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Abstract
Bryological research carried out from 2008 in Tajikistan and Kyrgyzstan brought 
interesting data on the occurrence of epiphytic bryophytes which have not been 
recorded yet there. One of the species was recently described as a new (Orthotrichum 
pamiricum) and some of the other newly recorded species are considered as rare or 
endangered in the region of Middle Asia. To make detailed field monitoring of the 
species with the aim of mapping their distribution in a wild and complex mountain-
ous terrain, it was necessary in the first instance to identify the area with suitable 
conditions for the occurrence of these species. We present an innovative modeling 
program MaxEnt (maximum entropy modeling), which have not previously been 
used for modeling either epiphytic bryophytes or in the Middle Asia region. Using 
205 samples (presence-only data), percent tree cover, and seven uncorrelated bio-
climatic variables, regions suitable for the occurrence of the studied species were 
identified. Distribution models for eight most interesting species of Orthotrichum 
are presented here (O. affine, O. anomalum, O. crenulatum, O. cupulatum, O. pallens, 
O. pamiricum, O. pumilum, and O. speciosum). They indicated appropriate areas for 
the most probable occurrence of the species in western Tajikistan, and southwestern 
and northeastern Kyrgyzstan. These results could serve as guides for future survey 
expeditions, and aid in the conservation of target species and our understanding of 
their ecology. Different environmental variables for various species were selected 
as the most important for modeling. However, for most species higher minimum 
temperatures and higher precipitation in the wettest month and mean diurnal range 
were the variables with the greatest contribution to the models.
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Introduction

Detailed bryofloristic research focused on epiphytic mosses began in Middle Asia in 
2008 by the senior author. Four species new to Tajikistan (Orthotrichum crenulatum, 
O. moravicum, O. sordidum, and O. urnigerum) and five species new to Kyrgyzstan 
(Orthotrichum crenulatum, O. dagestanicum, O. revolutum, O. scanicum, and O. vladi-
kavkanum) were observed [1–9]. Moreover, O. pamiricum, a species new to science, 
was described from the Tajik-Afghan border [10].

Although many important floristic and ecological data from the countries were col-
lected and analyzed, there still exist numerous “white spots” on the map, from which 
bryological data are missing, especially in mountainous areas. This fact led the authors to 
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create a predictive distribution model, primarily for the rare species recently discovered 
in this region. It was subsequently extended to common species, and as such, could 
be easily tested in the field. Predictions of the species’ geographical distribution based 
on available information would be beneficial for future field research [11], and could 
accelerate the discovery of unknown populations and species [12,13].

For this purpose, species distribution models (SDMs) have become a fundamental 
tool, because one potentially significant contribution of these models is to identify areas 
of higher probability of occurrence where future survey expeditions or the conservation 
of target species could be planned [14]. Several alternative methods have been used to 
predict the geographical distributions of species; on a few occasions, these were also used 
to model the distribution of mosses [11,14–18] and in one case, to model Orthotrichum 
species (Orthotrichum rogeri) using multiple logistic regression [19].

The problem with species distribution modeling (SDM) is that, in many cases, methods 
require both presence and absence data, but reliable absence data are rarely available in 
poorly sampled regions or for species that are easily missed during surveys [20], as is the 
case for bryophytes. Modeling is also problematic for species that have few records of 
occurrence. For these cases, maximum entropy modeling (MaxEnt) was ranked among 
the most effective applications for SDM [21]. MaxEnt is a machine-learning method 
[22–24] that uses principles of Bayesian estimation [25], and it calculates a raw prob-
ability value for each pixel of a study region using the maximum likelihood estimation 
method [26–28]. These raw probabilities are scaled to sum to one, and do not represent 
probability of occurrence, but rather an index of relative suitability [29]. Furthermore, 
it would be inappropriate to interpret the modeled distributions as actual borders of 
a species range. Rather, the models identify regions that have similar environmental 
conditions to those where the species currently maintains its populations [20]. It requires 
only species presence data (not absence) and environmental variable (continuous or 
categorical) layers for the study area [30]. A detailed and accessible description of the 
approach was provided by Elith et al. [25].

Studied species

All moss species presented in this article belong to the family Orthotrichaceae. One 
of the largest genera within the family, Orthotrichum, composed of at least 162 species 
[31], has been updated according to a number of sources [10,32–40]. Conversely, the 
genus Nyholmiella includes only two taxa (Nyholmiella gymnostoma and N. obtusifolia) 
[41]. Most are epiphytic mosses, occasionally growing as epiliths [42]. The taxa of these 
genera are widespread throughout the world from the Arctic to the Antarctic, except 
in deserts and wet tropical forests [43].

Study area

Tajikistan and Kyrgyzstan are two countries in Middle Asia. Altogether, they cover an 
area of 341 600 km2 (Tajikistan 143 100 km2, Kyrgyzstan 198 500 km2). They are very 
diverse countries in terms of their topography, mountain relief, climatic conditions, and 
vegetation cover. Their environmental uniqueness includes a great variety of habitats 
suitable for moss species. According to a recently published classification of global 
bioclimates, which mainly took precipitation rates and temperature values into account, 
the study area can be classified as a Mediterranean macrobioclimate [44]. This type of 
climate is characterized by a period of summer drought lasting for at least 2 consecutive 
months, in which P < 2T. As is typical of a Mediterranean climate, the area generally 
receives high levels of solar radiation as well as a low percentage of cloud cover, high-
amplitude annual temperatures, and low humidity and precipitation. These climatic 
and bioclimatic conditions determine the vegetation types and plant communities 
found in study areas where evergreen forests, xerothermophilous swards, and shrubs 
dominate the lowlands and the colline belt.

Tajikistan lies mostly between latitudes 36° and 41° N and longitudes 67° and 75° E. 
It is covered by the mountains of the Pamir range, and more than 50% of the country 
lies at altitudes over 3000 m. The highest summit is Ismoil Somoni Peak at 7495 m. The 
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only major areas of lower lands are in the region of Fergana Valley and in the valleys 
of the southern Kofarnihon and Vakhsh rivers.

Kyrgyzstan lies between latitudes 39° and 44° N, and longitudes 69° and 81° E. The 
mountainous region of the Tian Shan Mountains covers approximately 80% of the 
country, with the remainder made up of valleys and basins. In the northeastern Tian 
Shan Mountains lies Issyk-Kul Lake, the largest lake in Kyrgyzstan. The highest peak 
is Jengish Chokusu Mountain at 7439 m.

Material and methods

Sampling methods

Field research during which epiphytic mosses were collected began in 2008 in Middle 
Asia. Tajikistan was visited twice (2008, 2012). Excursions were always directed into 
different regions, to explore as much of the various biotopes of the country as possible. 
In 2013, two expeditions to Kyrgyzstan were conducted using the same approach.

The mosses were collected from sites of abundance on different trees (they grew 
solitary, in alleys, or in the wood plots along river valleys) distributed across almost the 
entire territory of the countries. For all samples, GPS positions were recorded. Altogether, 
896 samples (Orthotrichum 819 and Nyholmiella 77) were collected and identified by 
the authors. The plant material collected during the field surveys was deposited in the 
Herbarium of the University of Ostrava, Czech Republic (OSTR).

Sampling bias

MaxEnt tends to produce overfitted predictions when using biased occurrence records 
[20] and overfit models are more complex than the true relationships between the 
species niche and the examined environmental variables [45]. However, the problem 
with modeling species distributions is not the spatial bias in itself, but a bias in how 
the available environmental conditions are sampled. Sampling bias causes biased 
estimation of environmental relationships, with suitability being overestimated for 
environments that have been sampled more intensively and underestimated for those 
surveyed less frequently [46]. The most straightforward resolution of this problem is 
to manipulate the occurrence data to remove the bias; for example, by discarding or 
down-weighting records in over-sampled regions [47]. This was also confirmed by 
Fourcade et al. [48] who found that such a systematic sampling (reducing the spatial 
aggregation of records) was the simplest and most obvious way to solve the geographic 
bias. For these reasons, we filtered occurrence records with a linear distance ≤10 km 
to neighboring records using QGIS [49]. This distance was not chosen to approximate 
the species dispersal capabilities, but rather to reduce the inherent geographic biases 
associated with collection data (see Boria et al. [50]). Specifically, we filtered the final 
dataset to obtain the maximum number of samples that were at least 10 km apart (see 
Anderson and Raza [51]). This radius was chosen because of the topographic and 
environmental heterogeneity of this system, following Boria et al. [50], who predicted 
that mountainous regions would require a spatial filter that is smaller than that for 
regions having more homogenous environments.

After filtering occurrence records to reduce the likely effects of spatial autocorrelation 
caused by biased sampling, we had 205 samples (196 samples of the genus Orthotrichum 
and nine samples of the genus Nyholmiella). We also removed all species for which 
the number of samples ≤5 because of their inapplicability in SDM because of the low 
number of occurrences (O. alpestre – four samples, O. dagestanicum – two samples, 
O. scanicum – one sample, O. revolutum – four samples, O. rupestre – one sample, O. 
sordidum – three samples, O. stramineum – two samples, and O. vladikavkanum – one 
sample). After removing these species, we could create SDMs for 10 species of the 
genus Orthotrichum (O. affine, O. anomalum, O. crenulatum, O. cupulatum, O. pallens, 
O. pamiricum, O. pumilum, O. speciosum, O. striatum, and O. urnigerum) and for one 
species of the genus Nyholmiella (N. obtusifolia).
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Environmental variables

For all species, we considered an initial set of 20 environmental variables represent-
ing various candidate predictors that were potentially relevant to the distribution of 
epiphytic bryophytes. In total, 19 environmental variables (Bioclim) were downloaded 
from WorldClim (http://www.worldclim.org/) [52], which is a set of global climate lay-
ers generated through interpolation of climate data from weather stations. These data 
were available at the resolution of 30 arc-seconds (approximately 1-km2 resolution). 
Because we modeled species that were mainly epiphytic, we also included percent tree 
coverage (PTC) global version data in our model, which indicated percent coverage of 
tree canopy (i.e., density of trees on the ground) (http://www.iscgm.org/; Geospatial 
Information Authority of Japan, Chiba University and collaborating organizations). 
These data were based on 2008 MODIS data (Terra and Aqua satellites) available in 
15-arc-second resolutions. PTC data were slightly modified; values representing water 
surface were converted to “no data” values because water surface is uninhabitable for 
the studied species. Furthermore, for MaxEnt analysis, these data have to be clipped and 
resampled to the same extent and resolution as the Bioclim data. We choose the cubic 
resampling method, because it is preferred for continuous data [53]. All environmental 
data were acquired in the WGS84 geographical coordinate system (EPSG:4326). For 
preparing environmental layers, we used functions from the GDAL library [54].

To avoid problems with multicollinearity (highly correlated variables), we selected 
the most meaningful and uncorrelated bioclimatic variables using ENMTools [55,56] 
to calculate Pearson’s correlation coefficients. We used only those bioclimatic variables 
whose correlation coefficient, Pearson’s r, was >0.7 or <−0.7. If variables were correlated 
between annual and one or more limiting variables (extreme events), we chose limiting 
variables for SDMs because they have more biological meaning to the distribution of 
the species [57,58]. In this regard, “annual average” factors, such as average tempera-
ture and precipitation, may have little meaning [59]. This resulted in eight bioclimatic 
variables (Tab. 1).

The remaining set of variables was used to compile MaxEnt models and variables 
with contribution scores <5% were removed. This process was repeated until a set of 
uncorrelated variables with a model contribution >5% remained.

We performed a jackknife analysis to measure the importance of each variable to 
the final distribution models. This analysis provided a heuristic estimate of the relative 
contribution of the environmental variables to the MaxEnt model and it is standard 
output of MaxEnt.

Tab. 1 List of uncorrelated environmental variables used for SDMs*.

Ecological variables used in the analysis

BIO2 Mean Diurnal Range (mean of monthly max temp. − min temp.)

BIO6 Min Temperature of the Coldest Month

BIO7 Temperature Annual Range (max temp. of warmest month − min temp. of coldest month)

BIO13 Precipitation of the Wettest Month

BIO14 Precipitation of the Driest Month

BIO15 Precipitation Seasonality (coefficient of variation)

BIO18 Precipitation of the Warmest Quarter

PTC Percent Tree Coverage

* SDMs – species distribution models.

http://www.worldclim.org/
http://www.iscgm.org/
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Background area

Appropriate selection of background locations is essential for presence-only SDM [60], 
and recent studies have shown that the extent of the study area has a strong effect on 
the parameterization and evaluation of the resulting models [61–63]. Studies have also 
highlighted several methods for selection of background points (see van der Wal et al. 
[64]). For our study, we based the extent of the geographic region in which background 
points were taken on dispersal capacity and history of the species (see Acevedo et al. 
[62]) using buffers around presence points.

Spore dispersal patterns of bryophytes show a leptokurtic distribution [65,66] and 
density of falling spores is higher near the source with decreasing density in scales 
ranging from several dozens of meters [67] to several hundreds of kilometers [68], 
with significant number of spores travelling longer distances [69–72]. However, the 
typical effective dispersal for most colonizing bryophytes is in the tens of kilometers 
[73–75], and approximately 1% of the spore rain at the regional scale is assumed to 
have trans- or intercontinental origin [68].

We also assumed, with high probability (because of the long evolutionary history of 
bryophytes), that the genus Orthotrichum has had a long-term presence in the studied 
area. This means that a single generation’s maximum dispersal distance will underestimate 
its maximum dispersal “reach” in the sense that the species may have had the potential 
to move out several-fold more than the basic, individual dispersal distance [61].

Based on previous information and because when seeking to identify unsurveyed 
sites for new survey efforts, it is better to use background points that are more likely 
to be true absences (outside the suitable area of the species and not too close to a pres-
ence point) [63], we used 200-km buffers around presence points for SDMs. This area 
seemed reasonable for background selection because it did not include large regions 
that the species did not inhabit, or areas too close to presence points. Models were 
then reprojected on the area of Tajikistan and Kyrgyzstan using MaxEnt software for 
species habitat modeling version 3.3.3k (http://biodiversityinformatics.amnh.org/
open_source/maxent/).

In cases of spatial or temporal transfer, it is necessary to examine maps that indicate 
the degree of clamping [76]. “Clamping” indicates where the prediction is most af-
fected by variables outside of their training range, while projecting the model onto the 
environmental variables in a newly projected area [23] to determine the effect (if any) 
that it had on model predictions; we did this by inspection. For all species, the effect 
of clamping was negligible.

Background points

MaxEnt takes a sample of 10 000 pixels from the study region used in model calibration 
to characterize the “background” of environments available to the species [29] and 
estimate habitat preferences by comparing the environmental characteristics at sites 
where the species has been recorded with those throughout the region modeled [46]. 
For the MaxEnt technique, Phillips and Dudík [24] found that predictive accuracy 
was higher with approximately 10 000 background pseudo-absences. Accordingly, we 
included 10 000 random background points identified from a circular 200-km buffer 
area around each presence point.

Feature class and regularization

In MaxEnt, several settings affect model accuracy by determining the type and com-
plexity of dependencies on the environment that MaxEnt tries to fit. The complexity 
of dependencies is controlled by the choice of feature types, and by settings called 
“regularization parameters” [24]. MaxEnt selects default settings for feature classes, 
called “auto features”, which applies the appropriate class or classes estimated for 
the particular sample size of occurrence records, according to the extensive tuning 
experiment of Phillips and Dudík [24]. In our models, the selection of “features” was 

http://biodiversityinformatics.amnh.org/open_source/maxent/
http://biodiversityinformatics.amnh.org/open_source/maxent/
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conducted automatically and for regularization, multipliers (that affect how focused 
or closely fitted the output distribution will be) were selected from a range of β values 
from 0.5 to 6 in increments of 0.5.

Model evaluation

For species with ≤20 samples. Because some species had only a very few occurrence 
records, we followed Pearson et al. [20] and used the “n − 1 jackknife” or “leave-one-
out-jackknife” approach suggested for model evaluation with few samples. To aid in 
model validation and interpretation, tests required the use of a threshold value above 
which model output would be considered a prediction of presence defined as “suit-
able” and “unsuitable” areas [20]. Choice of a decision threshold was influenced by 
the application of the model, which should guide future fieldwork toward identifica-
tion of unknown distributional areas and undiscovered species. Because of this, we 
did not need excessively conservative predictions, and we used the “lowest presence 
threshold” (LPT; Pearson et al. [20]) to convert continuous models to binary predic-
tions for calculating threshold-dependent omission rate (OR). LPT can be interpreted 
ecologically as identifying pixels predicted as being at least as suitable as those where 
a species’ presence has been recorded [20]. High-quality models should have zero or 
low omission of evaluation localities and predict evaluation localities statistically better 
than a random prediction [29]. This approach may be useful for higher sample sizes 
(up to approximately 25 records) [21], but herein we employed it for species with ≤20 
records.

For validation, we used the secondary criterion. The area under curve (AUC) was 
calculated from the receiver operating characteristics curve (ROC). The AUC calculated 
from background evaluation data represented a threshold-independent measure of a 
model’s discriminatory ability [23]. An AUC with high values referred to good results 
that significantly differed from random predictions [77]. Categories of AUC scores were 
invalid (<0.6), poor (0.6–0.7), fair (0.7–0.8), good (0.8–0.9), and excellent (0.9–1.0) 
[78,79]. We extracted evaluation OR and AUC values from the MaxEnt output for 
each jackknife iteration and averaged them to determine the final score. The logistic 
output was used for all visualizations. For every species, we chose the model with the 
lowest OR score, similar to the first criterion, or with the highest AUC score, similar 
to the secondary criterion, with the latter becoming necessary because of the same OR 
score for multiple models.

For species with >20 samples. To test the performance of the model independent of 
the data used to build it, we divided the occurrence data into training data (75% of oc-
currence point data used for model prediction) and test data (25% of occurrence point 
data used for model validation). We evaluated the resulting model using the ROC to 
calculate the AUC. High-value AUCs referred to good results that significantly differed 
from random predictions [77]. This operation was repeated 50 times and the AUC value 
averaged. The logistic output was used for all visualizations. From all models for every 
species, we chose the model with the highest AUC score.

If the AUC score for modeled species (any number of samples) did not reach an AUC 
score of at least 0.7 (fair), we did not include the results in our study. This applied to 
the following species: Nyholmiella obtusifolia (AUC = 0.3877), Orthotrichum striatum 
(AUC = 0.5867), and O. urnigerum (AUC = 0.6691).

Results

For all species used for modeling with an AUC score ≥0.7, we provide the basic char-
acteristics of the models in Tab. 2. We also provide geographic maps of the models 
identifying regions that have similar environmental conditions to where the species 
currently maintains populations in Fig. 1.

The environmental variable with the highest relative contribution to the MaxEnt 
model was BIO6, with total percent contribution to all final models being 22.5%, which 
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was also the highest contribution score for models for two species (O. anomalum and 
O. crenulatum) and second highest contribution score for models of another four spe-
cies (O. affine, O. cupulatum, O. pallens, and O. pumilum). The second highest relative 
contribution score among all models was BIO13 with a total score of 18.8%, which also 
had the highest contribution score for models of two species (O. affine and O. pallens). 
Next, the variable with the highest relative contribution score among all models was 
BIO2 with a contribution score of 16.8%, which also had the highest contribution 
score for the models of two species (O. pamiricum and O. speciosum) and the second 
highest for another (O. crenulatum). The following is the order of variables in terms of 
relative contribution: PTC 11.9%, which was the second most important factor for O. 
pamiricum; BIO18 10.1%, which was the most important variable for O. pumilum and 
the second most important for O. anomalum; BIO7 with 9.7%, which was the second 
most important variable for O. speciosum; BIO14 8.9%, which was the most important 
variable for O. cupulatum; and BIO15 with 1%.

Based on the jackknife test of variable importance, the environmental variable with 
highest gain when used in isolation (had the most useful information by itself) was BIO6 
(for O. anomalum, O. crenulatum, O. pallens, and O pumilum), BIO2 (O. pamiricum 
and O. speciosum), BIO13 (O. affine), and BIO14 (O. cupulatum). The environmental 
variable that decreased the gain the most when it was omitted (had the most informa-
tion that was not present in other variables) was BIO18 (O. anomalum, O. crenulatum, 
O. pumilum, and O. speciosum), BIO13 (O. affine, O. cupulatum, and O. pallens), and 
BIO2 (O. pamiricum).

The best model from species with >20 samples was the model for O. anomalum with 
an AUC score of 0.9236. The best model from species with ≤20 samples was the model 
for O. pallens with OR = 0.0769 and AUC = 0.7928.

All models had the same basic characteristics, but we observed some differences 
among them. The model for O. affine had the highest values in the center of the western 
part of Tajikistan. The model for O. anomalum had the highest values in northeastern 
and southeastern areas of Issyk-Kull Lake, around the Toktogul Reservoir near Bish-
kek City, and near the confluence of the Vakhsh and Obikhingou rivers. The model 
for O. crenulatum clearly showed highest values in areas in the northeastern part of 
Kyrgyzstan and in the eastern parts of Issyk-Kull Lake. The model for O. cupulatum 
reached highest values in the center of the western part of Tajikistan. The model for O. 
pamiricum was influenced by the low number of samples, but we observed high values 
in the southwestern region of Tajikistan along its borders with Afghanistan and near 
Arslanbob town in Kyrgyzstan. The model for O. pumilum showed the highest values 
around the Toktogul Reservoir, in southwestern Kyrgyzstan near its borders with 
Uzbekistan, and in the areas northeast of Issyk-Kull Lake. The model for O. speciosum 
reached the highest values around Dushanbe City, in areas around the confluence of 
the Vakhsh and Obikhingou rivers, and east of Issyk-Kull Lake.

Discussion

Bryophytes are very sensitive to microclimatic changes [80,81], and ecological condi-
tions needed for most mosses are likely to be microenvironmental [82], but on coarser 
spatial and temporal scales, other drivers are crucial to the composition of epiphytic 
communities, including macroclimatic conditions [82,83].

As we mentioned, similar research focused on species distribution modeling within 
the genus Orthotrichum was already realized [19]. However, in the case of O. rogeri, 
multiple logistic regression was used by the authors and both types of the data, presence 
and absence, were required. Because we had only presence data available, MaxEnt was 
used for all models. However, we also decided to use MaxEnt because (i) it appears 
preferable for its efficiency of prediction over wider geographical areas, (ii) it requires 
only presence data, (iii) it requires fewer, easily obtainable environmental variables, 
which has been confirmed by previous studies [84].

In our study, we used three variables connected with temperature (BIO2, BIO6, and 
BIO7) and four with precipitation (BIO13, BIO14, BIO15, and BIO18). We also used 
the PTC (percentage of tree coverage) as a factor. The reason was that some of these 
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Fig. 1 Geographic map identifying regions that have similar environmental conditions to currently known populations 
visualized on a scale from 0 to 1 for the area of Tajikistan and Kyrgyzstan with displayed collection points. a Orthotrichum 
affine. b O. anomalum. c O. crenulatum. d O. cupulatum. e O. pallens. f O. pamiricum. g O. pumilum. h O. speciosum.
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epiphytic species also grew saxicolously (less than 5% of all the recorded populations). 
That is why the samples were always biased between saxicolous and epiphytic data, and 
between presence and absence of trees. By analyzing data in this manner, we proved 
that “tree cover” is one of the most crucial factors influencing the occurrence of the 
studied species. It is important not only as a substrate, but also as a barrier to the spread 
of spores, source of shading, and creator of microclimate conditions, among other fac-
tors. Furthermore, this layer will also be important when we model the distribution of 
saxicolous or terrestrial species. It can also be interpreted as a factor marking the tree 
line in these mountainous countries. Because all species that exhibited correlations with 
higher values of the PTC factor had distributions below the tree line, we can assume 
that above this line their occurrence rapidly declines. Based on field research, we also 
know that epiphytic species within the Orthotrichum genus grow only sporadically 
above the tree line.

The most important factor for almost every species was minimum temperature in the 
coldest month. This variable acted as a limiting factor and in combination with other 
factors influenced the occurrence of almost every modeled species. Essentially, most of 
the species can be divided into two groups: the first group consists of species that are 
most influenced by a combination of minimal temperature of the coldest month and 
precipitation during the wettest month (O. affine, O. pallens), and the second group 
consists of species dependent on the combination of minimal temperature in the cold-
est month, mean diurnal range, annual temperature range, and precipitation during 
the warmest quarter (O. anomalum, O. crenulatum, O. pumilum, and O. speciosum). 
The species O. cupulatum did not fit in either of these groups, but had something in 
common with the first group (dependence on minimum temperature and precipitation 
during the wettest month). The last species, which did not fit into either group, was O. 
pamiricum, which exhibited dependence on mean diurnal range and tree cover. Spe-
cies in the first group were dependent on higher values of precipitation in the wettest 
month, and only minimally dependent on other temperature variables (mean diurnal 
range and annual temperature range). This may be because the wettest month in the 
study area is during the spring, which means that precipitation is mostly snow. Snow 
can function as isolation from the surrounding environment, and thus makes these 
species more resistant to temperature ranges.

Species in the second group, which exhibited minimal dependence on snowfall, were 
more connected with variables associated with the range of temperatures. These two 
factors had opposite effects. Higher values for mean diurnal range reflected positively 
on the probability of occurrence, which could reflect their tolerance to short-term 
fluctuations. Higher values of annual temperature range over the year led to lower 
probabilities of occurrence. This could indicate a limitation because of the temperature 
range. Another interesting feature in the second group is the dependence on rainfall in 
the driest quarter of the year. The higher values are for rainfall, the higher is their prob-
ability of occurrence, which indicates a connection with drying and their dependence 
on water availability.

The most important factor for O. cupulatum was precipitation during the driest 
month. In this case, higher values of rainfall in the driest month were related with 
higher altitudes where rainfall occurs even during the driest periods of the year. The 
probability of occurrence decreased with higher values of this variable, and as such, 
this could indicate a greater adaptation to desiccation and ability to survive prolonged 
periods of drought. This may be explained by the fact that O. cupulatum is largely 
adapted to an epixylic life strategy and these extreme conditions.

The species O. pamiricum was the last of the studied species, and it showed a different 
dependence on factors than did the others. It was mainly dependent on the variance of 
monthly temperatures and higher percentage of tree cover, which points to continuous 
forest vegetation at lower elevations.

A total of 896 moss specimens from Tajikistan and Kyrgyzstan were collected, but 
only 205 samples could be used for the purposes of modeling because of sampling bias. 
The significant difference between collected samples and samples used for modeling 
resulted from the need to collect as much material as possible for later determination 
in the laboratory. Even if samples were biased because of higher collection effort, this 
collection effort occurred because of the impossibility of determination of species in the 
field and the need for enough material for later determination. In addition, although 
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we discovered 18 species of the genus Orthotrichum and one species of the genus Ny-
holmiella, we could use only 11 species for modeling and only eight final models were 
of sufficient quality to use in our study.

Final models can contribute to our understanding of the ecological requirements 
of species. All our models were based on percent tree cover and seven uncorrelated 
climatic factors, from which a set of variables that all had a model contribution >5% 
were chosen for the final models. Results showed different preferences among species, 
but for most species, their requirements reflected reliance on higher minimum tem-
peratures and mean diurnal range, which are both higher in the lower-situated areas. 
As such, the models reached higher values in the lowlands and in western Tajikistan, 
where greater precipitation was observed in the wettest month. However, there were 
exceptions, for example, the model for O. cupulatum showed a greater dependence 
on precipitation during the driest month. At higher values of this variable, there were 
lower values in the model. This was probably connected with higher precipitation in 
the mountains in the dry month, which favored the areas with lower precipitation in 
the lower-lying areas.

As we can see, some species (usually with higher number of analyzed localities), 
have more exact maps (with stronger contrast) than those with fewer localities. This 
can be explained by the fact that with increasing numbers of the analyzed samples, the 
number of the degrees of freedom also increases. Therefore, the number of solutions 
also exhibit accretion and maps with more samples have greater contrast.

For bryologists, it is often not possible to examine the entire area of interest. Ad-
ditionally, field research in unexplored areas of the world is usually associated with 
substantial financial costs, as well as substantial time consumption. In this regard, the 
SDMs could help to focus efforts in areas that could provide a larger number of suitable 
sites for studied species.

Based on our results and relatively high AUC and low OR scores, we can assume 
that our models reflect the real situation in the studied countries, but in the future, it 
would be appropriate to test the models directly in the field, because such research could 
improve the validity and precision of predicted distributions of the genus Orthotrichum. 
Until then, the models can serve as a guide to future survey expeditions, and an aid in 
the conservation of the target species and understanding of their ecology.
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