.g. Choreocolax, 
Gracilariophyla). Salomaki and Lane [15] describe the 
peculiar cellular strategies used by parasitic red algae dur-
ing infection of their host cells. All parasitic archaeplastid 
species contain permanent non-photosynthetic plastids but 
adelphoparasitic red algae, which are closely related to their 
hosts, borrow host plastids. A genomic perspective on the 
transition to parasitism in Helicosporidium is offered by Sun 
and Pombert [16]. The studies on parasitic red and green 
algae are very important because they offer novel perspectives 
on the evolution of apicomplexan parasites, which cause such 

Acta Soc Bot Pol 83(4):259–261 DOI: 10.5586/asbp.2014.054 
Published electronically: 2014-12-31 

Letter from the Editors

http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.5586/asbp.2014.054


260

Bodył and Zagórska-Marek / Letter from the Editors

© The Author(s) 2014 Published by Polish Botanical Society Acta Soc Bot Pol 83(4):259–261

burdensome diseases as malaria and toxoplasmosis. These 
parasites contain a non-photosynthetic plastid, known as 
the apicoplast [17], and it is hypothesized that they have 
evolved from a Chromera-like photosynthetic ancestor [18].

It is still believed that the transformation of endosym-
bionts into cell organelles is extremely rare. Consequently, 
the cyanobacterial primary endosymbiosis in the ancestor 
of Archaeplastida is regarded as a unique organelle birth in 
the history of life on our planet. A new challenge to this view 
comes from the thecate amoeba Paulinella chromatophora. 
This protist harbors two cyanobacterium-derived pho-
tosynthetic bodies, termed chromatophores, which were 
acquired independently of primary plastids [19]. It was 
recently demonstrated that Paulinella chromatophores 
import nuclear-encoded proteins, thus they represent true 
cell organelles ([20], see also [21]). Taking into account these 
and other data, Nowack [22] critically reviews the Paulinella 
endosymbiosis in the broader context of the evolution of 
cell organelles of prokaryotic origin. In further support of 
the organellar nature of Paulinella chromatophores, Gagat 
and Mackiewicz [23] show that the two distinct strains of 
P. chromatophora, which probably represent separate species, 
contain the same complement of Tic-like proteins. They also 
identify, for the first time, the homolog of Tic62 in both 
Paulinella strains. In their review, Nakayama and Inagaki 
[24] focus on the genome evolution in the N2-fixing cyano-
bacterial endosymbionts of diatoms. These endosymbioses 
are very interesting from the perspective of the primary 
endosymbiosis in Archaeplastida because the first driving 
force for the establishment of the engulfed cyanobacterium 
as the permanent endosymbiont, and then the true cell or-
ganelle, could be N2 fixation [4]. Moreover, it is possible that 
some of these endosymbionts with highly reduced genomes, 
such as the cyanobacterial UCYN-A phylotype [24], import 
proteins encoded by the host nucleus and thus extend the 
list of cell organelles.

Photosynthetic eukaryotes contain not only plastids but 
also kleptoplastids [25]. The latter structures are temporary 
photosynthetic bodies, which are regularly ingested by their 
hosts, either as the whole cells or as sequestered plastids from 
their donors. Kleptoplastids occur in numerous protists 
(true experts in their acquisition are dinoflagellates [25]), 
but they have also been found in animals such as sea slugs 
of the genus Elysia (see the issue cover). They make of these 
animals the peculiar plant-like organisms. In their review, 
de Vries et al. [26] encourage us to look at plastid evolution 
through the lens of the sea slug’s kleptoplastid system.

Interesting implications of the Archaeplastida world can 
be found in the last three papers. Olmos and Kargul [27] 
review applications of artificial photosynthesis in solving the 
energy problems in our world. In her discussion on RNA 
world evolution, Szweykowska-Kulińska [28] convinces us 
that we live, in fact, in a New RNA World, which is visible 
in archaeplastid cells. In the last paper, which is focused on 
the future of life on our planet, Mautner [29] regards it as a 
unique phenomenon and proposes exporting life into space 
via directed panspermia. If we actually decide to do so in the 
future, good candidates for such expeditions would be the 
red algae Cyanidiales, which are well known for dwelling in 
extreme environments [30].

In the end of this briefing on the content of this issue, we 
would especially like to thank all the authors who enthusiasti-
cally responded to our call and joined the project of showing 
the plant cell’s past, present and perspectives. We are also 
very grateful to our numerous reviewers who helped us to 
elevate the quality of submitted papers. The outcome is now 
to be read and evaluated by the readers.

As for the future, we would welcome both scientific letters 
on all the topics discussed in the current issue of ASBP and 
new submissions of papers on plant cell evolution to our 
journal. One such publication can already be announced: a 
comprehensive review on glaucophyte algae will appear in 
one of the next issues of ASBP.
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