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Abstract
This study focuses on short-term monitoring of trace metals in the Svalbard archi-
pelago. Short-term studies using lichen bioindicators are important because temporary 
changes in lichen trace metal levels are mainly dependent on air pollutants. Here, we 
investigated temporal and spatial differences in the content of trace metals such as 
Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, and Zn measured in the lichen thalli of Cetrariella 
delisei. The temporal aspect was studied in the marine plain of Calypsostranda 
between 1988 and 2016 and that of Hornsundneset between 1985 and 2008. The 
spatial aspect was studied between Hornsundneset in 1985 and Calypsostranda in 
1988 as well as between Hornsundneset in 2008 and Calypsostranda in 2016. The 
results revealed an increase in the concentration of Cr, Mn, Ni, and Co for both 
the aspects, while a decrease in the contents of Cu, Cd, and Mo was observed. Pb 
content varied, as Pb level increased with time in Hornsundneset but decreased in 
Calypsostranda. The Zn content showed no significant changes in both temporal 
and spatial aspects.
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Introduction

The distribution of trace metals among marine and terrestrial ecosystems in polar regions 
is dynamic and is thought to be driven by multiple synergic processes. The sources of 
trace metals have both natural and anthropogenic characters [1]. The anthropogenic 
sources of pollutants in the Arctic region are related to the long-distance transport of 
toxic substances from lower latitudes [2]. The transport of new pollutants may increase 
the levels of natural trace metals resulting from local geology [3]. The accumulation of 
trace metals may occur directly through atmospheric deposition [4,5] and indirectly 
through the influence of marine aerosols, windblown dust, and water from melting 
snow and glaciers [2,6–10].

Regardless of their origin, trace metals accumulate in terrestrial ecosystems in the 
substrate and are absorbed thereafter by vascular plants and bryophytes [11]. The 
lichens accumulate trace metals directly from air and indirectly from substrate [11]. 
Given their ability to absorb pollutants from the air [12,13], lichens are widely used as 
bioindicators of trace metal pollution all over the world [1,8].
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Climate changes observed in the Arctic region during last 30 years have significantly 
affected the tundra vegetation in Svalbard archipelago [14,15]. These changes coupled 
with increasing herbivore pressures have led to a noticeable decline in the number of 
species of terricolous, fruticose lichens such as those from the genera Cladonia and 
Cetraria s. l. [14,16]. In the past, these genera had broad geographical ranges and were 
commonly present throughout the archipelago. As these genera have been the major 
components of the high Arctic tundra vegetation, they were frequently used as trace 
metal bioindicators [2,8,17–20]. The studies involving lichens as biological indicators 
of trace metal contamination have mainly been conducted in the regions of Bellsund 
[21–23] and Hornsund [7,13,24,25]. The data of these reports have been used for com-
parative studies that are necessary to achieve the objectives of an AMAP (The Arctic 
Monitoring Assessment Program) initiative [1]. One of the assumptions of this program 
is the assessment of temporal trace metal trend that provide essential information for 
decision makers connected with science-based policy decision on contaminants in the 
Arctic environment [1]. Short-term data (i.e., <30 years) are developed on the basis 
of the bioindicator studies (including lichens) and cover information from previous 
1–3 decades. These data illustrate how trace metal contents have changed in time and 
indicate their trends in the future. Short-term studies that use lichen bioindicators are 
also important because the changes in the levels of trace metals in lichens are not subject 
to strong fluctuations, as in the case of measurements of air contamination [26].

At present, the lack of the availability of the lichen material for comparative research 
poses a problem. Species of macrolichens that form large surface thalli, such as Flavo-
cetraria cucullata (Bellardi) Kärnefelt & A. Thell, F. nivalis (L.) Kärnefelt & A. Thell, 
Cladonia mitis Sandst., and Thamnolia vermicularis (Sw.) Schaer., collected in the 1980s 
and 1990s on the coastal terrains of NW Wedel Jarlsberg Land and NW Sørkapp Land, 
now failed to occur in these regions owing to the heavy grazing activity of reindeer 
[13,14,16]. Therefore, it is very difficult to repeat previous studies conducted on these 
species and compare the results with the original data.

Until now, the only short-term study for the period of 8 years has been performed on 
Calypsostranda plain [23] in the NW Wedel Jarlsberg Land; however, the results were not 

compared based on individual years but only averaged to have a 
better representation of the whole region. Thus, the short-term 
data sets from this part of the Arctic region are very poor.

Within the monitoring survey, nine trace metals (Cd, Co, 
Cr, Cu, Mn, Mo, Ni, Pb, and Zn) were measured in the thalli of 
Cetrariella delisei (Bory ex Schaer.) Kärnefelt & A. Thell. Here, 
we aim to investigate the spatial and temporal differences in 
the contents of these trace metals. The temporal aspect was 
studied for the marine plain of Calypsostranda between 1988 
and 2016 as well as for the marine plain of Hornsundneset 
between 1985 and 2008. The spatial aspect was studied between 
Hornsundneset in 1985 and Calypsostranda in 1988 as well as 
between Hornsundneset in 2008 and Calypsostranda in 2016. 
The hypothesis set was as follows: the content of the studied trace 
metals in lichen thalli collected in Hornsundneset in 2008 and 
Calypsostranda in 2016 is lower than that in the samples collected 
in Hornsundneset in 1985 and in Calypsostranda in 1988.

Material and methods

Herbal material collection

The study included the herbarium specimens of C. delisei li-
chen that were collected in Calypsostranda marine plains (NW 
Wedel Jarlsberg Land, Spitsbergen) and Hornsundneset marine 
plains (NW Sørkapp Land, Spitsbergen) by various researchers 
(Fig. 1 and Tab. 1). Calypsostranda area shows rocks of tylloid 
in alternation with other rocks from sedimentary to low-grade 

Fig. 1 Localities of Cetrariella delisei samples on Svalbard 
black square – Calypsostranda, NW Wedel Jarlsberg Land; 
black circle – Hornsundneset, NW Sørkapp Land (© 
Norwegian Polar Institute 2018, http://www.npolar.no).

http://www.npolar.no
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metamorphic type, while Hornsundneset marine plain comprises rocks of sandstone, 
siltstone, and shale. For laboratory analysis, minimal quantities of lichen thalli were 
obtained from herbarium specimens that were stored in lichenological envelopes in 
the Herbarium of the Institute of Botany in the Jagiellonian University (KRA).

Laboratory analyses

Two replicates of 3 g from each lichen sample were homogenized and dried at 105°C, 
followed by mineralization and extraction in aqua regia for 16 h, according to a previ-
ously described method [27]. After extraction, the samples were digested at 130°C for 
2 h, filtered, and mixed in 0.5 mol nitric acid (HNO3) in 100-mL flasks. The levels of 
Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, and Zn in each sample were detected in four replica-
tions with the Perkin Elmer Optima 7300 DV optical emission spectrometer using 
the inductively coupled plasma-optical emission. The plasma gas flow rate was 15 dm3 
min−1, the external gas flow rate was 0.2 dm3 min−1, and the nebulizing gas flow rate 
was 0.6 dm3 min−1. Calibration was carried out using a certified reference material 
ERM-CD 281.

Statistical analyses

Levene’s test was performed to assess the equality of variances and Shapiro–Wilk test 
was applied to assess normality. Wilcoxon test was used to investigate the differences in 
element contents in C. delisei thalli in temporal aspect between specimens collected in 
1985 and 2008 in Hornsundneset as well as between those collected in 1988 and 2016 
in Calypsostranda. Mann–Whitney U test was applied to test the spatial differences 
in element contents measured in lichen thalli collected in 2008 in Hornsundneset and 
2016 in Calypsostranda as well as to analyze the difference between the data from 1985 
and 1988. Statistical analyses were carried out using Statistica 10 software [28].

Results

Nine trace metals (Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, and Zn) were investigated in terms 
of their contents in the thalli of C. delisei collected in Calypsostranda in 1988 and 2016 
as well as in Hornsundneset in 1985 and 2008 (Fig. 2).

The differences in the temporal changes in the trace metal contents were significant 
between Hornsundneset in 1985 and 2008 for all the studied elements (Tab. 2). For 
Calypsostranda in 1988 and 2016, the differences in the changes in the element content 
were significant for the following trace metals: Co, Cr, Cu, Mn, Ni, and Pb (Tab. 2). 
However, the differences were not significant for the change in the content of Cd, Mo, 
and Zn between Calypsostranda in 1988 and 2016 (Tab. 2). The differences in spatial 
changes in the trace metal contents measured in lichen thalli were not confirmed for 
all the studied elements (Tab. 3). The differences were significant between Hornsund-
neset in 1985 and Calypsostranda in 1988 for following trace metals: Cd, Co, Cr, Mn, 
Ni, and Pb. The content of Co, Cr, Mn, and Pb showed significant variation between 
Hornsundneset in 2008 and Calypsostranda in 2016 (Tab. 3).

Tab. 1 List of localities where the samples of Cetrariella delisei were collected.

No. Region Localities Collected by Date

1 Wedel Jarlsberg Land Calypsostranda F. Święs 1988
2 Wedel Jarlsberg Land Calypsostranda S. Lehman-Konera 2016
3 Sørkapp Land Hornsundneset M. Olech 1985
4 Sørkapp Land Hornsundneset M. Węgrzyn 2008
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Fig. 2 The contents of trace metals (mg kg−1) measured in the thalli of C. delisei collected in Calypsostranda in 
1988 and 2016 and Hornsundneset in 1985 and 2008.
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Discussion

Studies concerning short-term trends in trace metal contents measured in lichens thalli 
have not been conducted in Svalbard. This is probably owing to the lack of historical 
herbal materials that may be used for comparative research. The results show that the 
temporal changes in the trace metal contents in C. delisei thalli were not identical for 
all elements (Fig. 2). For the four trace elements Co, Cr, Mn, and Ni, an increase in 
the concentration was observed for both the studied areas (Fig. 2). Three elements 
Cd, Cu, and Mo showed a decrease in their concentrations (Fig. 2); however, the dif-
ference was significant only for Cu (Tab. 2). For Pb, the trends observed in both the 
areas were different; Pb concentration increased in Hornsundneset but decreased in 
Calypsostranda (Fig. 2). Zn contents in both temporal and spatial aspects showed 
no significant changes (Fig. 2). The hypothesis set herein was not confirmed by the 
observed results (Fig. 2 and Tab. 2), as not all trace metals showed a decrease in levels 
in the lichen thalli during 23 years from 1985 to 2008 for Hornsundneset and 28 
years from 1988 to 2016 for Calypsostranda. It is difficult to predict the factors that 

Tab. 2 The results of Wilcoxon test showing temporal changes in Hornsundneset between 1985 
(N = 8) and 2008 (N = 8) and Calypsostranda between 1988 (N = 8) and 2016 (N = 8), p = 0.05.

Element

Hornsundneset 1985 vs. 
Hornsundneset 2008

Calypsostranda 1988 vs. 
Calypsostranda 2016

T Z p T Z p

Cd 4.0 1.96 0.04995 9.0 1.26 0.2076
Co 0.0 2.521 0.01172 1.0 2.38 0.01729
Cr 0.0 2.521 0.01172 0.0 2.521 0.01172
Cu 0.0 2.521 0.01172 0.0 2.521 0.01172
Mn 0.0 2.521 0.01172 0.0 2.521 0.01172
Mo 2.0 2.24 0.02506 10.0 1.12 0.2626
Ni 0.0 2.521 0.01172 0.0 2.521 0.01172
Pb 0.0 2.521 0.01172 0.0 2.521 0.01172
Zn 32.0 2.521 0.01172 14.0 0.5601 0.5754

The significant differences are in bold.

Tab. 3 The results of Mann–Whitney U test showing spatial changes between Calypsostranda 
in 1988 (N = 8) and Hornsundneset in 1985 (N = 8) and between Calypsostranda in 2016 (N = 
8) and Hornsundneset in 2008 (N = 8), p = 0.05.

Element

Hornsundneset 1985 vs. 
Calypsostranda 1988

Hornsundneset 2008 vs. 
Calypsostranda 2016

U Z p U Z p

Cd 3.0 2.993 0.00276 1.0 −3.203 0.00136
Co 0.0 3.308 0.00094 0.0 −3.308 0.00094
Cr 0.0 3.308 0.00094 0.0 −3.308 0.00094
Cu 16.0 1.628 0.10356 28.0 −0.368 0.71319
Mn 0.0 3.308 0.00094 0.0 −3.308 0.00094
Mo 23.0 −0.893 0.37203 20.0 −1.208 0.22715
Ni 0.0 3.308 0.00094 27.0 −0.473 0.63650
Pb 0.0 3.308 0.00094 0.0 3.308 0.00094
Zn 16.0 −1.628 0.10356 32.0 0.053 0.95812

The significant differences are in bold.
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caused the decrease in the levels of some elements with the simultaneous increase in 
the levels of other elements in a situation, wherein air pollution monitoring surveys 
clearly indicated decline in trace element concentrations [29]. The attempt to answer 
is a part of a long-year discussion based on numerous investigations that evaluate the 
problem of the accumulation of pollutants by lichens under various aspects. The most 
important ones are discussed below.

Lichens are slow-growing and long-living symbiotic organisms that produce thalli, 
which lack roots or waxy cuticles and rely on an atmospheric input of mineral nutri-
ents. These features of lichens combined with their wide occurrence in Arctic areas 
make them good bioindicators of air pollution [30,31]. Despite these anatomic and 
morphological features, numerous studies have indicated the occurrence of a process of 
selective accumulation of individual elements within the thallus [32]. This phenomenon 
exists because the accumulation of trace elements occurs both at the intracellular and 
extracellular (in the spaces between the cells of lichen thallus) regions. In the thalli of 
lichens, the cations of trace elements bind to the extracellular anionic exchange sites 
that are located in the cell wall and plasma membrane surfaces [33,34]. Lichens as 
bioindicators have an advantage over other organisms, owing to their capacity to retain 
high amounts of contaminants in particulate forms in large intercellular spaces [35,36]. 
Studies have suggested that these cell wall-bound elements are readily exchangeable; 
therefore, extracellular amounts and proportions reflect the recent environmental 
input [37]. Furthermore, the accumulation of trace elements by extracellular secondary 
metabolites is a permanent phenomenon, which often leads to morphological changes 
in the thallus at high concentrations of toxic elements [38]. Oxalates considered as one 
of the most effective extracellular mechanisms of heavy metal detoxification are widely 
distributed in lichens [39–41]. In the Arctic areas, such morphological changes fail to 
occur because of the low levels of contamination; however, the accumulation of the 
selected trace elements occurs in the intercell spaces in the form of permanent complexes. 
Total trace elements in the thallus of lichens are the most important fractions because 
the intracellular fraction accounts for only about 5% of the total content [42].

Trace element concentration in lichens is a dynamic process. Short-term research 
on the effects of excess metals showed that the lichens soaked into trace metal solu-
tions accumulated elements quickly, in most cases within a few hours. In the case of 
Cu, maximum accumulation was observed after 3 to 6 h [43]. Transplantation studies 
showed that most lichens respond to the changes in the atmospheric pollutants within 
a few months, while the residence time of many elements in lichen thalli is 2 to 5 years 
[44]. In transplantation studies of lichen thalli [44], the initial levels of trace metals 
were determined and the changes in the accumulation of elements in the thallus at a 
given time were monitored. Thus, the heavy metal content of lichens may increase as a 
function of time; however, the situation is much more complicated. In fact, the content 
of several trace elements in the transplanted lichens increased, while that of other ele-
ments decreased during the study period [36]. This observation may explain that the 
contents of these elements are, at least in part, controlled by physiological processes 
and turnover mechanisms [36].

In relation to Calypsostranda, Jóźwik [23] conducted numerous studies on trace 
metal levels in lichens between 1987 and 1995. In these studies, several species of lichens 
were used as bioindicators, including C. delisei. Studies in Calypsostranda area carried 
out in 1987 by Jóźwik [22] highlighted the differences between trace metal contents 
obtained in the currently analyzed samples of C. delisei from 1988. The samples from 
1987 showed the following values: Mn, 5.82 ±0.42 mg kg−1; Cu, 3.58 ±0.25 mg kg−1; 
and Zn, 60.8 ±5.58 mg kg−1 [22]. These values are four and two times lower than those 
reported in the present study (Fig. 2). However, the values of Cd (0.96 ±0.01 mg kg−1) 
and Pb (25.52 ±0.03 mg kg−1) were twice as high as those reported in the present study 
(Fig. 2). The method of mineralization of lichen samples is probably responsible for 
the observed differences. The lichen material was mineralized in a mixture of nitric 
acid (63%) and perchloric acid (60%) at 7:1 ratio [22], which is different compared to 
the mineralization process carried out using aqua regia, as performed in the labora-
tory analysis in the present study. There is no universal dissolution method, but the 
results of the methodological study [45], wherein the plant material was thoroughly 
washed with water with subsequent ashing at 550°C and digestion with a mixture of 
HNO3:H2SO4 (2:1), suggest that the method employed in the present study is suitable 
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for the quantitative determination of trace elements in vegetation. The results [44] of 
the trace element contents in a standardized plant material show that the use of aqua 
regia in relation to Cd and Pb provides almost twice lower content than that obtained 
using a mixture of nitric acid (63%) and perchloric acid (60%).

Despite differences in the compared results from 1987 and 1988, the obtained 
results are similar except for Cu, as Cu content in 2016 was similar to that reported 
by Jóźwik [22].

In Hornsundneset in Sørkapp Land area, the first study on the evaluation of the 
level of contamination of trace metals in the lichen and bryophytes was carried out in 
2013 [13]. In comparison to the obtained results, Ni, Cr, and Cu had similar values, 
while Mn and Zn had about five times higher values. Pb value was three times higher, 
while Cd concentration was ten times higher. The lichen materials collected in 2008 
and used in the present study were obtained from the coast approximately 300 m away 
from the shoreline, while the material used for the research in 2013 [13] was collected 
from the slopes of the Hohenlohefjellet mountain at a distance of about 1.4 km from 
shoreline. The impact of the marine aerosol on lichens growing near the shoreline 
may have affected the levels of trace metals, mainly Cd and Pb [11]. Similar impact 
of marine aerosols on lichens has been reported while evaluating the accumulation of 
trace metals in a research conducted in the Kaffiøyra plain [11].

Almost all of the studied elements, except Mo and Zn, showed higher concentra-
tions in Calypsostranda region in 1988 than in Hornsundneset region in 1985 as well 
as between these regions in 2016 and 2008 (Fig. 2). This observation may be associated 
with the influence of mining activity in the northwestern part of Wedel Jarlsberg Land 
[46] before the establishment of the Sør-Spitsbergen National Park. Thus, in this area, 
the source of trace metals accumulated in lichens seems to be not only the long-distance 
transport of pollutants with air masses but also the human activities. Throughout Sørkapp 
Land, hunting was the only form of human activity before the establishment of Sør-
Spitsbergen National Park. As a result, the only source of trace metals in lichen thalli is 
the long-distance transport of pollutants and natural geological background [13].

With regard to the other regions of the Arctic, our research shows that the ac-
cumulation of trace metals in a particular year in lichen thalli is not the same for all 
elements. This is important during the comparison of the data on the measurements of 
the trace metal contamination from air. For instance, short-term studies conducted at 
meteorological station Alert, Ellesmere Island station in Canadian Arctic [26], showed 
decreasing trends of concentration for Cu, Mn, Pb, and Zn in the years 1980–1995. 
While other Zeppelin Mountain station close to Ny-Ålesund, Svalbard [29], had not 
recorded any significant temporary trends in concentrations of Pb, Cd, Cu, Zn, Cr, Ni, 
Co, and Mn from 1994–2002. The results in this study do not correlate with our values 
of the trace metal recorded in lichen thalli, as the values of the four elements increased 
and similar trends were reported for only one element (Fig. 2).

In the Arctic region, the only temporal data available for lichens were from Nuuk 
(Greenland) where the samples of F. nivalis were collected in 1994 and 1999 [1,8]. The 
present study is the first report that analyzed short-term level of trace metals using 
lichens as bioindicators in Svalbard. Reducing pollutant emission contributes to the 
improvement in the conditions in the Arctic region. The monitoring of trace metal 
pollutants in air is very important; however, the response of biotic elements to the 
changes in the pollutants may only be assessed using the tried and tested bioindicators. 
Lichens, including, C. delisei, are good sources for the implementation of planned short-
term pollution measurements in the tundra region because of its widespread nature. 
Moreover, lichens are easy to identify and the thalli of this species are abundant; lichens 
form a significant element of the tundra region as the beginning of the food chain 
in the Arctic ecosystems. However, no information on the life expectancy in natural 
conditions is available for these species as well as for other fruticose species such as F. 
nivalis or Cladonia mitis. Correlation of life expectancy with trace element levels in the 
fruticose lichen may allow planning of monitoring studies while taking into account 
the actual rate of accumulation per unit time.
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