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Abstract
The abscission of certain organs from the plant is part of the fulfilment of its devel-
opmental programs. The separation process occurs in a specialized abscission zone 
usually formed at the base of detached organ. The changing level of phytohormones, 
particularly ethylene, is the element responsible for coordinating anatomical and 
physiological transformation that accompanies organ abscission. The application 
of ethylene (ET) on Lupinus luteus stimulates flower abortion. However, the treat-
ment with 1-aminocyclopropane-1-carboxylic acid (ACC) – direct ET precursor 
– does not cause such a strong physiological response. In turn, when applied on the 
pedicels both ET biosynthesis (2-aminoethoxyvinylglycine; AVG) and action (nor-
bornadiene; NBD) inhibitors reversed the stimulatory effect of ET on generative 
organ separation. In order to determine ET role in the flower abscission process 
in L. luteus, we identified the sequences coding for synthase (LlACS) and oxidase 
(LlACO) of ACC and measured their expression levels. Abscission zone activation 
is accompanied by a considerable increase both in LlACS and LlACO cDNAs and 
also ACC content, which is specifically localized in the dividing cells at the base of 
the flower being detached. Obtained results suggest that ET is a strong stimulator 
of flower abortion in L. luteus.
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Introduction

In yellow lupine, flower formation and development processes are of crucial impor-
tance for its productivity, but entail excessive and premature flower abscission. De-
pending on the level of the inflorescence, between 50 and 90% of all the flowers set 
are abscised [1,2]. Flower abscission takes place in the abscission zone (AZ), which is 
located at the base of the pedicel, while this process is related to anatomical and physi-
ological changes coordinated by phytohormones [3,4]. Ethylene (ET) is one of the 
strongest organ abscission stimulators, as it regulates the function of hydrolytic en-
zymes (polygalacturonases, peroxidases, esterases, expansins) and, therefore, controls 
the activation of the cells within separation layer in the AZ [4–6]. Almost every plant 
tissue is able to produce ET, but in most cases its level is relatively low, only increasing 
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in certain periods of the plant development, such as seeds germination, stem and 
root growth, abscission of flowers and leaves, fruit ripening, as well as senescence 
[7]. Other phytohormones affect ethylene production as well (auxins, jasmonates, ab-
scisic acid), similarly to biotic and abiotic external factors that, in ways differentiated 
in terms of time and space, regulate the transcriptional activity of genes encoding 
enzymes involved in their biosynthesis [8–11]. For this process, of key importance 
are the synthases (ACSs) and oxidases (ACOs) of 1-aminocyclopropane-1-carboxylic 
acid (ACC) that catalyze the transformation of S-adenosyl-methionine (SAM) into 
ACC and oxidize ACC to ET, respectively [12,13].

In order to study the effect of ET on flower abscission in yellow lupine, we carried 
out physiological experiments using the solutions of exogenous hormone and the in-
hibitors of its biosynthesis and action. Moreover, we identified the sequences coding 
for the synthase and oxidase of ACC (LlACS, LlACO) and examined their expression 
patterns in the pedicels of generative organs during their development, and in the 
pedicels of flowers with an active and inactive abscission zone. We also measured 
the endogenous ACC content and we determined its cellular localization within the 
AZ.

Material and methods

Plant material and growth conditions

Plant material, epigonal cultivar Taper of yellow lupine (Lupinus luteus L.), was pre-
pared according to Frankowski et al. [14]. The plants were grown in a growth chamber 
in plastic pots under the conditions as described by Frankowski et al. [14].

Application of plant hormones, inhibitors, and precursors

In order to evaluate the influence of exogenous phytohormones in flower abscission, 
several treatments were performed. ACC (0.1 mM) or aminoethoxyvinylgycine (AVG; 
0.1 mM) solutions in 0.05% Tween 20 were applied by small brushes onto pedicels 
with an inactive AZ (pedicels of fully developed flowers containing green pedicels). 
Moreover, gaseous ET or 2,5-norbornadiene (NBD) at concentrations of 100 µL L−1 
were applied via a syringe with septum into 9-L glass containers containing pots with 
growing lupins. The control plants were treated with 0.05% Tween 20 solution. At least 
15 plants were used in each treatment. After the completion of treatments, the flower 
abortion rate (%) was determined. All treatments were carried out in three indepen-
dent biological replications.

Molecular cloning of LlACS and LlACO cDNAs

The floral pedicels of L. luteus (1.0 g) were mechanically homogenized and total RNA 
was isolated according to procedures described in the instructions of NucleoSpin 
RNA Plant Kit (Macherey-Nagel GmbH & Co. KG, Germany). All designed primers 
for the studied genes were supplied by Genomed S.A. (Poland). First-strand cDNA 
was synthesized from 1 µg of total RNA using the Transcriptor High Fidelity cDNA 
Synthesis Kit (ROCHE Diagnostics GmbH, Germany) following the manufacturer’s 
instruction. In order to identify LlACO, we carried out PCR reactions in the T3 Ther-
mocycler (Biometra, Germany). The degenerated primers (Tab. 1) were designed on 
the basis of conserved fragments of genes encoding ACOs in Lycopersicon esculen-
tum (GenBank accession No. AJ715790), Nicotiana tabacum (GenBank accession No. 
AB012857), N. attenuata (GenBank accession No. AY426756), N. glutinosa (GenBank 
accession No. U62764), Solanum tuberosum (GenBank accession No. AY098939), and 
Arabidopsis thaliana (GenBank accession No. AF016100). The sequence of LlACS was 
obtained in PCR reactions by using specific primers listed in Tab. 1, constructed for 
EST fragments of ACS from Lupinus albus (EST sequence in the NCBI database of 
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L. albus: No. AF119413.1). Each PCR reaction mixture, containing 2 μL of obtained 
cDNA, 2 μL of primers solution (10 μM), 5 μL of 10× TrueStart Hot Start Taq buffer, 
4 μL of 25 mM Mg2+, 5 μL of 2 mM dNTP mix, and 1.25 U of TrueStart Hot Start Taq 
DNA Polymerase (Fermentas, USA), was subjected to the thermal cycling conditions 
as follows: 95°C for 5 min – one cycle, 95°C for 1 min, 66–58°C for 45 s, 74°C for 45 s 
– 29 cycles, 74°C for 5 min – one cycle . In order to isolate amplified products from an 
agarose gel, the GeneMATRIX Agarose Out DNA Purification Kit (EurX, Poland) was 
used. Subsequently, cDNA fragments were cloned with using the Strata Clone PCR 
Cloning Kit (Agilent Technologies, USA) and then sequenced by Genomed S.A.

A BD SMART RACE cDNA Amplification Kit (Clontech-Takara Bio Europe, 
France) was used to prepare amplification of complementary DNA ends (RACE)-
ready cDNA . Specific 5'-RACE and 3'-RACE primers for LlACS and LlACO were 
designed with public version of the software Fast PCR (http://primerdigital.com/
fastpcr.html) and all the reactions were performed using the Advantage 2 PCR En-
zyme System (Clontech-Takara Bio Europe, France). Purified RACE products were 
cloned by Strata Clone PCR Cloning Kit and transformed using StrataCloneSoloPack 
Competent Cells (Agilent Technologies, USA). Plasmid DNA containing the cloned 
RACE products was isolated with the GeneMATRIX PLASMID MINIPREP DNA Pu-
rification Kit (EurX, Poland). Each DNA product was sequenced by Genomed S.A., 

Tab. 1 Specific primers and probes used in PCR reactions.

Gene 
name

GeneBank 
accession No. Primer sequence 5'–3'

UPL probe 
No.

Product size 
(bp)

LlACS KF573522.1 Specific

F: GTGACAAACCCATCCAACCCACT 880

R: ACACACCAACCATGACCAGGCTAT

RACE-PCR

F: TGGGTTTACCGGGTTTTCGCGTTGG 870

R: TTCCTTGAGGACTTCCATGACGCTG 1245

qRT-PCR

F: TTCATTCAAGAAGGCAATGGT 53 71

R: GGTTTGGGTCAAAAGTCACC

LlACO KF573523.1 Degenerate 467

F: AAGRTTCAAGGAAATGGTGGCAAG

R: TCRCCRAGGTTGAYGACAATGGAG

RACE-PCR

F: TTGCTGTGTGAAAACCTTGGGCTGG 860

R: ACAGCAAGTCAAGAAGTTGCTCTGCCA 490

qRT-PCR 53 74

F: GTGATGAAGGAATTTGCACAAG

R: CCAAGGTTTTCACACAGCAA

LlACT KP257588 qRT-PCR 165 76

F: TAATGGTTGGGATGGGTCAG

R: TTCAAGGTGAGAATACCCCTCT

F – forward primer; R – reverse primer.

http://primerdigital.com/fastpcr.html
http://primerdigital.com/fastpcr.html
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whereas full-length sequences of examined genes were deposited in the GenBank da-
tabase. Bioinformatic analysis was performed using ClustalW (http://www.genome.
jp/tools/clustalw/), BLAST 2.2.25 (http://blast.ncbi.nlm.nih.gov/Blast.cgi), and Ex-
PASY (http://www.expasy.org) applications.

LlACS and LlACO expression analyses in pedicels

LlACS and LlACO expression analyses were performed for pedicels collected in the 
subsequent developmental stages (photograph in Fig. 1) and in naturally active (NA) 
or artificially activated (AC) AZ described by Frankowski et al. [15]. The control, 
green pedicels, which showed no symptoms of senescence were excised from fully 
opened flowers from sixth stage of their development (inactive AZ, IN).

Real-time quantitative PCR analyses of the LlACS and LlACO

Each amplification reaction mixture for LlACS and LlACO expression was prepared 
with using a LightCycler TaqMan Master Kit (ROCHE Diagnostics GmbH, Germany) 
and carried out on the LightCycler 2.0 Carousel-Based System instrument (ROCHE 

Diagnostics GmbH, Germany). The cDNA 
templates for transcriptional activity analysis 
were prepared similarly as for genes molecu-
lar cloning. Specific primers for examined 
genes (LlACS, GenBank accession No. 
KF573522.1 and LlACO, GenBank accession 
No. KF573523.1) and gene specific hydroly-
sis probe (UPL) were designed by Universal 
Probe Library Assay Design Center (https://
qpcr.probefinder.com/organism.jsp) (Tab. 1). 
Expression was normalized to the house-
keeping gene LlACT (GenBank accession 
No. KP257588.1). Transcripts were amplified 
under following qPCR conditions: one cycle 
at 95°C for 10 min, 45 cycles at 95°C for 10 s, 
58°C for 30 s, 72°C for 1 s, one cycle of cool-
ing at 40°C for 30 s.

The qPCR mixtures consisted of 1 μL of 
first strand cDNA, 0.4 μL of the gene spe-
cific primers solution (10 μM), 0.2 μL of 
the UPL probe, and 4 μL of TaqMan Master 
Mix, containing a reaction buffer, dNTP mix, 
and DNA Polymerase (ROCHE Diagnostics 
GmbH, Germany). Serial dilutions of cDNA 
were used to generate a standard curve 
for relative quantification. The data were 
analyzed and presented with LightCycler 
Real-Time PCR Systems software (ROCHE 
Diagnostics GmbH, Germany), MS Office 
Excel (Microsoft), and SigmaPlot 2001 v.5.0. 
qPCR reactions were carried out in triplicate 
for each RNA template. Data are presented as 
mean ± standard error (SE).

Microscopy sample preparation and 
immunofluorescence experiments

Pedicels to microscopy analysis were pre-
pared according to Frankowski et al. [15]. For 
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Fig. 1 Expression pattern (related to LlACT) of ethylene biosynthesis 
genes LlACS (a) and LlACO (b) in the pedicels during generative organ 
development. SE is marked at the bars.
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immunofluorescence studies, the sections were incubated overnight at 4°C in primary 
antibody solution prepared by dilution the primary antibody (anti-ACC) 1:50 in 1% 
bovine serum albumin (BSA) prepared in 1× PBS (pH 7.2). A DyLight Alexa 488 
conjugated IgG diluted 1:250 in PBS buffer for 2 h at 37°C served as the secondary 
antibody. The samples were observed in a Leica DMI4000B inverted microscope using 
the filter combination: BP365, FT395, and LP397.

Determination of ACC levels

The tissue fragments (0.5 g) containing AZ were homogenized in liquid N2, extracted 
twice in 5% sulphosalicylic acid (1.5 mL) for 24 h at 21°C and centrifuged. 500 ng of 
d2ACC internal standard was added before first extraction. All subsequent procedures 
of ACC level isolation and determination were carried out according to the modified 
procedure of Kęsy et al. [16]. Fractions from the HPLC, containing phthalimido-ACC 
derivative, collected at 12.8 ±0.5 min, were evaporated to dryness, methylated with 
diazomethane, dissolved in 50 µL of methanol and analyzed by GC/MS-SIM follow-
ing to conditions described by Kęsy et al. [16].

Results

Ethylene effectively stimulates 
flower abscission in L. luteus

Lupinus luteus grown under phytotron 
conditions formed 15 flowers per plant 
on average, of which 40% were aborted 
(Tab. 2). Under the effect of exogenous 
ACC and ethylene, the number of flow-
ers abscised grew to 49% and 95%, re-
spectively. In turn, the treatment with 
inhibitors of ET biosynthesis (AVG) or 
action (NBD) reversed the stimulatory 
effect of ET on generative organ abor-
tion in such a manner that 15% and 
5% of the flowers, respectively, were 
abscised (Tab. 2).

Isolation of LlACS and LlACO cDNAs

The full-length LlACS (GenBank accession No. KF573522) and LlACO (GenBank 
accession No. KF573523) cDNAs were obtained by the traditional PCR (Fig. S1a, 
Fig. S2a) and 5'–3'-RACE PCR (Fig. S1b,c, Fig. S2b,c) methods, and are composed 
of 1859 bp and 1235 bp, respectively. The predicted amino acid LlACS (486 aa) in-
cludes seven conserved regions among ACC synthases (Fig. S1d). One of the domains 
contains the active site – lysine residue, which binds to pyridoxal 5'-phosphate and S-
adenosyl-l-methionine [17]. Moreover, the LlACS sequence contains 11 amino acids 
characteristic for ACSs and various aminotransferases (Fig. S1d) [18,19]. The full-
length of LlACO cDNA encoded 317 amino acids (Fig. S2d). The predicted LlACO 
sequence and ACC oxidases from other plant species were compared and it was found 
that the LlACO protein also included conserved motifs: a cofactor and a cosubstrate 
binding [Hsp177-X-Asp179-X(54)-Hsp234 and Arg244-X-Ser246, respectively] [20] 
(Fig. S2d). Moreover, the C-terminus of LlACO protein contained the Lys and Arg 
residues essential for enzymatic activity (Positions 294–301).

Multiple amino acid sequences alignment demonstrated that the predicted LlACS 
is closely related to the ACS from Vigna radiata (86%; GenBank accession No. 
AAD41083), Medicago truncatula (83%; GenBank accession No. XP003611535), and 

Tab. 2 The effect of ET, AVG, NBD, and ACC treatment on flower abortion rate 
in L. luteus.

Control ET NBD ACC AVG

Flower abortion rate (%) 40 95 5 49 15

Pedicels were treated with ethylene (ET) precursor ACC (1-aminocyclopropane-
1-carboxylic acid; 0.1 mM) or ET biosynthesis inhibitor AVG (aminoethoxyvinyl-
gycine; 0.1 mM) solutions in 0.05% Tween 20. ET or its perception inhibitor NBD 
(2,5-norbornadiene) at concentrations of 100 µL L−1 were put via a syringe into the 
glass containers. The control plants were treated with 0.05% Tween 20 solution. At 
least 15 plants were used in each treatment. Upon completion of the treatments, 
the flower abortion rate was determined. All treatment experiments were designed 
in three independent biological replications.
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Pisum sativum (83%; GenBank accession No. AAD04198) 
(Fig. S1e). In turn, a comparison of LlACO with ACOs from 
other plant species showed that LlACO has 86% sequence 
identity to ACOs from Vigna radiata (GenBank accession 
No. CAJ56064) and Glycine max (GenBank accession No. 
NP001241899), and is also closely related (85%) to ACOs 
from Trifolium repens (GenBank accession No. AAD28196), 
Medicago sativa (GenBank accession No. ABF61805), 
and Carica papaya (GenBank accession No. AAK57516) 
(Fig. S2d).

Activation of the AZ is correlated with changing 
LlACS and LlACO expression and the ACC level

The transcriptional activity of both LlACS and LlACO was 
the highest in the pedicels of fully developed flowers and 
young pods (Fig. 1a,b). In the pedicels from naturally ab-
scised flowers, a significant accumulation of both LlACS 
and LlACO transcripts was observed (Fig. 2a,b). Addition-
ally, artificial AZ activation (flower removal) caused gradu-
ally increase of the the mRNA level of both the genes in 
comparison to control plants (an inactive AZ) (Fig. 2a,b). 
The transcriptional activities of the studied genes were also 
correlated with the level of ET precursor (Fig. 2c), which 
was specifically localized within the dividing AZ cells 
(Fig. 3c–f).

Discussion

The mechanism of organ abscission has not been com-
pletely clarified. The separation of some plant organs is pre-
planned in its developmental programs. This phenomenon 
is first of all connected with plant reproduction, protection 
mechanisms, and getting rid of organs which have lost their 
function. The abscission process takes place in the special-
ized abscission zone, which forms at a place and time char-
acteristic of particular plant species [3]. As we previously 
showed, the floral abscission zone in L. luteus is located at 
the base of the pedicel. In this region, cells are round, con-
tain dense cytoplasm, and are smaller than adjacent cells 
below and above AZ [15].

In general, a change in the transcriptional activity of 
genes coding for transcription factors and cell wall hydro-
lyzing enzymes leads to the AZ cells activation and, as a 
consequence of that, to maturation in the distal part of the 
separation layer. The changing level of phytohormones is a 
factor responsible for coordinating the anatomical and phys-
iological changes accompanying organ abscission [9].

Due to the pivotal role of ethylene in the senescence and abscission of different 
plant organs, we studied the effect of this hormone and of its precursor (ACC) on 
flower abortion in L. luteus. As our physiological studies suggest, ethylene and ACC 
increased the number of abscised flowers by 95% and 49%, respectively (Tab. 2). By 
contrast, the application of ethylene biosynthesis or action inhibitors (AVG or NBD) 
significantly decreased the stimulatory effect of ethylene on flower abscission (Tab. 2). 
Similar results relating to the effect of ethylene and its inhibitors on the organ AZ were 
obtained for other plant species, including A. thaliana, apple, citrus, and Pelargonium 
[21–25].
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ACC in the pedicels with the IN or NA abscission zone. SE 
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Ethylene is commonly considered as the effector of separation processes induced 
by various stress conditions [26]. Both internal conditions and environmental factors 
may control the ethylene production process by affecting the transcriptional activity of 
the gene coding for ACC synthases and/or oxidases [27,28]. Considering that, in this 
study we identified those genes in yellow lupine (LlACS, LlACO) (Fig. S1, Fig. S2). The 
alignment of LlACS/LlACO deduced amino acid sequences and ACSs/ACOs from 
other species, revealed that both LlACS and LlACO contain all of the characteristic 
motifs found in their homologous (Fig. S1d, Fig. S2d). In the predicted LlACS, there 
were seven evolutionarily conserved regions found in all ACC synthases (Fig. S1d) 
[29–32], and conserved amino acid residues that are important for enzymatic activity 
[18,19], e.g., the Lys residue (V region) contained in the active center and involved in 
cofactor (PLP) and substrate (SAM) binding [17], as well as the Glu residue (I region) 
responsible for substrate specificity [33]. The Ser residue, located at Position 460 of the 
LlACS protein, is a part of the characteristic tripeptide R/K-L/V-S and may, similarly 
to ACC synthases from other plant species, be the place of phosphorylation [34]. In 
turn, identified LlACO contained motifs that are characteristic for ACC oxidases: the 
Fe(II) binding pocket containing three conserved amino acid residues (H, D, H) [20]. 
The sequence also contained residues of Lys and Arg that are important for oxidase 
enzymatic activity. Therefore, it appears that LlACS and LlACO encode for functional 
enzymatic proteins.

Fig. 3 Immunolocalization of ACC (anti-ACC Ab) in the pedicels with IN (a,b) or NA abscission zone (c–f). 
The symbols are: ACC – 1-aminocyclopropane-1-carboxylic acid; P – proximal zone; AZ – abscission zone; 
D – distal zone; v – vascular bundle. Scale bars: a,c,e 400 µm; b,d,f 100 µm.
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Due to the impossibility of determining gaseous ethylene production in flower 
and pod pedicels in L. luteus, we studied the transcriptional activity of the identified 
sequences encoding the genes of its biosynthesis. We found that the level of LlACS 
and LlACO mRNAs kept changing across the subsequent developmental stages and 
was the highest in the pedicels of fully developed flowers and young pods (Stage 7–8) 
(Fig. 1). That elevated expression of both the genes in Stage 7–8 may be related to 
abscission zone activation and/or be a consequence of the existence of a positive feed-
back loop between ethylene produced by ageing components of the perianth and the 
genes of ACC synthases and oxidases. We claim so after [25], who in their research on 
Pelargonium proved an increased transcriptional activity of the GACS2 and GACO2 
genes involved in the abscission of some components of the perianth. Additionally, 
prior to petal abscission in Rubus idaeus, Digitalis, banana, rose, and Pelargonium, 
ethylene production significantly increased [35–40].

The level of LlACS and LlACO expression as well as the content of the ethylene 
precursor, ACC, was over two times larger in the pedicels of flowers aborted natu-
rally in comparison with the pedicels with an inactive abscission zone (Fig. 2a–c). 
Furthermore, ACC was localized especially within the dividing cells of the AZ and 
in the vascular bundles of the pedicel (Fig. 3e–f). The results obtained suggest that 
a substantial portion of the ACC pool present in the AZ originates from de novo 
synthesis, although it is not excluded that the particle may also be transported from 
other parts from the plant. The accumulation of studied genes transcripts related to 
the process of natural generative organ abscission was also confirmed by research in 
which the AZ was activated artificially by removal of flowers (Fig. 2a,b). The increas-
ing expression of the genes coding for ET biosynthesis enzymes, the increase in the 
ACC content, as well as studies of ACC immunolocalization in the abscission zone, 
all suggest that ethylene is directly involved in the functioning of the flower abscission 
zone in L. luteus. This hypothesis was also confirmed by the results of research per-
formed in other plant species, in which the factors activating abscission of particular 
organs stimulate the expression of both ACC synthases and oxidases, e.g., in apple 
(MdACO3, MdACO4, MdACO1) or tomato (SlACO5, LACS2) [41–44]. Moreover, it 
was found that immediately before flower abscission in Ecballium elaterum and S. 
lycopersicum [45,46], the ethylene production rate increases. Not all of the results ob-
tained so far in respect of ET role in regulating flower abscission are explicit. Analyses 
of A. thaliana (etr1-1, ein2) and S. lycopersicum (Nr) mutants show that ET determines 
the organ abortion time [3]. There are also such mutants as Sletr1-2 (S. lycopersicum) 
and dab (A. thaliana), which are characterized by normal sensitivity to ET and that do 
not abort organs. On this basis, the existence of two pathways leading to plant organ 
separation was proposed: one ET-dependent and one ET-independent.

The research results presented in this paper indicate that in L. luteus, there is an 
ethylene-dependent pathway controlling flower abscission. The transcriptional activ-
ity of this phytohormone biosynthesis genes, as well as the changes in the ET pre-
cursor content, unambiguously indicate that ET plays a substantial role both in the 
formation and functioning of the AZ in this species. Therefore, ET is one of the factors 
responsible for earlier abortion of generative organs in L. luteus and, as a result of that, 
for the decreased yielding.

Supplementary material

The following supplementary material for this article is available at http://pbsociety.org.pl/jour-
nals/index.php/asbp/rt/suppFiles/asbp.3540/0:

Fig. S1 Molecular cloning of LlACS cDNA.

Fig. S2 Molecular cloning of LlACO cDNA.
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