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Abstract
We studied the genetic variation in a set of nuclear genes analyzed from 16 popula-
tions of Scots pine derived from a 50-year-old provenance trial in Poland. At the 
same set of loci, the pattern of genetic variation was compared to several reference 
populations from a latitudinal gradient in Northern and Central Europe. Similar 
levels of nucleotide diversity were observed between the defined groups of Polish 
populations representing three climatic regions (πtotal = 0.0040–0.0051) in comparison 
with the reference samples (πtotal = 0.0054–0.0058). Polish populations showed minor 
but heterogeneous patterns of genetic variation between regional groups (FST up to 
6%), which were caused by differentiation at specific loci. When outlier loci were 
excluded from between group comparisons, there were no differences between the 
Polish populations. Loci related to glycosyltransferase and laccase were identified 
as outliers, and were correlated with phenotypic differentiation using mixed-linear 
models. Moreover, these genes were also found as being potentially under selec-
tion across the Scots pine distribution range as the patterns of nucleotide variation 
correlated with latitude and altitude of the maternal stands. The provenance trial 
measurements have characterized a set of growth and developmental traits over 50 
years and forms a suitable experimental system for detailed genetic studies.

Keywords
provenance trial; sequence variation; natural selection; candidate genes; genetic 
correlation

Introduction

Provenance trial experiments, in which samples from distinct geographical locations 
are grown under similar climatic conditions, provide useful experimental designs 
for studying patterns of phenotypic and genetic variation within forest trees. Genetic 
variation within species is influenced by population history and evolutionary processes 
that drive adaptation [1]. Natural selection changes allele frequencies through various 
mechanisms that can lead to deviations in genetic diversity or differentiation of popula-
tions at specific regions in comparison with background variation [2]. Identification 
of genomic regions and genes under selection is important for a better understand-
ing of the variations in phenotypic and adaptive traits from populations in different 
environments. Provenance trial experiments provide useful experimental settings for 
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testing neutral and adaptive genetic variation of populations grown under uniform 
environmental conditions.

The great adaptive potential of Scots pine (Pinus sylvestris L.) enables the species 
to grow in a wide range of natural environments. Differentiation has been observed 
in morphological, physiological, and ecological traits across the species geographical 
distribution. At the same time, a large phenotypic differentiation has been associated 
with a generally low genetic diversity at neutral DNA markers across the Scots pine 
continuous European range [3,4]. Only some refugial populations, which have been 
reservoirs of genetic variation since the last Ice Age and are found in areas of the Balkans, 
Iberian Peninsula, and isolated stands of the Apennine Peninsula [5,6], show slightly 
higher levels of heterozygosity and different haplotype diversity patterns compared to 
more northern areas of the species range [7,8]. Scots pine colonization of Europe could 
have potentially generated clinal variation patterns of allele frequencies [9,10]. However, 
for wind-pollinated forest tree species, gene flow has high homogenizing effects on the 
allele frequency distribution over large geographical areas [11,12], with species show-
ing generally low genetic structures [3,7,13]. Gene flow is another important factor 
that stabilizes the level of genetic diversity within populations [14]. Additionally, the 
patterns of genetic diversity in Scots pine could have potentially been affected by the 
trade of reforestation material from European forests in the nineteenth and twentieth 
centuries [6,15].

Due to the high ecological and economic importance of Scots pine, different popula-
tions were extensively studied for breeding value (e.g., [16–19]) and for determining 
the influence of forest management on genetic diversity [20–23]. Patterns of high 
phenotypic variation between populations, which were usually accompanied by low 
genetic differentiation at neutral markers, indicate the role of some genomic regions 
in the development of adaptive traits. Most characters evaluated in provenance trials 
and seed orchard experiments are complex quantitative traits, such as biomass pro-
duction, wood quality, and biotic and abiotic stress responses [24]. Recently, genetic 
studies were used for the identification of the associations between genomic regions 
and the individual loci underlying those traits [25]. In conifers, studies have focused 
on the associations of quantitative traits loci (QTL) [26–33] and the identification of 
variation in genomic regions that were potentially related to the development of forest 
tree phenotypic differentiation [32,34–36]. However, even if some associations related 
to temperature gradients, photoperiod, or water availability were found [26–33], the 
variation patterns at individual genes could not always be validated in populations from 
different locations [37,38]. So far, studies of associations in forest trees have identified 
some SNPs in genes related to the timing of the bud set that showed latitudinal clines of 
allele frequencies (e.g., [39]). Some variations in candidate genes were associated with 
cold hardiness [40], cessation of growth [41], and tree height [42]. Some evidence for 
selection in Scots pine has also been found in several gene fragments (e.g., [1,2]).

In the current study, genetic variation was analyzed in a set of nuclear gene loci from 
Scots pine populations growing in different climatic zones in Poland, which were used 
in a provenance trial experiment. The trial characterized phenotypical traits for growth 
performance and wood quality and showed significant variation between populations 
[43]. The differentiation of the quantitative traits was accompanied by the presence of 
a relatively homogenous structure in these populations at a set of neutral microsatellite 
loci [44,45]. Using this experimental design, we assessed whether gene variability pat-
terns are similar to patterns identified at neutral loci and if any genetic variation was 
a departure from neutrality. Furthermore, we used the data from nucleotide diversity 
analysis and phenotypic differentiation of the studied pine populations to look for 
correlations between genetic variation and in the differentiation of selected phenotypic 
traits. We compared the patterns of the genetic variation of Polish populations to other 
population across a broad latitudinal gradient in Europe to determine if some loci showed 
deviations from neutrality in the provenance trial and the reference populations.
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Material and methods

Study locations, DNA extraction and amplification

Sixteen Scots pine populations derived from a species provenance trial from an ex-
perimental plot in the Carpathian Mountains were used in the study. The provenance 
trial was established in 1966 with 1-year-old seedlings derived from seeds collected 
from natural populations in three climatic zones within the Polish distribution range of 
Scots pine (Tab. 1, Fig. 1). The climatic zones of the parental populations were defined 
using the length of the vegetation period and meteorological observations from 1931 
to 1960 [43,46]. The detailed characteristics of the experimental plot and seed sources 
were presented in an earlier study [43].

Samples for genetic analyses were collected from randomly selected individuals 
from each population. In total, 192 samples from the provenance trial were analyzed 
at the molecular level and included 12 different trees from each population (Tab. 1). 
Nucleotide and haplotype variations of the Polish pine populations were determined 
for phenotypically diverse groups of samples within the three climatic zones. This 
procedure was also used to compare similar number of individuals in each group.

The reference populations used for comparing genetic variation of candidate genes 
included stands from Northern and Central Europe (Tab. 1, Fig. 1). Genomic DNA of 
the provenance trial was extracted from foliage using DNeasy Plant Mini Kit (Qiagen). 
Fifty-five reference samples sequenced from megagametophytes, a haploid nutritive 
tissue that surrounds the embryo in a mature seed, were collected from 10 trees 
growing in most of the populations (Tab. 1). The selected nuclear genes, which were 
identified from Scots pine expression studies, are considered potentially important in 
the species adaptive variation and phenotypic differentiation. Eight gene fragments 
used for sequencing included loci related to cellular metabolism, transport, signal 
transduction, and transcription regulation (Tab. S1). PCR-amplification was performed 
with Thermo MBS thermal cyclers and used 15-µL samples containing about 15 ng of 
haploid template DNA, 10 µM of dNTP, 0.2 µM of forward primer, 0.2 µM of reverse 
primer, 0.15 U Taq DNA polymerase, 1× BSA, 1.5 µM of MgCl2, and 1× PCR buffer 
(BioLabs, New England, USA). Standard amplification procedures were used with 
initial denaturation at 94°C for 3 min, followed by 35 cycles of 30-s denaturation at 
94°C, 30-s annealing at 60°C, 90-s extension at 72°C, and a final 5-min extension at 
72°C. PCR fragments were purified using ExoI–Sap (Exonuclease I, Shrimp Alkaline 
Phosphatase) enzymatic treatment. About 20 ng of the PCR product was used as a 
template in 10-μL sequencing reactions with the Big Dye Terminator DNA Sequencing 
Kit (Applied Biosystems, Carlsbad, CA, USA). Analyses were conducted at Genomed 
(Poland, Warsaw). CodonCode Aligner software ver. 3.7.1 (CodonCode, Dedham, 
MA, USA) was used for editing the chromatograms and for the visual inspection of 
all detected and aligned polymorphic sites. When nucleotide and haplotype variation 
were evaluated, the haplotypic sequence phase was determined for samples extracted 
from diploid tissue using PHASE haplotype reconstruction option as implemented 
in DnaSP ver. 5 (http://www.ub.edu/dnasp/) [47]. The haplotypes at each locus were 
compared to the haplotypes reported for the Scots pine reference samples that were 
collected within the European distribution of the species (Tab. S1). The reference 
sample haplotypic phases were known as those samples that were directly sequenced 
from megagametophytes that were genetically equivalent to the haploid progeny with 
a genotype identical to the maternal gamete.

Nucleotide and haplotype polymorphisms

The patterns of nucleotide polymorphism within the loci were analyzed in selected groups 
from Poland, defined on the basis of climatic zones and phenotypic differentiation of 
populations [43] and compared to reference geographic locations from Northern and 
Central Europe (Tab. 1). Nucleotide diversity was measured as the average number of 
nucleotide differences per site (π) between two sequences [48]. The number of hap-
lotypes (N) and haplotype diversity (Hd) were computed for each gene using DnaSP 
ver. 5 [47]. Deviations from the frequency distribution spectrum expected under the 

http://www.ub.edu/dnasp/
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standard neutral model of evolution were assessed using a frequency spectrum test and 
coalescence-based approaches [49,50]. The distributions of Tajima’s and the Fu and 
Li’s D test statistics were investigated for each loci and selected groups of populations. 
Significance levels of these tests were determined by carrying out 10,000 coalescent 
simulations.

Outlier detection and tests for population differentiation

The significance of genetic differentiation at the loci measured as the Wright’s fixa-
tion index, FST [51], was evaluated with 1,000 permutations of the samples between 
populations and regional groups using ARLEQUIN ver. 3.5 [52]. The full SNP dataset 
was used to test for loci under selection with the hierarchical analysis of Excoffier et al. 
[52] in ARLEQUIN ver. 3.5. Simulations estimated the null distribution and confidence 
intervals around the observed values, which allowed identification of outliers among 
locus-specific FST values. Each simulated group consisted of 100 subpopulations, and 
20,000 replicates of the coalescent were used to identify the expected distribution of 
FST. The significance thresholds of the FST values were set at 95% and 99% of the FST 
values [52].

The hierarchical distribution of multiloci genetic variation among populations 
and tested groups was estimated using an analysis of molecular variance (AMOVA) 
in ARLEQUIN ver. 3.5. The standard AMOVA computations for haplotypic data was 
used and the significance of population genetic structure was tested using 10,000 
permutations. The measurements were performed for SNPs identified in eight genes, 
and in genes limited to where no consistent signature of selection had been detected. 
Clustering analysis to examine the relationships between individual Polish populations 
and reference locations of the species was conducted using BAPS 6.0 software [53]. 
The genetic mixture analysis, which was based on all detected polymorphic sites, had 
ten independent runs conducted for each K (1–22) to estimate the number of clusters 
for the combined samples.

Correlations between SNP, phenotype, and geographic data

We analyzed and compared the patterns of nucleotide sequence variation to phenotypic 
and neutral variation within the same plant material. Single locus based tests were 

Fig. 1 Location of the Polish and reference Scots pine populations (geographic details are provided in Tab. 1) within the species 
European distribution range (grey). Numbers in circles are the specific populations and numbers adjacent to the circles are climatic 
subgroups at each population.
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performed for selected qualitative and quantity traits that significantly differentiated 
Polish Scots pine populations. Growth characteristics were available from previous 
research [43] and included: stand volume (Volume, m3 × ha−1) that was calculated from 
mean tree volume in a population (m3) divided by the area of each population at the 
experimental site (0.1275 ha); diameter at breast height (Diameter, cm); and diameter of 
approximately 50 trees per population which had the largest diameters after 47 years of 
growth in the experiment (Diameter_50 select). Stand volume reflects a relative measure 
of productivity that could be closely related to local adaptation or diameter of selected 
trees; possibly indicating how natural selection affects the growth of the pine popula-
tions used for genetic correlations. Furthermore, the quality traits stem straightness (SS) 
and crown width (CW) were included in the analysis. Those traits were scored with a 
5-step scale, where: 1 was given for very crooked stems, loss of leader shoots (SS) and 
very wide crowns (CW), and 5 was given for very straight stems (SS) and very narrow 
crowns (CW) (for more details, see Tab. S3 in [43]). Differences in the traits between 
populations were determined using an analysis of covariance (ANCOVA). Detailed 
descriptions of measured and scored traits were presented in an earlier study [43].

Eight genes were used in a correlation analysis of phenotype and SNP variation 
and checked using a mixed linear model [54–57]. This model was fitted to represent 
the phenotypic traits and SNP variation that was determined as mean nucleotide and/
or haplotype variation at the loci. Because phenotypic traits were measured for all 
trees growing in the experimental trial (about 2,300 individuals), estimated breeding 
values based upon a covariance analysis (ANCOVA) [43] were used as the observations 
for phenotypes, taking into account the genetic correlation analyses. This approach 
was also used to verify the possible dependence of SNP variation to the geographic 
characteristics latitude, longitude, and altitude of the original stands. The provenance 
was defined by minimal or lack of population structure, as revealed from the analysis 
of neutral markers [44,45]. Therefore, the signatures of selection could be effectively 
contrasted with background genetic variation. All correlations included Bonferroni 
corrections for multiple testing analyses and were conducted with the statistical software 
STATISTICA [58].

Results

Genetic variation in Polish populations

Over 3,000 nucleotide sites were sequenced from 247 individuals (Tab. 2), providing 
a set of 200 single nucleotide polymorphic sites. Similar levels of nucleotide polymor-
phisms were observed between defined groups of Polish Scots pine populations (πtotal 
= 0.0040–0.0051) and were compared to the reference samples from Europe (πtotal = 
0.0054–0.0058) (Tab. 2). There were large nucleotide variation differences between the 
loci with the highest polymorphisms at Pr1_26 (πtotal = ~0.02; Tab. S2) and the lowest 
polymorphism at Pr4_12 (πtotal = ~0.0003; Tab. S2). Relative to neutral expectations, 
there were excesses of low frequency variants in almost all regional defined population 
groups as measured by the negative values of Tajima’s, and the Fu and Li’s, D statistics 
(Tab. 2). A significant positive Tajima’s D statistic, indicating an intermediate alleles 
frequency, was found at gene Pr1_19 (populations PL_N_NE_3; Tab. S2). Simultane-
ously, numerous low frequency variants were found at three genes including Pr4_4 
(populations EU_N), Pr4_12 (PL_C_2, PL_N_NE_3, EU_N, and EU_C), and Pr_4_19 
(PL_C_1 and PL_C_2) (Tab. S2). Haplotype diversity was similar across groups of 
populations (0.545–0.613; Tab. 2).

Variation at individual loci and populations

In pairwise comparisons, the six groups of Polish pine populations differed significantly 
at five loci, including Pr1_26, Pr4_4, Pr4_12, Pr4_41, and Pr4_19 (Tab. S3). Pines from 
central Poland (PL_C_1 and PL_C_2) were the most differentiated and differed by at 
least one locus from all other groups of populations. Outlier SNPs that had high allele 
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frequency differences between groups of Polish Scots pine populations were found at 
two loci (Pr4_19 and Pr4_41) (Tab. S4). Polish populations differed at six loci from 
the reference populations in Europe (Pr1_19, Pr1_26, Pr4_4, Pr4_12, Pr4_19, and 
Pr4_41) (Tab. S3). At these loci (except Pr4_4 and Pr4_12), there were 13 SNPs that 
showed significant differences in frequency between the Polish and reference popula-
tions (Tab. S4).

For all polymorphic sites, genetic differentiation between selected groups of Polish 
populations was up to 6% (Tab. 3). Higher genetic variation was found between Polish 
Scots pine populations and reference groups from Northern Europe (15–33%) (Tab. 3). 
However, when loci considered as outliers due to patterns of genetic variation (locus 
Pr1_19, Pr1_26, Pr4_19, and Pr4_41) were excluded from between group comparisons, 
there was no differentiation between Polish populations in comparison with the reference 
samples (Tab. 3). Similarly, in a hierarchical AMOVA, nearly 10% of the variation was 
found at the between population level (Tab. S5). However, when loci showing signs of 
selection were excluded from the analyses, most of the genetic variation (nearly 100%) 
was identified within populations (data not shown). No evidence of population structure 
was found in the BAPS analyses (data not shown).

Tab. 2 Summary statistics of nucleotide and haplotype variation and frequency distribution across eight nuclear genes in tested 
groups of Polish Scots pine populations and reference stands in Europe.

Region n L

Nucleotide diversity
Tajima’s 

D
Fu and 

Li D

Haplotype diversity

SNPs Sing πtotal N Hd SD

PL_C_1 57.8 3,158 75 19 0.0040 −0.936 −0.384 82 0.566 0.057
PL_C_2 51.0 3,158 75 21 0.0048 −0.697 −0.591 83 0.597 0.134
PL_N_NE_1 57.0 3,158 69 24 0.0044 −0.404 −0.589 73 0.588 0.052
PL_N_NE_2 56.0 3,158 72 18 0.0042 −0.577 0.342 73 0.545 0.054
PL_N_NE_3 37.0 3,158 67 19 0.0051 −0.248 −0.181 65 0.613 0.062
PL_S 33.5 3,158 58 14 0.0045 −0.371 0.006 57 0.587 0.068
EU_N 32.5 3,158 81 28 0.0058 −0.288 −0.617 57 0.561 0.059
EU_C 19.5 3,158 66 28 0.0054 −0.299 −0.416 44 0.609 0.080
Mean 43.0 31,580 70.4 21.4 0.0048 −0.478 −0.304 66.8 0.583 0.071

n – average number of samples analyzed per locus; L – average length of the sequences in base pairs excluding indels; SNPs – number 
of polymorphic sites detected; Sing – number of singleton mutations; π – nucleotide diversity [48]; Tajima’s D – multiloci Tajima’s D 
statistics [49]; Fu and Li D – multiloci Fu and Li D statistics [50]; N – number of haplotypes; Hd – haplotype diversity; SD – standard 
deviation of haplotype diversity.

Tab. 3 FST for all polymorphic sites combined across eight genes (below the diagonal), and across groups of nuclear genes where 
no consistent signature of selection was detected (Pr1_12, Pr4_4, Pr4_5, and Pr4_12; above diagonal, grey distinction) between the 
tested groups of Polish and reference Scots pine populations.

1 2 3 4 5 6 7 8

1. PL_C_1 0 −0.044 −0.012 0.033 −0.010 −0.043 0.051 0.042
2. PL_C_2 0.020 0 −0.017 0.008 −0.016 −0.036 0.018 0.009
3. PL_N_NE_1 0.025 0.023 0 0.026 0.014 −0.009 0.028 0.020
4. PL_N_NE_2 0.010 0.028 0.020 0 0.066 0.030 −0.044 −0.051
5. PL_N_NE_3 0.043 0.044* 0.012 0.001 0 −0.038 0.084 0.073
6. PL_S 0.061* 0.032 0.027 0.061* 0.044 0 0.046 0.037
7. EU_N 0.152* 0.194* 0.224* 0.154* 0.222* 0.329* 0 0.000
8. EU_C 0.104* 0.134* 0.174* 0.110* 0.172* 0.266* −0.020 0

* p < 0.01.
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Correlations between genetic diversity and quantitative traits and 
geographical location of pine populations from Poland

A statistically significant positive correlation was found between Diameter_50 select. 
and nucleotide diversity at gene Pr1_19 (r = 0.565, p ≤ 0.05; Tab. S6). Crown width 
was negatively correlated with haplotype diversity at gene Pr4_19 (r = −0.515, p ≤ 0.05; 
Tab. S6). Across the tested Polish pine populations, significant correlations were found 
between the geographic location and the diversity of the three genes Pr1_19, Pr4_19, 
and Pr4_4 (Tab. S6). Positive correlations were identified with population latitude and 
the nucleotide and haplotype diversity at Pr1_19 gene (r = 0.526, r = 0.425, respectively, 
p ≤ 0.05; Tab. S6), which remained significant after a Bonferroni correction for multiple 
testing (p = 0.007; Fig. 2). Some positive correlations were observed between stand 
altitude and the nucleotide and haplotype diversity of gene Pr4_19 (r = 0.626 and r = 
0.490, respectively, p ≤ 0.05; Tab. S6). A negative correlation was found between altitude 
and the haplotype diversity of gene Pr4_4 (r = −0.576, p ≤ 0.05; Tab. S6). However, these 
positive and negative correlations were not significant after Bonferroni adjustments.

Discussion

Nucleotide polymorphisms

In this study, we analyzed genetic differentiation within and among 16 Scots pine 
populations that were representative of the species distribution range and three climatic 
zones in Poland. We studied nucleotide polymorphisms at nuclear loci to investigate 
patterns of genetic variation between the Polish populations and reference samples 
from Northern and Central Europe. Our data indicated no differences in the nucleo-
tide diversity at the studied loci between tested groups of Polish populations. Overall, 
we observed very similar haplotype and SNP frequencies among Polish populations 
from different climatic zones. The Polish populations also showed very similar levels 
of nucleotide polymorphism to the reference Scots pine populations from Northern 
and Central Europe, which were determined from 16 nuclear loci (π = 0.0052 [59]) 
and 13 cold-related genes (π = 0.006 [1]). Similar low levels of nucleotide diversity and 
average levels of haplotype diversity were reported for other conifers, including Picea 
abies [60] and Pseudotsuga menziesii [40].

49.0 49.5 50.0 50.5 51.0 51.5 52.0 52.5 53.0 53.5 54.0
Latitude

-0.001

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

Pr
_1

_1
9

Fig. 2 Correlation between population latitude and nucleotide diversity at the Pr1_19 
gene (r = 0.526, p = 0.007). 1–16 – population number.
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Population structure

The structural homogeneity of the Polish populations, which were based on reference 
loci, follows patterns expected for large populations exposed to efficient gene flow [61]. 
Furthermore, the populations from the provenance trial showed an overall excess of 
low frequency mutations, as shown by the negative multiloci Tajima’s D statistics. The 
pattern of genetic variation observed in the Polish populations and in the reference 
locations from Northern and Central Europe, is expected for recently expanded popula-
tions [61]. There were no clear signatures of selection for population structure in the 
European Scot pine distribution at the set of analyzed loci. Low genetic differentiation 
between populations (~2%) in this part of the Scots pine distribution was previously 
found as microsatellite [44,62] and nuclear sequence variations [61]. Gene flow by 
pollen carried over long geographical distances [21] has a general homogenizing effect 
on genetic variation in outcrossing forest tree species, which we observed as a set of 
neutrally evolving loci. Furthermore, forest trees species including Scots pine, have a 
stable genetic structure that preserves an appropriate level of population genetic vari-
ability and adaptability [14].

Patterns of genetic variation from the analyzed populations were influenced by past 
demographic factors [59] and also by anthropogenic factors related to historical seed 
transfer and forest management activities. However, the seeds that were used to establish 
the experimental trial in 1966 in the Carpathian Mountains were collected from old trees 
(aged from 195 to 108 years; 130-year old on average). Forest management in Poland 
would recognize such trees as of native origin, because they would predate the period of 
an intensification of the seed trade, which occurred between 1860 and 1910 [63]. As the 
trial represents half-sib progeny from natural stands, cross-pollination by maladapted 
foreign breeding populations cannot be completely excluded. However, even though 
foreign alleles possibly exist at some loci, it should not significantly bias the average 
estimates obtained at the population level. Thus, the trial is considered representative of 
the natural distribution of Scots pine in Poland, even though anthropogenic influences 
on the genetic variability patterns of some populations cannot be completely excluded 
due to the complex history of management in Europe [6,15].

Signatures of selection and genetic correlations

Considering the similar genetic backgrounds of the populations reported in earlier 
studies, the outlier patterns of differentiation at some loci maybe due to non-neutral 
processes. We identified some genes where the between-population differentiation 
was correlated with phenotypic variation of the populations. In our dataset, the most 
consistent patterns of significant population differentiation based on haplotype structure 
and allele frequencies were found between selected Polish groups from central, eastern 
and northern locations (Tab. S2 and Tab. S4). Departures from neutrality were observed 
at the Pr1_19 locus in populations 4-Ruciane and 5-Rozpuda from northeast Poland. 
The excellent breeding performance of pines from northeast Poland have been reported 
based on provenance trials [64,65]. Strong outlier patterns of variation for both haplo-
type structure and allele frequencies were found at four loci (Pr1_19, Pr1_26, Pr4_19, 
and Pr4_41) in pairwise comparisons between the Polish populations and reference 
Northern European stands. Despite the similar genetic background in this part of the 
species distribution at neutral markers [44], we identified several loci and SNPs, where 
allele frequencies significantly differed between tested regions (Tab. S6). When those 
loci were excluded from the between group comparisons, there were no differentiation 
between Polish and North European samples (Tab. 3). These results suggest that natural 
selection may have shaped the patterns of genetic variation in these genes, resulting in 
departures from neutral expectations.

Our analyses of Polish Scots pine populations showed significant correlations between 
diameter of selected trees (Diameter_50 select.) and crown width and polymorphisms at 
the Pr1_19 and Pr4_19 genes. Additionally, some trends of correlations were identified 
between geographic coordinates of populations and diversity of SNPs. The correlation 
between latitude and nucleotide diversity of Pr1_19 proved to be statistically significant 
after a Bonferroni correction. However, it is important to note that the Bonferroni 
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correction is very conservative and therefore, a less powerful test for identifying cor-
relations between SNP variations and quantitative traits that are shaped by small effects 
from many genes. Gene Pr1_19 is involved in glycosyltransferase functions related to 
biosynthesis of polysaccharides and glycoproteins in the plant cell wall [66], which 
have crucial roles in plant growth and responses to biotic and abiotic stresses [67–70]. 
Alternatively, gene Pr4_19 encodes enzymatic proteins from the laccases group involved 
in lignification in conifers [67].

Considering the weak divergence between geographical regions, which was related 
to neutral loci with high differentiation of quantitative traits of adaptive importance, it 
is possible that differences in the frequency and distribution of polymorphisms at some 
loci may be due to diversifying selection across the Scots pine range. The capability 
to detect selection in genomic regions depends on the time since selection and the 
number of loci involved [36]. The large conifer genome size and complex interactions 
of many traits are the primary reasons for the identification of only a few candidate 
loci associated with phenotypic traits. A few candidate genes, including dehydrin [1] 
and the ft/tfl1-like and pseudo response regulator 1 genes [2], were identified in Scots 
pine as potentially being under selection. In loblolly pine (Pinus taeda), four cell wall 
genes explained about 3% of the variation in wood traits [55]. In Monterey pine (Pinus 
radiata D. Don), nine genes were associated with wood quality [68]. In maritime pine 
(Pinus pinaster), González-Martínez et al. [55] reported genetic variation and linked 
mutations underlying phenotypic variability. Our study provides a set of new genes 
distinct in their variations in comparison with neutral markers that are especially 
interesting for further investigations.

Conclusions

Our study showed close genetic relationships between populations from a provenance 
trial. Across a similar genetic background at neutral loci, we identified some outlier 
patterns of nucleotide diversity in the European species distribution. Additionally, 
nucleotide polymorphisms at some of the genes studied were significantly correlated 
with phenotypic variation among populations from different environments. Considering 
that the provenance trial examined here has been well characterized for growth and 
developmental traits during nearly 50 years of measurements [43], it forms a suitable 
experimental system for detailed comparative-association genetic studies using avail-
able genomic resources [71].

Supplementary material

The following supplementary material for this article is available at http://pbsociety.org.pl/
journals/index.php/asbp/rt/suppFiles/asbp.3623/0:

Tab. S1 Analyzed loci.

Tab. S2 Summary statistics of nucleotide and haplotype variation and frequency distribution 
spectra at eight nuclear genes in the tested groups of Polish populations of Scots pine and refer-
ence stands in Europe.

Tab. S3 Significant values of FST statistics for corresponding loci in pairwise comparisons 
between groups of Polish and reference Scots pine populations.

Tab. S4 Outlier SNPs detected across loci in pairwise comparisons between Polish and refer-
ence populations.

Tab. S5 AMOVA based on all polymorphic sites detected.

Tab. S6 Correlation between total nucleotide diversity and haplotype diversity at individual 
loci and phenotypic traits variation as well as geographic coordinates of maternal stands of 
Polish pine populations.

http://pbsociety.org.pl/journals/index.php/asbp/rt/suppFiles/asbp.3623/0
http://pbsociety.org.pl/journals/index.php/asbp/rt/suppFiles/asbp.3623/0
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