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Abstract
In recent years, several studies have focused on the factors and mechanisms that 
regulate plant growth and development, as well as the functioning of signaling 
pathways in plant cells, unraveling the involvement of sugars in the processes 
regulating such growth and development. Saccharides play an important role in 
the life of plants: they are structural and storage substances, respiratory substrates, 
and intermediate metabolites of many biochemical processes. Sucrose is the major 
transport form of assimilates in plants. Sugars can also play an important role in 
the defense reactions of plants. However, it has been shown that glucose, sucrose, 
or trehalose-6-phosphate (Tre6P) can regulate a number of growth and metabolic 
processes, acting independently of the basal functions; they can also act as signaling 
molecules. Changes in the concentration, qualitative composition, and transport of 
sugars occur continuously in plant tissues, during the day and night, as well as dur-
ing subsequent developmental stages. Plants have developed an efficient system of 
perception and transmission of signals induced by lower or higher sugar availability. 
Changes in their concentration affect cell division, germination, vegetative growth, 
flowering, and aging processes, often independently of the metabolic functions. 
Currently, the mechanisms of growth regulation in plants, dependent on the access 
to sugars, are being increasingly recognized. The plant growth stimulating system 
includes hexokinase (as a glucose sensor), trehalose-6-phosphate, and TOR protein 
kinase; the lack of Tre6P or TOR kinase inhibits the growth of plants and their transi-
tion to the generative phase. It is believed that the plant growth inhibition system 
consists of SnRK1 protein kinases and C/S1 bZIP transcription factors. The signal 
transduction routes induced by sugars interact with other pathways in plant tissues 
(for example, hormonal pathways) creating a complex communication and signal-
ing network in plants that precisely controls plant growth and development.
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Introduction

The growth and development of plants is regulated by various factors at different levels. 
Much research has been recently devoted to deciphering the mechanisms of growth, 
developmental regulation, and interactions between different signaling pathways in 
plant cells [1–8]. One of the most interesting aspects has been the demonstration of 
the regulatory function of sugars – molecules known for a long time to be involved 
in basal cell metabolism, and which are substrates or products of numerous chemical 
reactions.

The saccharides in plant tissues are primarily produced from triose-phosphates 
formed during photosynthesis occurring in leaves. Sucrose and starch, the final prod-
ucts of photosynthesis, can be temporarily stored in leaves, but most of the sucrose 
pool is transported to the acceptor tissues that do not produce this sugar [9–11]. The 
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basal functions of saccharides in plant tissues are well known. Sugars play structural 
roles and are substrates in respiratory reactions or intermediate metabolites in many 
other biochemical processes. They can be transported over long distances and are often 
storage substances [9–14]. Sugars can also play a protective role against stress factors, 
for example, as osmoprotectants, donors of carbon skeletons, or signaling molecules 
in the regulation of many defensive reactions [10–15]. Changes in sugar concentra-
tions, their qualitative composition, and transport occur in plant tissues throughout 
the day and night, as well as during successive developmental stages [7,12,14]. The 
assimilation of starch in leaves is most often observed at the end of the light period in 
the form of starch grains [14]. The shoot and root apical meristems and flower buds 
have increased sugar demand, followed by that of the developing fruits and seeds 
[2,9,10]. Sugar accumulation is also observed under cold stress, drought, phosphorus 
deficiency, or pathogen attack [10,11,13,15]. In contrast, lower sugar levels in tissues 
are often recorded under reduced oxygen conditions [10,12]. It has been proven that 
sugars induce several mechanisms in the host plants during pathogen attack [15–18]; 
for example, oligosaccharides secreted from cell walls are the signals that induce plant 
defense mechanisms and regulate the expression of “defense genes”. Recent research 
has shown that sugars can regulate a number of growth, developmental, and metabolic 
processes, acting independently of the basal functions. Sugars, in millimolar concentra-
tions, regulate certain stages of the cell cycle, cell differentiation, vegetative growth, organ 

formation, flowering, fruit formation, and senescence 
[2,4–8]. Plants, by monitoring the sugar levels in tis-
sues, have developed efficient systems for perception 
and transmission of signals caused by lower or higher 
sugar availability [4,5,7,8]. Sugars induce appropriate 
reactions at the cellular level, because of their function-
ing, and affect the expression of numerous genes, as 
well as metabolic and growth processes. This has been 
presented in detail in many previous experimental and 
review articles (e.g., [18–25]).

Sugars can act as signaling molecules; as chemical 
stimuli they are received by receptors, and the signal is 
then transferred by specific transmitters, eliciting the 
proper response of the plant (at the cellular level) (Fig. 1). 
Different sugars can serve as signaling and regulatory 
molecules but the effects of glucose, sucrose, trehalose, 
and some phosphates (Tre6P) have mostly been studied 
[4,6,15,21,22,24,25]. The experimental works that indi-
cated the regulatory or signaling functions of sugars in 
plants began to appear in the 1990s (e.g., [26,27]). The 
signaling and regulatory functions of sugars are exten-
sively documented (viz., in [7,10,15,20,22,24,28–31]). 
However, despite many advanced studies, the basis of 
plant response mechanisms and the functioning of 
signaling pathways (and their possible interactions) 
are awaiting clarification. The purpose of this article is 
to review the current reports on the regulatory role of 
sugars and to select data concerning the regulation of 
various stages of plant growth in terms of information 
that would be most useful to botanists. Some of the 
previously known and extensively described control 
mechanisms have been included only as outlines.

Growth and metabolic processes 
regulated in plants by sugars

Even small changes in sugar concentrations can affect 
seed germination and the growth of plant seedlings 

Fig. 1 Schematic diagram of sugar signals, receptors, and signal 
transmitting system operative in a typical plant cell. AUX – auxin; 
BR – brassinosteroid; ET – ethylene; FINS1 – putative fructose 
sensor; Fru – fructose; Glu – glucose; HXK1 – glucose receptor; 
JA – jasmonic acid; KIN10/KIN11 – subunits of SnRK1 – sucrose-
nonfermentation-related protein kinase1; C/S1 bZIPs – group C/
S1 basic leucine zipper transcription factors; RGS1 – regulator of 
G-protein signaling1 – glucose sensor; Suc – sucrose; SUT2 – su-
crose transporter-like protein – putative sucrose sensor; Tre-6-P 
– trehalose-6-phosphate; TOR kinase – target of rapamycin kinase.
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[32–37]. It was found that the presence of glucose in the medium (6% and higher) 
significantly reduced seed germination and the development of Arabidopsis thaliana 
seedlings, regardless of the changes in osmotic potential (because the same concentra-
tions of mannitol did not affect germination) [6,32,36,37]. Mannose and fructose had 
similar inhibitory effects on the germination and growth of seedlings [36–38]. Another 
example of the independent interaction of sugars was the inhibitory effect of glucose 
(25 mM) that reduced the synthesis of the starch degrading enzyme, α-amylase, in the 
germinating seeds [36,37]. During the next decades, considerable progress was made in 
understanding the molecular basis of the influence of sugars on germination and early 
seedling growth [6,8,23,34,35]. Recently, it was also demonstrated that sugars could act 
as signals that differentially regulate the process of pollen germination in Arabidopsis, 
depending on their structural properties [39].

Sugars affect the growth, development, and metabolism of leaves, shoots, roots, and 
other plant organs [2,3,5,6,30,36,37]. In leaves, changes in glucose or sucrose levels 
mainly affect photosynthesis intensity and export of assimilates (high sugar levels often 
decrease photosynthesis rate), whereas changes in transport and sugar concentrations 
in roots mainly affect respiratory metabolism and storage [9,28,29]. Depending on 
other factors, high sugar levels can stimulate the development of leaves (e.g., at optimal 
nitrogen nutrition) or limit their development (see [36] and studies cited therein). 
Additionally, the administration of sucrose to leaves affected the morphology, size, 
and number of chloroplasts in A. thaliana rosette leaf cells; for example, smaller and 
irregular plastids were observed in the mesophyll cells. The results indicated the role 
of chloroplasts in the regulation of the increase in leaf area, depending on the access 
to sugars [40]. The effects of sugars on plant aquaporins (and water conductance) have 
recently been examined; it was observed that glucose reduces the movement of water 
from the xylem to the mesophyll [41], which could also affect leaf growth. It has also 
been shown that sugars (such as, glucose and sucrose) can affect the movement of cellular 
organelles, including chloroplasts [42,43]. Trehalose (at a concentration about 25 mM) 
inhibited root elongation in A. thaliana seedlings, whereas sucrose did not affect this 
process [44]. Trehalose-6-phosphate (Tre6P) appeared to be essential for the growth 
of A. thaliana, in a study on transgenic plants overexpressing the enzymes involved 
in trehalose metabolism [44,45]. It was also found that, under stress conditions, the 
application of glucose stimulated the shoot growth that was restricted by stress [12]. 
However, under some conditions (for example, low temperature and nutrient deficiency), 
the growth of plants is limited, despite abundant sugar availability [46]. A few novel 
studies indicated that sugars are components of the signaling pathways in leaves that 
mediate changes in vegetative phases (via miR156 decrease) [47,48]. The progress in 
understanding the mechanisms responsible for the transition from the juvenile to the 
adult stage, as well as the basis of developmental transitions to the next phases in a 
plant’s life have been previously summarized [48].

Recent studies have indicated the involvement of sugars and their transport as the 
determinants of lateral shoot development, after the removal of the main shoot [49,50]. 
Apical dominance is conditioned by the transport of auxins from the production site, 
the apical meristem of the main shoot, downstream, to the root [51]. However, it ap-
peared that changes in the transport of sucrose to the lateral buds of pea, as well as 
changes in its content, occurred significantly earlier (4–6 h), before the change in auxin 
concentration (recorded after about 24 h) [49]. The authors of this study also demon-
strated that apical dominance is a result of the increased demand of the main shoot 
for sugars, which limits the availability of sugars for lateral shoot development. BRC1 
(BRANCHED1) is a key transcription factor involved in inhibiting the development 
of lateral shoots; its expression is dependent on cytokines and strigolactones. It was 
shown that exogenous sucrose resulted in the inhibition of BRC1 expression, similar 
to that observed after the decapitation of shoot apex, indicating a key role of sugars in 
the branching of shoots [49].

Efficient transport of assimilates (sugars) from their production sites (leaves) to the 
sites of their use (acceptors) is crucial for proper plant growth in all stages of develop-
ment. Sucrose (and/or raffinose, stachyose) is mainly transported through phloem to 
farther distances [52]. Some reports indicated that plants from the Ranunculaceae and 
Papaveraceae families could also transport glucose through phloem (about 80% of all 
sugars in the phloem) [53]. However, other reports support the previous opinion that 
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sucrose is a ubiquitous transport sugar, and hexoses are usually absent in the phloem 
stream [54]. Recently, new membrane transporters of sugar, named SWEET (sugars will 
eventually be exported transporters), have been discovered, which, among others, are 
involved in the process of phloem loading, together with H+/sucrose symporter [55,56]. 
It was shown that AtSWEET4 overexpression increased the size of A. thaliana rosette 
leaves. In contrast, knock-down of AtSWEET4 (by RNAi) reduced plant growth and 
decreased chlorophyll content in the leaves [56]. Sugars (sucrose) have been found to 
affect the activity (and expression) of both the sucrose transporters, which are essential 
for the efficient transport of sugar over long distances. Sugars, as assimilates, are necessary 
for the initiation of flowering in plants [31,57,58]; however, recent studies have shown 
the regulatory role of sucrose, along with miRNA156 and Tre6P, in the regulation of 
the flowering process [24,59]. For example, the delivery of sucrose to the A. thaliana 
mutant, phyA, characterized by late flowering, accelerated the formation and flowering 
of the inflorescence stem [58]. As was recently reported, the crosstalk between sugar 
signaling and photoreceptors (as well as hormones) is required for proper transmission 
of the flowering signal [31,57].

Sugars also affect the senescence of plants. Published data indicate that senescence 
can be induced by sugar deficit or excess [60–62]. It was previously shown that glucose 
(and fructose) was accumulated and the SAG12 (SENESCENCE-ASSOCIATED GENE12) 
senescence marker was strongly induced in A. thaliana leaves during senescence (yel-
lowing). Moreover, the senescence-accelerating effect of glucose was also stimulated 
under reduced nitrogen nutrition of plants [61]. The gin2 mutant (with reduced glucose 
sensitivity), in turn, did not accumulate hexoses and the senescence was delayed, 
indicating a relationship of senescence with sugar sensitivity [63]. The senescence of 
leaves is affected by different environmental factors, including nutrients, light, and 
abiotic and biotic stresses, which often influence photosynthesis, sugar accumulation, 
and signaling [62]. Hormones and sugars also participate in a complex signal transduc-
tion system operating in the process of reproductive organ abscission in response to 
environmental stress [64].

Sugars can affect cell division and cell cycle stages, which might be essential for the 
regulation of plant growth processes. Sucrose deficit leads to the induction of PCP1 and 
PCP2 (principal control point 1/2) checkpoints that block the cell cycle in the G1 and G2 
phases [21,65,66]. Cell cycle arrest is a reversible process. Sucrose activates replication 
and mitotic activity (with some delay), which can be modulated by growth regulators 
(such as, cytokinins or auxins) [66]. Recent studies have shown that sugars regulate the 
expression of CYCD (D-type cyclins, associated with CDKA, A-type cyclin-dependent 
kinase) during G1 interphase [67]. In addition, the presence of sugars activates the TOR 
protein kinase, which couples the phosphate residue to S6K (ribosomal S6 kinase), 
thereby affecting cell growth [67]. The activated S6K affects the CDKA–CYCD and 
RBR1–E2FB complexes (retinoblastoma-related 1 eukaryotic transcription factor 2B) 
during the S phase, resulting in elongated cell growth [66–68].

The regulation of growth and metabolic processes with the participation of sugars is 
most often triggered by changes in gene expression (Fig. 1). Changes in sugar concen-
trations in plant tissues affect the expression of nuclear and plastid genes, although the 
latter generally react to sugars quite slowly [10,29,36]. Studies using DNA microarrays 
demonstrated both the stimulation and inhibition of several hundred different genes in 
response to exogenously administered glucose and sucrose, or sugar depletion, includ-
ing regulation of transcription factors [20,22,29,46,69]. Glucose-regulated genes are 
involved in all the metabolic and growth processes, and in responses to stress factors 
[23]. Sucrose and glucose often stimulate the expression of the same genes; for example, 
the expression of the sucrose synthase gene is induced both by glucose and sucrose 
(especially at higher concentrations). UDP-glucose pyrophosphorylase genes in turn 
are stimulated mainly by sucrose [70,71]. Recent studies have demonstrated that under 
reduced UDP-glucose content, the abnormal growth of vegetative and reproductive 
organs of plants occurred, which could be reversed by providing UDP-glucose. The 
function of UDP-glucose as a signaling molecule was suggested [72]. It is character-
istic that genes encoding the enzymes in the sucrose metabolism are involved in the 
production of sugar signaling factors, and at the same time they are themselves subject 
to sugar level-dependent control [10]. The regulation of gene expression by sugars 
can occur at the transcription level, through posttranscriptional modifications, at the 
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translational level (for example, the control of bZIP S transcription factor synthesis by 
sucrose), or by post-translational regulation [4,23,24,28,30]. The influence of sugars 
on the expression of genes (including those controlling the growth processes) is often 
modified by environmental factors, such as changes in the intensity of irradiation or 
in the access to minerals. The sugars accumulated under drought or cold mainly play 
the role of osmoregulators and cryoprotectans, but also as a stored source of carbon for 
later use (when the stress factor ceases to exist); they can also act as regulators modulat-
ing plant growth under new conditions [10,12,15,17,18,69]. Soluble sugars (such as, 
disaccharides, raffinose family oligosaccharides, and fructans) are strongly related to 
the accumulation of reactive oxygen species under stress conditions. Thus, nowadays, 
some studies have been focused on the role of sugars as scavengers of reactive oxygen 
species [73]. The regulatory role of sugars during plant development also results from 
the connections of sugar signaling pathways with other routes, including hormonal 
pathways, as described in the following subsection, and with nitrogen metabolism 
[34,37,57,63,74].

“Sugar mutants”, especially of A. thaliana, were helpful in explaining the mechanisms of 
the regulation of gene expression and growth and metabolic processes [28,29,33,36,63,74]. 
The following strategies were used in order to select the appropriate mutants: (i) if high 
sugar concentrations in the medium inhibited germination and seedling development, 
then the seedlings showing development were nonsusceptible to sugars (for example, 
gin – glucose insensitive, rsr – reduced sugar response, sis – sucrose insensitive, or mig – 
mannose insensitive germination); (ii) seeds incapable of germinating (and growing) on 
media containing sugar concentrations that did not inhibit the development of other 
plants were mutants that were excessively sensitive to sugars (for example, gss – glucose 
super sensitive, sss – sucrose super sensitive, or hsr – high sugar-response). During the 
last decades, a huge progress has been made in understanding the physiological roles 
of sugar-metabolizing enzymes or sugar transporters, mainly by using transgenic/
mutational approaches [2,9,18,55,56,75,76]. The use of novel mutants (and transgenic 
plants) that specifically react to different sugars, as well as hormonal mutants, will cer-
tainly be helpful in subsequent studies on the regulatory role of sugars throughout plant 
development and in the elucidation of crosstalk with other signaling pathways.

Receiving and transmitting the signals triggered by sugars

Stimuli are received by extracellular or intracellular receptors and the signal (after 
transformation) is further transmitted through specific transporters, including protein 
kinases/phosphatases. The perception of the signal induced by sugars can involve mem-
brane specific sugar sensors, sugar transporters or their analogs, or receptors within 
the cells (Fig. 1). Arabidopsis thaliana hexokinase1 (AtHXK1) is the best characterized 
intracellular sugar receptor [23,26,63,77,78]. The AtHXK1 analogs, OsHXK5 and 
OsHXK6 [79] or OsHXK7 [80], are present in rice, and their roles in sugar signaling 
and metabolism have been reported. In addition, the hexokinase analog, AtHKL1 
(hexokinase-like1 protein), can act as a growth regulator and a factor that integrates 
sugar signaling pathways with hormonal routes [81,82]. Hexokinase (EC 2.7.1.1; HXK) 
was previously considered a typical cytosolic enzyme, linked to the glycolysis process. 
Over the past decade, studies have shown that, in addition to the cytosolic fraction, there 
are isoforms associated with mitochondria, chloroplast, and cell membrane, and a small 
fraction is also located in the nucleus [77,81–83]. The diverse cellular localization of this 
enzyme strongly indicates other functions of HXK than its involvement in glycolysis 
only [82]. Initially, the participation of HXK in sugar perception and signal transduc-
tion was studied by introducing phosphorylated (by HXK) and nonphosphorylated 
sugar analogs and HXK activity inhibitors, and subsequently by making use of AtHXK1 
overexpressing transgenic plants also, predominantly Arabidopsis, or plants in which 
this gene was expressed in an antisense orientation [26,29,36]. The catalytic functions 
and roles of HXK as an intracellular glucose sensor were successfully distinguished 
using gin2-1 HXK mutants, and transgenic plants constructed from these mutants 
[63]. The gin2-1 mutation (nonsense mutation on chromosome IV in the HXK1 cod-
ing region) manifests partial loss of function, i.e., reduced activity and protein level of 
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HXK1 [63]. The effect of mutation on the phenotype of Arabidopsis plants was visible, 
especially when the plants were exposed to elevated radiation conditions. Under these 
conditions, the growth of the rosette and the leaf area was reduced, the flowering was 
delayed, and inflorescence stem was small [63]. Transgenic plants (S177A and G104D) 
constructed on the basis of gin2-1, were characterized by reduced protein levels and 
hexokinase enzyme activity. However, they exhibited signaling functions manifested as 
the repression of genes encoding photosynthetic proteins under the influence of glucose 
[63]. Many pathways of sugar perception and signal transduction involving HXK are 
currently known; they, for example, result in repression of certain photosynthetic genes 
(CAB, RBCS), affect stomatal closure, induce sucrose metabolism and anthocyanin 
accumulation, affect the growth processes, senescence, and developmental transitions 
[23,28,29,83,84]. A study by Cho et al. [77] explained the mechanism of hexokinase1 
action, as a sensor. HXK1, as part of a specific protein complex located in cell nucleus, 
may directly affect gene expression. VHA-B1 (vacuolar H+-ATPase B1) protein and 
RPT5B (regulatory particle of proteasome subunit 19S), and transcription factors co-
operate with HXK1 [77]. A recent structural study provided an explanation for the dual 
functions of HXK1; experiments with two catalytically inactive mutants of AtHXK1 
revealed a domain rearrangement in HXK1 upon glucose binding and showed similar 
glucose-binding interactions as in the wild type plants [78].

The perception of the signal induced by altered sugar availability might also occur 
independently of hexokinase. Sugar transporter proteins or their analogs, such as 
glucose or sucrose transporters (or SUT2 – sucrose transporter-like protein) located 
in the plasmalemma might function as membrane sensors (Fig. 1). G-protein coupled 
receptors could also act as sugar sensors [28,29,85]. G proteins (or their analogs) were 
previously implicated in the sugar signal transduction pathways in plants [28,85,86], 
mostly independently of the HXK-mediated pathway. In addition, a model of RGS1 
(regulator of G-protein signaling 1) regulatory protein action was presented as a glucose 
receptor located in the plasmalemma [86,87]. The mechanism of action of RGS1 and 
plant G proteins is currently being intensively investigated [87,88]. The interactions of 
Arabidospis RGS1 proteins (about 120 identified proteins in AtRGS1 complex) were 
reported to be dynamically modulated by glucose, and changes in AtRGS1 interactome 
were observed within minutes of providing glucose [87]. It has also been found that the 
FINS1/FBP (fructose insensitive1 and putative fructose-1,6-bisphosphatase) protein 
plays a key role in the signaling pathway induced by fructose [38,83]. Some researchers 
have suggested the involvement of invertases (EC 3.2.1.26 – β-fructofuranosidase) in 
the reception of sugar signal [9,89,90]. The participation of invertase could be direct, 
in which case the signal would be passed directly to cascades of specific kinases. 
An important role of invertase is definitely the generation and amplification of the 
signals (glucose) that can initiate the transduction pathways, leading to changes in 
gene expression (Fig. 1). Therefore, there are several different ways for the perception 
and transduction of sugar signals. Some signaling pathway components (for example, 
hexokinase or protein kinases) are the same or are similar to those found in bacteria, 
yeast, and animal cells. Other elements of the sugar signaling transduction chain func-
tion only in plants [4,7,23,28,85].

Various secondary mediators are involved in sugar signal transduction, includ-
ing specific kinases and protein phosphatases (Fig. 1). This role is attributed to the 
SnRK serine–threonine kinase complexes (sucrose nonfermenting1-related protein 
kinases), CDPK (Ca+2-dependent protein kinases), MAP kinases (mitogen-activated 
protein), and as discovered more recently, to TOR kinases (target of rapamycin), as well 
[2,5,7,8,25,28,29,36,68,91,92]. Several mechanisms of plant growth regulation have been 
proposed, depending on sugar availability. For the system that stimulates plant growth 
processes, the hexokinase (as a glucose sensor), Tre6P (as a signal), and TOR kinases 
were postulated to be operative [4,8,23,30]. The lack of Tre6P or TOR kinases inhibits 
growth and transition to the generative phase of the plant (it can be also lethal during 
embryogenesis) [23,24,30,92]. The other system that inhibits plant growth processes 
(such as vegetative development and flowering) involves protein kinases, SnRK1, and C/
S1 bZIP transcriptional factors (C/S class basic region leucine zipper) [91]. The induction 
of SnRK1 and C/S1 bZIP most frequently inhibits the growth processes [4,8,91].

Trehalose (a disaccharide composed of two glucoses) was previously known as a 
sugar that is commonly present in microorganisms and fungi. It was discovered in 
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plants rather late, and it was thought that it could act in plant tissues only as an osmo-
protectant under drought conditions [44]. In the last decade, trehalose-6-P was found 
to be essential for the normal growth and development of plants and for stable sugar 
metabolism [25,45,92–94]. Many genes encoding Tre6P synthase and phosphatase in 
plants have been discovered, however, not all of their products are catalytically active 
[25,44]. The Tre6P levels increase after sucrose administration; it was suggested that 
Tre6P could be a sugar signal sensor [24,92]. It was demonstrated that Tre6P can also 
affect the activity of other components of sugar transduction pathway (for example, 
SnRK1) [24,25,32]. Plant growth processes, shown to be regulated by Tre6P, range 
from the early development of embryos through vegetative and generative stages to 
the senescence of leaves [24,44,48]. Sometimes, such regulation of developmental 
processes occurs in cooperation with phytohormones [36]. However, lately, a model has 
been proposed with Tre6P as an essential factor, connecting sugars with plant growth 
and development [8,24,48,91,92]. The effects of Tre6P on the different stages of plant 
development and interaction with sugar and mediators of sugar signaling were recently 
discussed in detail [7,24,48,91–94].

SnRK serine–threonine kinases are plant homologs of previously known yeast SNF1 
kinases and animal AMPK kinases (activated by AMP). We have known, for a long time, 
that the SnRK1 complex participates in the regulation of sugar and nitrogen metabolism, 
for example, through the phosphorylation of the enzymatic proteins, sucrose synthase 
and α-amylase [28,29]. The SnRK kinase activity is regulated by phosphorylation, 
glucose-6-phosphate, and sucrose (at the gene level), as well as by Tre6P, which inhibits 
the SnRK activity depending on the metabolic status of the cell. The role of SnRK1, and 
especially their KIN10/KIN11 subunits, has been extensively investigated with regard to 
sugar transduction in plant cells [8,23,91,94–97]. KIN10 and KIN11 protein kinases are 
currently considered as essential for coordinating plant responses to sugars and stress 
factors and they affect cellular energy homeostasis. Energy depletion activates KIN10 
and KIN11, which stimulate or inactivate a number of processes in the cell, leading to 
improved energy management, adaptation of growth, and proper reaction of the plant 
to the stress factor [3,8,23,37,94–96]. SnRK1 usually inhibits the vegetative growth 
and flowering of the studied plants. Recent studies have indicated that the regulation 
of seed maturation and germination by sugars, as well as the transition of plants from 
the vegetative to the generative stage, takes place with the participation of Tre6P and 
SnRK1 (or SnRK2) [24,48,91,94,97].

The TOR protein kinase system has previously been well described in yeast and 
animal cells; its function is to regulate growth, proliferation, cell differentiation, 
and motility, as well as the translation and transcription processes. TOR functions 
as a sensor/regulator of the cellular levels of energy-rich compounds and the redox 
state [68,98–102]. Yeasts and mammals contain two complexes, namely TORC1 and 
TORC2, but only one complex (TORC1) is known in A. thaliana [68,99]. In plants, 
changes in TOR expression lead to alterations in the growth and development, start-
ing from embryonic development to senescence [48,97,99–101]. The TOR kinases 
form complexes with other proteins, for example, with RAPTOR1 [99]. It has been 
demonstrated that signaling pathways involving TOR kinases affect the primary and 
secondary metabolism of plant cells and growth processes; for example, the stimulation 
of glucose-induced growth of A. thaliana roots is controlled by TOR kinases [68,97,100]. 
Lately, a pivotal function of TOR kinases in integrating various external signals to 
control the development of shoot apical meristem and distinct root apical meristem 
growth was underlined [100]. The involvement of ROP2 (small GTPase Rho-related 
protein 2) in light-auxin signal transduction, necessary for TOR activation and further 
promotion of E2F(A, B) transcription factors and for the expression of cell cycle genes 
in shoot apex was postulated [98–100]. Recent findings on the function of TOR kinases 
in plants, including the study on genetic connections between SnRK1-TOR and their 
antagonistic roles in the regulation of plant developmental stages, have been extensively 
summarized [8,48,68,98,102].

Phytohormones, such as ABA and ethylene, might be involved in the transduction 
of the sugar signal. It is known that sugars can affect the synthesis and transfer of 
certain phytohormones (including ABA and gibberellins), whereas hormones might 
regulate sugar metabolism [5,28,35,36,78]. Glucose has also been shown to increase the 
concentration of auxin synthesis precursors; furthermore, it affects the transcriptional 
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factors controlling the synthesis of auxins and the expression of hormone receptor genes 
[6,66,74]. The isolation and characterization of numerous sugar and hormonal mutants 
has provided evidence for the interaction of hormonal and sugar signaling pathways 
[63,66,75,103]. It has been shown that phenotypes of the hormonal mutants are similar 
or same like those of sugar mutants; for example, the phenotype of the mutant with 
ethylene overproduction, eto1, is the same as that of the gin1 (glucose insensitivity) 
mutant or the gin1, isi4, and sis4 mutants were found to be allelic to aba2 (with reduced 
abscisic acid synthesis), and gin6 and sun6 were allelic to abi4 [28,29,36,74,75]. The 
participation of ABI3 as well as ABF2 and ABF4 transcription factors has been dem-
onstrated in sugar signal transduction, either dependent or independent of hexokinase 
[6,28,36,63]. In addition, more recent results indicated the interaction of cytokinins, 
gibberellins, jasmonic acid, salicylic acid, and brassinosteroids with sugar pathways 
during plant development [57,103,104]. It was suggested that the function of HXK1 is 
dependent on the presence of brassinosteroids, which might act downstream of HXK1 
to regulate hypocotyl elongation in A. thaliana in darkness (in a glucose-dependent 
reaction) [104]. Recent studies have indicated the involvement of several miRNAs in 
phytohormone signaling pathways [105] and in sugar responses in plants [106], but 
more research is needed to fill in some gaps in knowledge.

In conclusion, the signal transduction pathways induced by sugars interact with 
many hormonal pathways and routes responding to environmental factors, forming 
a complex communication and signaling network in plant cells. The proper coopera-
tion of different transduction pathways enables efficient regulation of the growth and 
development of plants. However, further research is required to elucidate the details 
of regulatory mechanisms, which is important for understanding, and improving, 
human-induced plant development in future.
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