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Abstract
The rise in global temperature and increasingly frequent heat waves may severely dis-
turb plant growth and productivity. Throughout the life cycle of vascular plants, which 
may last even thousands of years, various aboveground structures are constructed 
due to the activity of the shoot apical meristem (SAM). A pool of dividing, undif-
ferentiated stem cells is maintained within a SAM, which facilitates self-perpetuation 
of the meristem and provides cells for growth and organogenesis. Unsurprisingly, 
there has been a growing interest to study the impact of increased temperatures on 
the development and molecular response of the model plant Arabidopsis thaliana. 
Unfortunately, the experimental setups are highly variable and key aspects of plant 
development are regularly neglected. Thus, in this short review, we highlight the 
experimental variables and address SAM maintenance in the context of elevated 
temperature research.
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Introduction

The global climate system is warming up. Over the last century, the average global 
surface temperature (land and ocean) has increased by 0.85°C; the rise seemed relatively 
high in Eastern Europe, Central Asia, Northern Canada, eastern South America, and 
Northwestern Africa (1.75–2.5°C). Consequently, the amount of snow and ice has 
decreased, the sea level has risen, and unmatched life-threatening weather events have 
occurred, such as increasingly frequent extreme heat waves [1]. The temperature shift 
has also changed annual precipitation over land, both increasing it (e.g., in Northern 
Europe) and decreasing it (e.g., in Southern Europe) [1]. It is estimated that by the 
year 2100, the average global surface temperature (relative to 1986–2005) will likely 
further increase by up to 4.8°C, depending on the level of greenhouse gases emission 
reduction. It is important to emphasize that the temperature will rise differently around 
the world. It is assumed the Arctic region will warm the fastest, average temperatures 
will be greater over the land than over the ocean, and hot temperature extremes will 
be ever more recurrent [1]. Climate change is linked to various factors, thus its speed 
and consequences are difficult to calculate.

Being sessile organisms, plants must adapt to constantly changing environments. 
The increase in temperature is one of the vital factors affecting multiple developmental 
processes, such as growth and flowering. Temperature affects plant architecture and 
consequently plant productivity, which is essential in terms of food security. Elevated 
temperatures are increasingly problematic for crop production. It may cause severe 
cellular damage, such as impaired enzyme activity [2,3], water homeostasis change, 
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membrane and protein damage, and internal oxidative stress [4–7], all of which trans-
lates into reduced photosynthesis and impaired translocation of assimilates, leading 
to altered growth and seed production [8,9]. Intriguingly, plants react differently to 
mild rises in ambient temperature, which increases plant growth [10], and to heat 
stress, which inhibits growth. Furthermore, those two opposing responses partially 
employ overlapping signaling pathways, probably because in a natural environment 
the temperature mostly rises gradually, and while plants adapt morphologically and 
physiologically to mild increases in temperature they also become primed for possible 
heat stress [10–12].

The plethora of papers concentrating on plant growth response to increased tempera-
ture is unsurprising given the importance of the topic and its worldwide implications. 
Generally, in most studies the potential temperature treatments include: suboptimal 
growth temperatures (elevated to around 30°C), heat shock temperatures (37–45°C), 
acquired thermotolerance (acclimatization at 35–37°C to temperatures of around 45°C), 
and, lately, response to repeated stress conditions as well (reviewed in [13,14]). Molecular 
research is conducted mostly on Arabidopsis thaliana, a small weed from the mustard 
family, whose architecture also depends on the growth conditions. Arabidopsis is a 
dicotyledonous model plant which is easy to grow and analyze and, most importantly, 
that possesses a small genome, the first to be sequenced in plants, with routine trans-
formation protocols available (for more information see [15]). The use of Arabidopsis 
substantially increased our knowledge of the signaling and response molecular genetics 
during plant exposure to elevated temperatures. A substantial amount of data has been 
gathered to elucidate the role of hormones [9,13–19] and molecular chaperones Heat 
shock proteins (HSPs) [11,20]. These characteristics appear to be the most studied but 
other important regulatory components are also being investigated, such as the conse-
quences of overproduction of reactive oxygen species (ROS) [21–23], the importance of 
cellular safeguarding mechanisms to prevent oxidative stress [21,24–27], or the impact 
of epigenetic regulation and small RNAs on heat-induced transcriptional responses and 
stress memory [28]. Interestingly, plant high-temperature signaling seems to integrate 
multiple environmental cues during development. Phytochrome-interacting factor 4 
(PIF4), for instance, was shown to be a master regulator of auxin-mediated hypocotyl 
elongation in response to mildly high temperature but also to low red/far-red light 
(R:FR) (e.g., [19,29]). Moreover, the stress responses triggered by such temperatures 
and light intensity, among other stimuli, share signaling components [30,31]. Describing 
in detail the regulatory mechanisms related to high temperature is beyond the scope 
of this short review, for which the literature mentioned above may be referred to. 
Our goal is to highlight the variables in the experimental setups that may hamper the 
final conclusions and to draw researchers’ attention to an interesting but so far widely 
neglected aspect of shoot apical meristem (SAM) maintenance.

Research variability

When studying the literature involving the impact of high temperatures on Arabidop-
sis, it may become apparent that results from different experimental arrangements 
might not be fully comparable. The most obvious differences relate to the temperature 
setups being used, for instance, standard temperatures for Arabidopsis growth are 
either around 23°C for both day and night, or 22–23°C during the day and 16–18°C 
during the night; further complications are the choice of elevated temperatures and 
its duration, preconditioning treatments (if any), length of the recovery periods, and 
the time waited after heat treatments for determining plant traits (reviewed in [13]). 
The differences may seem trivial sometimes, but even 1–2°C can drastically change the 
phenotypic expression. It is worth considering that distinct ecotypes of Arabidopsis 
respond differently to increased temperatures: Landsberg erecta (Ler) and Cape Verde 
Islands (Cvi) were shown to be more sensitive than the widely studied Columbia (Col) 
ecotype. This should be considered during interpretation of the results obtained from 
different ecotypes, for example, when comparing different mutants or transgenic plants 
[32]. Interestingly, genetic data indicates that different genes essential for heat response 
may contribute to tolerance at distinct stages of the plant life cycle [9]. Therefore, 
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another key variable to consider is the plant developmental stage reported, as well as 
the particular morphological features taken for analyzes, which so far mostly includes 
hypocotyl elongation, adult-plant fresh weight, chlorophyll accumulation, root growth, 
and seedling germination and survival (reviewed by [13]). Importantly, nearly all of 
the existing knowledge of basal or acquired thermotolerance and response to mildly 
increased temperatures has been gained from the easiest and fastest stage to study – the 
seedlings. However, some mechanisms and structures (like flowers) are absent at this 
stage. Additionally, it is unlikely that this stage would experience dangerously elevated 
temperatures in a natural environment, as Arabidopsis germinates in the late fall and 
early spring [33]. The seedling stage has its limitations; thus, performing wide-ranging 
analyses of variable morphological features recorded throughout the plant life cycle 
would yield in-depth information and allow for accurate conclusions, for example, 
on the functional relevance of genes. Consequently, in temperature stress research 
the experimental setup should be carefully selected considering the influences of the 
temperature treatments, plant ecotypes, and developmental stages.

Shoot apical meristem (SAM) angle

In applied plant research, the reproductive stage is remarkably interesting and has been 
shown to be strongly affected by rises in temperature [34,35]. Seedlings architecture is 
established at the embryonic stage of a plant life. Subsequently, all of the postembryonic 
growth and development proceeds due to the activity in the shoot and root apical 
meristems (SAM and RAM, respectively), where pluripotent stem cells (initial cells) are 
located and maintained throughout the plant life. SAM is not structurally homogenous 
and can be divided into distinct layers, as the tunica and corpus with differences in 
divisional activity and identity of the cells and zones. Slowly dividing initial cells at 
the central zone (CZ) are controlled by the organizing center (OC) and surrounded 
by the peripheral and rib zones, which have intensively proliferating cells (for review, 
see [36]). Within the SAM, the identity and developmental potential of the cells shift 
from pluripotent cells of the CZ to the flanking regions where cells eventually acquire 
their determinate fate. At the flanks of the SAM, leaf primordia are established during 
vegetative growth, while flower primordia after transition to generative development, 
thus plants are able to reproduce. Throughout the life of Arabidopsis, stem cells’ self-
perpetuation is preserved, which provides cells for growth, and its structural integrity 
and dynamic organization is maintained even though Arabidopsis undergoes several 
developmental transitions when the SAM changes its size and division rates [36,37]. 
Therefore, the SAM is vital for growth and development and its undisturbed maintenance 
enables successful plant reproduction. Importantly, there are reports of economically 
useful plants showing that increased growth temperature inhibits the plant’s aboveg-
round growth, which suggests some malfunctioning of the SAM. One of these reports 
directly showed that elevated temperature (30°C during the day and 27°C during the 
night) triggered the formation of impaired meristems with ill-defined tunica and corpus, 
unpredictable planes of divisions, and cells undergoing differentiation, which all lead to 
lateral bud loss in the ‘Improved Mefo’ chrysanthemum [Dendranthema ×grandiflorum 
Ramat. (Kitamura)] [38]. Nonetheless, SAM maintenance related to high temperatures 
is widely unstudied, which is unsurprising considering the meristem has a small size 
and is hidden beneath the youngest organ primordia. For years, the SAM was unsuit-
able for many experimental techniques and experimentally more demanding than 
other approaches. Moreover, comprehensive studies on advanced ontogenetic stages 
(in comparison to seedlings for example) implicate an increase in labor, cost, difficulty, 
and variations related to the environmental conditions during growth.

The mechanisms of SAM maintenance in Arabidopsis are relatively well known, yet 
so far only a few connections at the molecular level have been achieved regarding the 
elevated temperature response. Intensive studies have revealed many important SAM 
maintenance regulators, of which the following transcription factors are worth mention-
ing: SHOOTMERISTEMLESS (STM) expressed in undifferentiated cells of the SAM, 
WUSCHEL (WUS) expressed in the cells of the OC. STM confers an indeterminate 
state of the SAM, thus stm mutants terminate at the seedling stage due to complete loss 
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of stem cell identity. On the other hand, WUS provides signaling that maintains the 
identity of stem cells in the CZ of the SAM, and wus mutants have a bushy, disorganized 
architecture because its meristem is repeatedly reinitiated but cannot be sustained. 
Naturally, there are other known regulators of SAM maintenance (for more information 
about the SAM and its regulators see, e.g., [39,40]). Importantly, there are first-time 
reports on elevated temperature and the SAM. For instance, Deyholos [41] has shown 
that mutants lacking the VARICOSE (VCS) gene (involved in mRNA decapping [42]) 
grown at a mildly elevated temperature of 29°C are characterized by a small, flat SAM 
without the typical layered organization and with differentiated cells that suggest its 
premature termination. A detailed molecular study about the SAM was performed 
on plants lacking the FTSH4 mitochondrial protease, a known factor for preventing 
internal oxidative stress accumulation and enabling proper mitochondrial function in 
adverse growth conditions [27]. Even though they underwent a premature transition to 
flowering, ftsh4 mutants grown at 30°C arrested their shoot growth resulting in short, 
highly disorganized generative stems with unsuccessful reproduction. Using the ftsh4 
mutant, it was proven directly in the SAM that mildly elevated temperatures cause 
progressive accumulation of oxidative stress and mitochondrial dysfunction, leading 
to loss of stem cell identity and termination of proliferation [26,43]. Hence, FTSH4 
mitochondrial protease was shown to be required to safeguard plants (primarily the 
SAM) in mildly elevated temperatures [26,27,43]. Lately, detailed molecular reports 
have appeared relating the root meristem to elevated temperature response and sig-
naling [44–46], a system particularly easy to work with if plants are grown on media. 
However, the knowledge gained on roots cannot be simply extrapolated to shoots, as 
these two are characterized by different structures, growth directions, planes of divi-
sions, organogenesis, and hormonal flows [47]. It is important to note that upgrading 
the methodological tools for SAM usage has facilitated the efforts and made it possible 
to work at the genome level [48,49]. Considering the worldwide temperature changes, 
such basic studies are necessary to understand the key mechanisms that may result in 
significant achievements in the future, such as reducing the vulnerability of economi-
cally valuable plant species to increased temperatures.

Perspectives

Forecasting the long-term environmental impact of climate change is a significant research 
challenge, as stacking evidence indicate the deep ecological consequences [50], like shifts 
in geographic distribution of many species across the world [51,52]. Most importantly, 
our food security might be hampered, as even small rises in temperature can influence 
plant performance and consequently the crop yields [34]. It is assumed that species in 
the natural environment will reach the position of their current climatological niche 
whenever possible (Franklin 2001, cited after [51]), but such a scenario is rather difficult 
to imagine and implement in terms of the agricultural environment. Climate change 
influences ecosystems greatly, however, despite the impact of temperature increase being 
mostly negative, it may also be positive for plant growth depending on the species and 
its location; the final outcome in a particular ecosystems is often related to other limiting 
factors, such as drought, air pollution, and water acidification (e.g., [53]). Notably, the 
global water cycles will also change, and it will be regionally unbalanced [1]. Climate 
change is unequivocally taking place, even so, it is difficult to forecast its speed and 
direction. Scientist use various climate models (ranging from simple to comprehensive 
to earth system models) to predict changes in the climate system based on various 
anthropogenic triggered alterations. Nonetheless, we lack a guaranteed projection 
of the future outcomes due to the complexity of climate shaping, which is especially 
true on a regional scale [1]. Climate is the final outcome of various natural drivers, 
human activities, and different complex interrelationships; thus, the observed impact 
of these changes will greatly differ across the regions of the world. Notwithstanding the 
ultimate temperature outcomes remain uncertain, given the importance of the issue, 
a significant amount of research on plant growth response to increased temperature 
is fundamental, particularly on the SAM, the most pivotal structure for plant survival 
and reproduction. Although Arabidopsis is not among the economically valuable plants, 
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the studies focusing on that species are still of great relevance. Arabidopsis is especially 
suited for complex and advanced molecular research; therefore, it may rapidly deliver 
big amounts of data that facilitate in-depth understanding of the molecular mechanisms 
in the underlying processes, the knowledge that could be implemented in the future to 
enhance economically valuable plant species.
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