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Abstract
Melatonin is an endogenous indolamine found in many plants. It has been shown
to generate a wide range of metabolic, physiological, and cellular responses, thus
affecting growth and development, particularly under different environmental
stresses. In the present review, we focus on its role in germination, growth and
development, photosynthesis, senescence, and antioxidant activity in plants.
Further, an effort has been made to discuss its occurrence, biosynthesis, and
relationship with other phytohormones in plants. Moreover, melatonin-mediated
signaling and its mechanisms of action under stress conditions in plants have been
comprehensively discussed. Finally, its role under various abiotic stress conditions
has also been discussed in this review.
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1. Introduction

Melatonin is a biogenic amine present in almost all life forms (Hardeland, 2016;
Tan et al., 2014). It was discovered in 1958 from the pineal gland of vertebrates
(Lerner et al., 1958). In animals, it plays multifaceted regulatory roles in diverse
processes, including circadian rhythm, homeostasis, seasonal photoperiodism,
and immunological enhancement (Calvo et al., 2013; Galano et al., 2011; Maitra
& Hasan, 2016; Venegas et al., 2012). Although melatonin was first reported in
plants about two decades ago (Dubbels et al., 1995; Hattori et al., 1995), it has
received scientific attention only in recent years. Since its discovery in plants,
melatonin has been established as a prominent signaling molecule and has
inspired many researchers to examine its characteristics. Melatonin is a natural
compound that not only enhances the growth and developmental processes, but
also plays a prominent role in protecting plant life against various stressors (Arnao
& Hernández-Ruiz, 2015b; Kołodziejczyk & Posmyk, 2016; Nawaz et al., 2016;
Posmyk & Janas, 2009; Reiter et al., 2015; Wang et al., 2018; Zhang, Sun, et al., 2015).
These properties characterize it as a biostimulator in plants (Arnao & Hernández-
Ruiz, 2014a, 2015a; Janas & Posmyk, 2013; Kołodziejczyk & Posmyk, 2016).
Moreover, it is worth mentioning that melatonin acts as a growth regulator and also
as a powerful scavenger for different reactive oxygen species (ROS) and reactive
nitrogen species. It plays a significant role in photosynthesis, photoprotection,
senescence, apoptosis, and as an antioxidant. In addition, melatonin upregulates
gene expression to deal with biotic and abiotic stresses. Thus, melatonin can be used
as an effective growth regulator for sustainable crop production, without the risk of a
negative impact on the external environment (Arnao & Hernández-Ruiz, 2019;
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Beyer et al., 1998; Reiter et al., 2001, 2002, 2015; Rodriguez et al., 2004; Russel et
al., 2002; Tan et al., 1993; Zhang et al., 2016).
This review aims to highlight the dynamic aspects of melatonin from the data
available in the fields of biosynthesis, seed germination, plant growth and
development, photosynthesis, and senescence. In addition, its role against various
abiotic stresses, as an antioxidant, has been discussed. Furthermore, an effort has
been made to shed light on its relationship with other phytohormones (viz., auxin,
gibberellins, cytokinins, ethylene, abscisic acid, brassinosteroids, salicylic acid, and
jasmonic acid) in the modification of plant growth and development.

2. Occurrence

Melatonin is a ubiquitous compound found in several species of plants (Table 1).
In phototropic organisms, melatonin was first discovered in marine dinoflagellate
Lingulodinium polyedrum (Balzer & Hardeland, 1991; Pöggeler et al., 1989, 1991),
and later in macroalgae (Fuhrberg et al., 1996) and higher plants (Balzer &
Hardeland, 1996; Dubbels et al., 1995; Hattori et al., 1995). This indolamine is
located mainly in roots, leaves, flowers, seeds, and bulbs of plant species belonging
to families such as Poaceae, Rosaceae, Apiaceae, Vitaceae, and Brassicaceae.
Melatonin concentration varies with the species and stage of plant development,
and also with external environmental factors (Byeon & Back, 2014a; Feng et
al., 2014; Hardeland, 2016; van Tassel et al., 2001; Zhao et al., 2013). Under identical
conditions, corn (Zea mays) and rice (Oryza sativa) seeds exhibited the highest
values of melatonin, ranging from 11 to 2,034 ng g−1 dry weight (DW) and 11 to
264 ng g−1 DW, respectively (Wang et al., 2009). Chen et al. (2003) quantified the
melatonin level in 64 medicinal herbs and reported concentrations ranging from
12 to 3,771 ng g−1 DW. Among plants, to date, the highest level (227–233 µg g−1
DW) of melatonin has been detected in different varieties of pistachio (Pistacia
vera) kernels (Oladi et al., 2014). Although Arabidopsis thaliana is not of major
agronomic significance, it offers significant advantages for basic research in genetics
and molecular biology. Melatonin has been detected in A. thaliana leaves at a level
of 80–120 ng g−1 DW; however, it did not show any significant variations during
the day (Hernández et al., 2015). Tan et al. (2007) reported high levels of melatonin
closer to sunset in water hyacinth (Eichhornia crassipes) leaves (34–72 ng g−1 fresh
weight – FW; 2.3–3.6 ng g−1 FW at night] due to the promotion of melatonin
synthesis by light. Similar results were also observed for morning glory (Pharbitis
nil) and tomato (Solanum lycopersicum) (van Tassel et al., 2001).
Endogenous melatonin values increased in plants under unfavorable biotic and
abiotic conditions. Rice seedlings exposed to darkness and high temperature
exhibited 2.9–4.9 ng g−1 FW more melatonin, which was directly correlated with
the activity of its biosynthetic enzymes (Byeon & Back, 2014b). A similar pattern
of increase in melatonin level (more than 135%) was exhibited by tomato plants
exposed to shade (Riga et al., 2014).

Table 1 Content of melatonin in particular plants.

Species Common name Organ Content [ng g−1
FW (DW)]

Reference

Actinidia deliciosa Liang-Ferg. Kiwi Fruits 0.02 Hattori et al. (1995)
Allium cepa L. Onion Bulbs 0.03 Hattori et al. (1995)
Ananas comosus L. Pineapple Fruits 0.30 Sae-Teaw et al. (2013)
Ananas comosus Stickm. Merill. Pineapple Fruits 0.04 Hattori et al. (1995)
Apium graveolens L. Celery Seeds 7 (DW) Manchester et al. (2000)
Arabidopsis thaliana (L.) Heynh. Thale cress Leaves 80–120 (DW) Hernández et al. (2015)
Asparagus officinalis L. Asparagus Shoots 0.01 Hattori et al. (1995)
Asparagus aphyllus L. Asparagus Leaf 0.14 Zohar et al. (2011)
Avena sativa L. Oat Seeds 1.79 Hattori et al. (1995)
Baccaurea ramiflora Lour. Burmese grape Leaves 43.2 (DW) Padumanonda et al. (2014)
Basella alba L. Indian spinach Leaves 0.04 Hattori et al. (1995)
Beta vulgaris L. Beet Root 0.002 Dubbels et al. (1995)

Continued on next page
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Table 1 continued
Species Common name Organ Content [ng g−1

FW (DW)]
Reference

Brassica chinensis Juslen Chine cabbage Leaves 0.11 Hattori et al. (1995)
Brassica hirta Moench. White mustard Seeds 189 (DW) Manchester et al. (2000)
Brassica nigra L. Black mustard Seeds 129 (DW) Manchester et al. (2000)
Brassica oleracea L. Cabbage Leaves 0.107 Hattori et al. (1995)
Cannabis sativa L. Hemp Seeds 13.4–30.4 (DW) Allegrone et al. (2019)
Capsicum annuum L. Red pepper Seeds 0.18 (DW) Huang and Mazza (2011)
Capsicum annuum L. Green pepper Seeds 0.52 (DW) Huang and Mazza (2011)
Capsicum annuum L. Orange pepper Seeds 0.58 (DW) Huang and Mazza (2011)
Chenopodium rubrum L. Red pigweed Shoots 0.2 Kolář et al. (1997)
Coffea arabica L. Coffee Arabica Beans 6,800 (DW) Ramakrishna et al. (2012)
Coffea canephora Pierr. Coffee Robusta Beans 5,800 (DW) Ramakrishna et al. (2012)
Colocasia esculenta L. Taro Shoots 0.06 Hattori et al. (1995)
Coriandrum sativum L. Coriander Seeds 7 (DW) Manchester et al. (2000)
Crataegus aronia (L.) Bosc ex DC. Mediterranean

medlar
Leaves 0.34 Zohar et al. (2011)

Cucumis sativus L Cucumber Seeds 11–80 Kołodziejczyk et al. (2015)
Cucumis sativus L. Cucumber Fruits 0.03 Hattori et al. (1995)
Curcuma aeruginosa Roxb. Curcuma Roots 120 (DW) Chen et al. (2003)
Daucus carota L. Carrot Roots 0.06 Hattori et al. (1995)
Eichhornia crassipes (Mart) Solms Water hyacinth Leaves 34–72 (DW) Tan et al. (2007)
Elettaria cardamomum White et
Maton

Green cardamom Seeds 15 (DW) Manchester et al. (2000)

Ephedra campylopoda C. A. Mey. Leafless Ephedra Leaves 0.18 Zohar et al. (2011)
Ephedra campylopoda C. A. Mey. Leafless Ephedra Seeds 0.38 (DW) Zohar et al. (2011)
Feijoa sellowiana (O. Berg) O. Berg Pineapple guava Leaves 1.53 Zohar et al. (2011)
Ficus carica L. Common fig Leaves 0.013 Zohar et al. (2011)
Ficus carica L. Common fig Fruits 3.96 Zohar et al. (2011)
Festuca arundinacea Schreb. Tall fescue Seeds 5.29 (DW) Hattori et al. (1995)
Foeniculum vulgare Gilib. Fennel Seeds 28 (DW) Manchester et al. (2000)
Fragaria ananassa Duch. Wild strawberry Fruits 0.01 Hattori et al. (1995)
Fragaria ×ananassa Duch. Strawberry Fruits 0.01 Hattori et al. (1995)
Fragaria ×ananassa Duch. Strawberry Fruits 1.4–11.26 Stürtz et al. (2011)
Helianthus annuus L. Sunflower Seeds 29 (DW) Manchester et al. (2000)
Hordeum vulgare L. Barley Seeds 0.378 (DW) Hattori et al. (1995)
Hordeum vulgare L. Barley Seeds 0.58 (DW) Hernández-Ruiz and Arnao

(2008)
Hypericum perforatum L. St John’s wort Flower 4 Murch et al. (1997)
Hypericum perforatum L. St John’s wort Leaves 2 Murch et al. (1997)
Hypericum perforatum L. St John’s wort Germplasm 1,800 Murch and Saxena (2006)
Juglans regia L. Walnut Seeds 3.5 (DW) Reiter et al. (2005)
Laurus nobilis L. Bay laurel Leaves 8.33 Zohar et al. (2011)
Laurus nobilis L. Bay laurel Fruits 3.71 Zohar et al. (2011)
Laurus nobilis L. Bay laurel Seeds 6.06 Zohar et al. (2011)
Linum usitatissimum L. Flax Seeds 12 (DW) Manchester et al. (2000)
Lupinus albus L. Lupin Seeds 3.83 Hernández-Ruiz and Arnao

(2008)
Lycium barbarum L. Goji berry Seeds 103 (DW) Manchester et al. (2000)
Lycium barbarum L. Goji berry Fruits 530 (DW) Chen et al. (2003)
Malus domestica Borkh Apple Fruits 0.05 Hattori et al. (1995)
Medicago sativum L. Alfalfa Seeds 16 (DW) Manchester et al. (2000)
Momordica charantia L. Bitter melon Leaves 21.4 (DW) Padumanonda et al. (2014)
Musa acuminata Colla Banana Fruits 0.0005 Dubbels et al. (1995)
Musa acuminata Colla Banana Fruits 0.009 Sae-Teaw et al. (2013)
Musa paradisiaca L. Banana Fruits 0.002 Dubbels et al. (1995)
Oryza sativa japonica L. Rice Seeds 1 Hattori et al. (1995)
Ochradenus baccatus Delile Taily-weed Leaves 0.47 Zohar et al. (2011)
Ochradenus baccatus Delile Taily-weed Fruits 0.49 Zohar et al. (2011)
Phillyrea latifolia L. Green olive tree Leaves 6.33 Zohar et al. (2011)
Phillyrea latifolia L. Green olive tree Seeds 0.44 Zohar et al. (2011)
Papaver somniferum L. Opium poppy Seeds 6 (DW) Manchester et al. (2000)

Continued on next page
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Table 1 continued
Species Common name Organ Content [ng g−1

FW (DW)]
Reference

Petasites japonicus (Siebold & Zucc.)
Maxim.

Butterbur Shoots 0.49 Hattori et al. (1995)

Pharbitis nil Choisy Morning glory Leaves 0.0005 van Tassel et al. (2001)
Pharbitis nil Choisy Morning glory Shoots 0.004 van Tassel et al. (2001)
Pimpinela anisum L. Anise Seeds 7 (DW) Manchester et al. (2000)
Pistacia vera L. ‘Ahmad Aghaei’ Pistachio Kernel 230.7–233

(DW)
Oladi et al. (2014)

Pistacia vera L. ‘Akbari’ Pistachio Kernel 226.9–229.2
(DW)

Oladi et al. (2014)

Pistacia vera L. ‘Kalleqouchi’ Pistachio Kernel 229.1–231.4
(DW)

Oladi et al. (2014)

Pistacia vera L. ‘Fandoghi’ Pistachio Kernel 228.4–230.7
(DW)

Oladi et al. (2014)

Piper nigrum L. Black pepper Leaves 1,093 (DW) Padumanonda et al. (2014)
Prunus amygdalus Batsch Almond Seeds 39 (DW) Manchester et al. (2000)
Prunus avium L. Sweet cherry Fruits 0.01–0.22 Gonzalez-Gomez et al. (2009)
Prunus avium L. Sweet cherry Fruits 8–120 Zhao et al. (2013)
Prunus cerasus L. Sour cherry Fruits 18 Burkhardt et al. (2001)
Prunus cerasus L. Sour cherry Fruits 1–19.5 Burkhardt et al. (2001)
Punica granatum L. Pomegranate Fruits 0.54–5.5 Mena et al. (2012)
Pyrus malus L. Apple Fruits 0.048 Hattori et al. (1995)
Rhamnus palaestina Boiss. Buckthorn Leaves 1.17 Zohar et al. (2011)
Rhamnus palaestina Boiss. Buckthorn Fruits 0.91 Zohar et al. (2011)
Rhamnus palaestina Boiss. Buckthorn Seeds 0.55 Zohar et al. (2011)
Raphanus sativus L. Red radish Bulbs 485 (DW) Chen et al. (2003)
Raphanus sativus L. Red radish Roots 0.6 Hattori et al. (1995)
Senna tora (L.) Roxb. Java bean Leaves 10.5 (DW) Padumanonda et al. (2014)
Sesbania glandiflora (L.) Desv. Agati Leaves 26.3 (DW) Padumanonda et al. (2014)
Sesbania sesban (L.) Merr. Sesban Leaves 8.7 (DW) Padumanonda et al. (2014)
Silybum marianum L. Milk thistle Seeds 2 (DW) Manchester et al. (2000)
Sinapis alba L. White mustard Seeds 189 (DW) Manchester et al. (2000)
Solanum lycopersicum L. Tomato Fruits 0.03 Hattori et al. (1995)
Solanum lycopersicum L. Tomato Fruits 0.5 Dubbels et al. (1995)
Solanum lycopersicum L. Tomato Fruits 4.1–114.5 Stürtz et al. (2011)
Solanum elaeagnifolium Cav. Silver-leaved

nightshade
Fruits 7.89 Zohar et al. (2011)

Solanum elaeagnifolium Cav. Silver-leaved
nightshade

Seeds 5.61 Zohar et al. (2011)

Tanacetum parthenium L. Feverfew Leaves 2 Murch et al. (1997)
Trigonella foenum-graecum L. Fenugreek Seeds 43 (DW) Manchester et al. (2000)
Vigna radiata L. Mung bean Roots 0.24 (DW) Szafrańska et al. (2014)
Vitis vinifera L. Grapevine Fruits 0.005–0.97 Iriti and Varoni (2017)
Vitis vinifera L. Grapevine Fruits 0.6–1.2 Stege et al. (2010)
Vitis vinifera L. Grapevine Fruits 3–18 Vitalini et al. (2011)
Zea mays L Corn Seeds 14–53 Kołodziejczyk et al. (2015)
Zea mays L. Corn Seeds 1.37 Hattori et al. (1995)
Zingiber officinale Roscoe Ginger Roots 0.58 Hattori et al. (1995)
Ziziphus spina-christi (L.) Desf. Christ’s thorn jujube Leaves 1.32 Zohar et al. (2011)

3. Biosynthesis

Melatonin is an indolic compound synthesized from serotonin in both plants
and animals, with a minor difference in the two synthetic pathways. Melatonin is
synthesized from tryptophan (an essential aromatic amino acid) through various
four-step reactions catalyzed by six enzymes, i.e., tryptophan decarboxylase (TDC),
tryptophan hydroxylase (TPH), tryptamine 5-hydroxylase (T5H), serotonin N-
acetyltransferase (SNAT), N-acetylserotonin O-methyltransferase (ASMT), and
caffeic acid O-methyltransferase (COMT) (Figure 1). Multiple synthetic pathways
exist, and all of them involve serotonin as an intermediate. Under normal growth
conditions or low cellular serotonin levels, the following pathways exist: (i)
tryptophan / tryptamine / serotonin / N-acetylserotonin / melatonin; (ii) tryptophan
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/ 5-hydroxytryptophan / serotonin / N-acetylserotonin / melatonin. On the other
hand, the pathway: tryptophan / tryptamine / serotonin / 5-methoxytryptamine
/ melatonin occurs when plants produce large amounts of serotonin, for example,
during senescence. Tryptophan is first converted into tryptamine catalyzed
by the enzyme TDC, which is then hydroxylated by T5H into serotonin (5-
hydroxytryptamine) (Back et al., 2016; Kang et al., 2008, 2010, 2011, 2013; Park
et al., 2012). Thereafter, serotonin is N-acetylated by SNAT, which is further
methylated by ASMT (or together with COMT) to synthesize melatonin (Champney
et al., 1984; Lei et al., 2013). TDC action is considered as the rate-limiting step in
the pathway of melatonin biosynthesis (Byeon et al., 2014, 2015; Lee et al., 2014),
suggesting that two alternate routes may be involved in methylation. Moreover,
SNAT has been reported to metabolize serotonin directly into N-acetylserotonin
through alternative minor pathways. ASMT and COMT catalyze the conversion
of serotonin into 5-methoxytryptamine, which is then converted into melatonin
by SNAT. The melatonin biosynthetic capacity associated with the conversion
of tryptophan to serotonin is considerably higher than that associated with the
conversion of serotonin to melatonin, which yields a low level of melatonin synthesis
in plants. Lee et al. (2018) also found that exogenous N-acetylserotonin can be
converted to serotonin in rice seedlings by N-acetylserotonin deacetylase (ASDAC),
which may result in a reduction in the content of melatonin.
Melatonin intermediates are produced in various subcellular locations, such as the
cytoplasm, endoplasmic reticulum, and chloroplasts (Figure 1). Depending on the
pathway, the final subcellular site of melatonin synthesis can be the cytoplasm or
the chloroplasts, which may differentially affect the mode of action of melatonin
in plants (Tan et al., 2016; van Tassel et al., 2001; Wei et al., 2016, 2017). SNAT is
found in both chloroplasts and mitochondria. TPH, ASMT/COMT, and TDC are
distributed in the cytoplasm, while T5H is found only in the endoplasmic reticulum.
These subcellular locations of melatonin synthesis enzymes suggest that during
evolution, the sites of melatonin synthesis became more diverse and extended to
the cytoplasm and endoplasmic reticulum (Back et al., 2016; van Tassel et al., 2001).

4. Physiological Role

4.1. Seed Germination

Successful germination and seedling establishment are the two major steps for
establishing plant populations. Exogenous application of melatonin to seeds
improved the germination rate as well as germination percentage in lentils (Lens
culinaris) and kidney beans (Phaseolus vulgaris) (Aguilera et al., 2015), Glycine
max (Wei et al., 2015), Pisum sativum (Szafrańska et al., 2016), and Cucumis
sativus (Posmyk, Bałabusta, & Janas, 2009; Posmyk, Bałabusta, et al., 2009; Zhang
et al., 2013; Zhang, Zhang, et al., 2014; Zhang, Zhang, et al., 2017). In the natural
course, during the initial stages of seed germination, melatonin concentration
increases rapidly and attains a peak after 14 hours. However, its concentration
decreases as germination proceeds and attains a steady state during the later stages
of seedling establishment. Cucumber seeds primed with 1 µM melatonin have about
9 times more melatonin during the first day of germination, which then decreases
considerably by alleviating the inhibitory effect of salinity. The initial increase
of melatonin in cytoplasm might contribute to the mobility of nutrients to the
metabolic site of germinating seeds (Aguilera et al., 2015). This increase may also
be due to a reduction in the oxidative burst due to the enhancement of antioxidant
activity, including activities of enzymes like catalase (CAT), superoxide dismutase
(SOD), and peroxidase (POD), with a consequent 1.4–2-fold increase in CsCAT,
CsCu-ZnSOD, CsFe-ZnSOD, and CsPOD. Melatonin alters seed germination by
decreasing the ABA content, as it downregulates the rate-limiting genes related
to ABA biosynthesis (e.g., 9-cis-epoxycarotenoid dioxygenase, CsNECD2, 0.29-
fold). At the same time, gibberellin (GA) biosynthesis associated genes (e.g.,
gibberellin 3β-dioxygenase – GA3ox; gibberellin 20-oxidase – GA20ox) are
upregulated by melatonin, causing a sudden accumulation of GA. Hence, it is
assumed that melatonin influences signal transduction and plays a role in inducing
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Figure 1 Generalized diagram of four biosynthetic pathways of melatonin in a plant with distinction to organelles.

seed germination processes. The positive effects of presowing melatonin treatment
are related not only to seed quality, but also to seedling development, growth, and
plant yield (Huang et al., 2018; Janas et al., 2009; Posmyk, Bałabusta, & Janas, 2009;
Szafrańska et al., 2013, 2014; Zhang, Zhang, et al., 2014).
Melatonin has been established as a promising agent for enhancing seed
germination. Various reports demonstrate its positive effect in a dose-dependent
manner; however, the effect differs from species to species. Lower concentrations
(5 and 20 µM) of melatonin caused a significant increase in the germination of
Stevia rebaudiana seeds as compared to higher concentrations (100 and 500 µM)
(Simlat et al., 2018). Posmyk et al. (2008) also reported that lower concentrations (1
and 10 µM) significantly enhanced the germination rate in red cabbage. Hence, at
lower concentrations, melatonin increases the germination rate, germination index,
germination potential, and germination survival rate, whereas these are inhibited
by higher doses (Gao et al., 2018). Similarly, Korkmaz et al. (2017) revealed that
melatonin (1 or 5 µM) application in pepper seeds enhanced their germination
and seedling emergence performance, in chilling stress conditions. This may be
due to the induced synthesis of various antioxidants that protect the stressed plants
from the oxidants and reduce the germination emergence period of the seedlings.
Conversely, higher concentrations have been shown to exert inhibitory impacts
(Chen et al., 2009; Hernández-Ruiz et al., 2004; Wei et al., 2015).

Acta Societatis Botanicorum Poloniae / 2020 / Volume 89 / Issue 2 / Article 8922
Publisher: Polish Botanical Society 6



Mir et al. / Melatonin in Plants

4.2. The Possible Pathway of the Effect of Melatonin on Seed Germination

Successful seed germination is crucial for plant growth and development. Xiao
et al. (2019) reported that a low concentration of melatonin promoted seed
germination in cotton (Gossypium hirsutum) by enhancing the germination
potential, germination rate, final fresh weight, vigor index, germination index, and
mean germination time. Moreover, melatonin regulates GA3 and ABA contents in
germinating seeds by decreasing the ABA (68%) content and increasing the GA3

content by about 1.7–2.5 times. In another study, Limonium bicolor plants treated
with melatonin also showed high levels of melatonin and GA3, low levels of ABA,
and a high level of amylase and α-amylase activity. Melatonin upregulated the
expression of GA biosynthesis (GA20ox and GA3ox) genes, downregulated key genes
involved in ABA biosynthesis (LbNCED1 and LbNCED3), and upregulated ABA 8′-
hydroxylase genes (LbCYP707A1 and LbCYP707A2) (Li et al., 2019). In addition, it
upregulated the enzymes involved in glycolysis, citric acid cycle, and the glyoxylate
cycle (isocitrate lyase and malate synthetase). It also upregulated the activities of α-
and β-amylases and promoted starch catabolism for ATP production in germinating
seeds. These results demonstrate that melatonin acts as a positive regulatory factor
in energy metabolism and seed germination (Zhang, Zhang, et al., 2017).

4.3. Growth and Development

Aguilera et al. (2015) reported that melatonin considerably enhanced root growth
in kidney bean and lentil sprouts. Their results show that the application of 20 µM
melatonin increases radicle growth in lentils by about 1.4 times when compared
to test seedlings treated with water (control). However, seedlings of kidney beans
treated with melatonin increased by about 1.6 times compared to the control
seedlings. This impact of melatonin depends not only on its concentration but
also on the species and the stage of growth and development (Chen et al., 2009).
At lower concentrations, melatonin treatment enhanced the number of roots, and
altered the rooting percentage and root length in in vitro cultures of sweet cherry.
However, higher concentrations had a negative effect, resulting in restrained growth
and development of cherry roots (Sarropoulou, Dimassi-Theriou, et al., 2012;
Sarropoulou, Therios, et al., 2012). Similarly, Stevia seedlings treated with lower
concentrations of melatonin showed significant improvement in growth compared
to those treated with higher concentrations (Simlat et al., 2018). Kang et al. (2010)
also confirmed the positive role of melatonin while working on transgenic rice plants
and in vitro cherry tomato cultures.
Melatonin is known to alter plant growth and development in a dose-dependent
manner. In Stevia plantlets, melatonin enhanced growth and development of
aboveground parts, viz., an increase in fresh weight, stem length, and number of
leaves was observed (Simlat et al., 2018). In A. thaliana, melatonin at an optimal
concentration (10–30 µM) increased fresh weight than at higher concentrations
(200–400 µM) (Bajwa et al., 2014). Moreover, melatonin pretreatment mitigated
the drought-stressed inhibition of naked oat seedlings by promoting seedling growth
and plant height (2.3%), and increasing stem thickness (14.5%), plant fresh weight
(10.7%), and dry weight (7.6%) when compared to untreated seedlings (Gao et
al., 2018). However, at a higher dose of 500 µM, it led to toxicity by inhibiting
all growth parameters. Inhibition of growth and development was also observed
in red cabbage under a higher concentration (100 µM) of melatonin (Posmyk et
al., 2008), which might be due to oxidative protein degradation and other issues
related to protein biosynthesis and antioxidant activity (Kładna et al., 2003). To
summarize, melatonin is now known to improve various plant characteristics,
including germination, growth (Kładna et al., 2003), and grain yield (Byeon &
Back, 2014a).

4.4. Effect on Photosynthesis

Photosynthesis is sensitive to various stresses (biotic and abiotic), which exert
a negative effect by decreasing the chlorophyll content, destroying excitons in
chloroplasts, and stomatal closure. However, the application of melatonin is
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beneficial in alleviating these adverse effects of stress. Melatonin improves the
efficiency of photosystems at a cellular level by lowering the rate of chlorophyll
degradation, and increasing stomatal conductance, aiding in both opening and
closing of stomata; therefore, plants exhibit a higher rate of photosynthesis and
CO2 assimilation as well as an increase in antioxidant levels (Arnao & Hernández-
Ruiz, 2009b, 2014b; Li, Zeng, et al., 2018). Melatonin protects against chlorophyll
degradation, and hence, improves photosynthetic efficiency. It also reduces the
negative impacts of abiotic stresses, guards/protects the chloroplast, promotes
sugar assimilation, and increases proline accumulation to maintain normal cellular
functions under stress. This suggests that melatonin may have a role as a marker
of stress tolerance through an osmoregulatory response (Arnao & Hernández-
Ruiz, 2014a, 2015a). Moreover, melatonin in tomato (Lycopersicon esculentum)
enhances quantum yield by mitigating photo-oxidative damage, and by facilitating
the repair of photo-oxidatively damaged D1 protein (Zhou et al., 2016). Melatonin
also stimulates the genes related to photosynthesis, carbon assimilation, and
ascorbate biosynthesis (Arnao & Hernández-Ruiz, 2015b). Sarropoulou, Dimassi-
Theriou, et al. (2012) also reported that melatonin treatment of stressed cherry
rootstock resulted in an increase in photosynthetic pigments, ultimately leading
to higher carbohydrate accumulation and an increase in biomass production and
proline content. Similarly, salt-stressed soybean plants responded to melatonin with
an improvement in growth, yield, and tolerance against stress. This enhancing effect
of melatonin is attributed to the induction of expression of genes associated with
photosynthesis, carbohydrate/fatty acid metabolism, and ascorbate biosynthesis.
In soybean, melatonin significantly upregulates PsaK and PsaG of photosystem I,
oxygen-evolving enhancer proteins PsbO and PsbP, the ferredoxin gene PetF, and the
VTC4 gene involved in ascorbate biosynthesis (Wei et al., 2015). Moreover, Han et
al. (2017) reported that melatonin-pretreated seedlings of rice (O. sativa) exhibited
a significant increase in the photosynthetic pigment (chlorophyll and carotenoid)
content under stress conditions. In addition, optimal stomatal conductance and
increased intercellular CO2 accumulation led to an increase in net photosynthetic
rate, improved water use efficiency, and enhanced efficiency of PSII, by increasing
PSII proteins (D1, CP43, Lhcb1, and Lhcb2), under stress conditions. Comparable
observations of photosynthetic improvement were recorded in bermudagrass
(Cynodon dactylon) (Hu et al., 2016), A. thaliana (Bajwa et al., 2014), and wheat
(Triticum aestivum) (Turk et al., 2014). It may, therefore, be suggested that
melatonin promotes growth by enhancing photosynthesis via the upregulation of
expression of photosynthesis-associated genes (Arnao & Hernández-Ruiz, 2014b;
Hardeland, 2015).

4.5. Role of Melatonin in Reproductive Development and Circadian Rhythms

Melatonin is a promising candidate for mediating the circadian process by regulating
the circadian clock and rhythmic changes in animals (Cassone, 1998). After its
discovery in plants, it was believed to have a comparable function as recognized in
mammals. Thus, initial research focused on examining its potential role in circadian
rhythms and the associated aspects (flowering, photoreceptors, vernalization,
hormones, and circadian rhythms) (Arnao & Hernández-Ruiz, 2006; Rodriguez et
al., 2004; Zhang, Sun, et al., 2015; Zhao et al., 2019).
Kolář et al. (1997) noticed fluctuations in endogenous melatonin concentrations
in Chenopodium rubrum during 12-hr light/dark cycles. The variations were
insignificant during the day, whereas a significant rise in melatonin levels was
observed during the dark period. Such an increase during the dark period was
similar to that reported in mammals. Furthermore, the macroalga Ulva sp. exhibits
a melatonin rhythm with a peak at night in a long-photoperiod day (16 hr) (Tal et
al., 2011). Further, under natural conditions, water hyacinth (E. crassipes), exhibited
the highest concentration of melatonin with a peak occurring late in the light phase
(Tan et al., 2007). In another study, P. nil grown under light/dark photoperiod
showed no significant change in endogenous melatonin concentration. Moreover,
Lycopersicum esculentum investigated at different ripening stages did not show any
significant differences in melatonin content (van Tassel et al., 2001).
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4.6. Antioxidative Defense System

The key function of melatonin in plants is to act as an antioxidant and protect
against various environmental pollutants (Arnao & Hernández-Ruiz, 2019;
Manchester et al., 2000; Nawaz et al., 2016; Tan et al., 1993). Arnao and Hernández-
Ruiz (2009a) exposed barley (Hordeum vulgare) plants to multiple stresses (zinc,
hydrogen peroxide, or NaCl) and reported an upsurge in endogenous melatonin
level. This increase in the melatonin level was dependent on the age of the plant and
stress level. The same results have been noted in lupin (Lupinus albus) seedlings.
Moreover, melatonin application to plants (barley and lupin) improved plant growth
and development as well as plant survival under multiple stresses. In addition, pea
and red cabbage seedlings exposed to melatonin under copper stress exhibited
similar responses (Posmyk et al., 2008). In their study on the mitigative effect of
melatonin in apple seedlings (45 days old) subjected to salinity stress, Li et al. (2012)
reported a decline in the inhibitory effect on shoot height, leaf number, chlorophyll
content, and electrolyte leakage, compared to water treated seedlings. Furthermore,
hydrogen peroxide levels were drastically reduced, ROS metabolizing enzymes
(ascorbate peroxidase, APX, CAT, and peroxidase activity) were activated, and both
Na+ and K+ transporters (NHX1 and AKT1) were upregulated, which reduced salt-
induced stress in melatonin-rich transgenic rice (Park et al., 2013).
Moreover, melatonin application enhanced antioxidant enzyme activity in drought-
stressed naked oat (Avena nuda) seedlings. Following 100 µM exogenous melatonin
treatment of drought-stressed oat seedlings, the activity of SOD, POD, CAT,
and APX was improved by 110.4%, 34.3%, 26.1%, and 10.4%, respectively (Gao
et al., 2018). Martinez et al. (2018) used a combination of salinity and heat to
evaluate the total antioxidant capacity of leaf extracts of tomato seedlings in the
presence and absence of melatonin. Their results showed an 85% loss in protective
antioxidant levels in stressed seedlings deprived of melatonin, while melatonin-
treated seedlings exhibited only a 30% loss, compared to control plants. In addition,
stressed seedlings treated with melatonin also showed lesser accumulation of H2O2.
At lower concentrations, melatonin may act as either a hydrophilic or hydrophobic
antioxidant. This property allows it to move rapidly and freely between cell
compartments to shield them against reactive oxygen species (Venegas et al., 2012).
Melatonin reduces the oxidative burst of various biomolecules, such as nucleic
acids, proteins, and lipids. In summary, the protective properties of melatonin
are: (i) it acts as a free radicle scavenger, (ii) enhances activity/accumulation
of antioxidant enzymes, (iii) changes the redox status of the cell via regulation
of glutathione synthesis and oxidation, (iv) ensures protection of antioxidant
enzymes from oxidative destruction, (v) reduces free radicle formation and electron
leakage by enhancing the efficiency of mitochondrial electron transport chain.
These characteristics make melatonin a potent and effective regulator preventing
or nullifying oxidative stress (Beyer et al., 1998; Li, Brestic, et al., 2018; Reiter et
al., 2002; Rodriguez et al., 2004; Wang et al., 2012).

4.7. Senescence

Since the discovery of melatonin from the bovine pineal gland, this indolamine has
been known to neutralize age-related impairments, and under certain experiments,
to prolong the life-span of some animals to a certain extent (Tan et al., 2018).
As aging is not directly associated with plants, its role in senescence has been
studied, and it has been confirmed as an antisenescence compound. Liang et al.
(2018) reported that exogenous application of melatonin (200 µm) in kiwifruit
delayed senescence. Their results further showed that melatonin efficiently
promoted the transcription of CAB genes, declined chlorophyll degradation, favored
the accumulation of soluble sugars and proteins, and maintained normal cell
metabolism. Moreover, an increase in the content of flavonoids and antioxidant
substances (ascorbic acid – AsA, glutathione – GSH), and a decrease in the
malondialdehyde (MDA) content had a positive effect on maintaining the cell
membrane, validating its role in delaying leaf senescence.
Weeda et al. (2014) showed that melatonin treatment upregulated genes involved in
ABA, salicylic acid (SA), ethylene, and jasmonic acid (JA) biosynthetic pathways,
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and downregulated genes associated with both cell wall synthesis and modifications
and auxin signaling in A. thaliana. Most of the SA, JA, ABA, and ethylene-
responsive genes induced by melatonin are also induced in response to stresses.
Byeon and Back (2014b) reported that melatonin downregulates aging-associated
genes, genes encoding JA-induced protein, senescence-associated protein 29
(SAG29), and polygalacturonase in rice seedlings. Similar results, pertaining to
the protective role of melatonin against chlorophyll degradation, have also been
reported in leaf sections of barley (Arnao & Hernández-Ruiz, 2009b). Furthermore,
various studies have shown a downregulation of the senescence-associated gene 12
(SAG12), and few variations in the influence on redox parameters, like lowering
of H2O2 levels, reduction in GSH content, the elevation of ascorbate content, and
elevated activity of redox-related enzymes, such as APX, glutathione reductase,
CAT, and POD (Byeon & Back, 2014a; Wang, Sun, Chang, et al., 2013). Moreover,
melatonin inhibited the expression of the sugar-sensing and senescence-associated
hexokinase-1 gene (HXK1), and upregulated various autophagy-related genes (ATGs
namely ATG3, ATG7a, ATG7b, ATG8g, ATG8h, ATG9, ATG10, and ATG18a) during
the terminal stage of senescence (Wang, Sun, Chang, et al., 2013). Melatonin was
shown to regulate the expression of senescence-associated genes, such as PAO,
HXK1, SAG12, and ATGs. These properties highlight the senescence-delaying
effects of melatonin in plants (Hardeland, 2015). Therefore, melatonin prevents
senescence, either by upregulating the expression of senescence-preventing genes
or by downregulating the expression of senescence-promoting genes.

5. Role of Melatonin Under Abiotic Stress

Various studies have reported melatonin concentrations under natural and modified
conditions, and have also explored its enormous potential and diverse roles in
plants. Its vital role as an antistress agent against abiotic stresses, such as drought
conditions, salinity, low, and high ambient temperatures, UV radiation, and toxic
chemicals, as well as biotic stresses, has been revealed. Melatonin-treatment had a
positive effect on its accumulation in plants, and upregulated the antistress genes
under abiotic stresses (viz., cold, drought, osmotic stress), indicating its involvement
in abiotic stress signaling (Wang et al., 2018; Zhang, Sun, et al., 2015).

5.1. Drought/Water Tolerance

Wang, Sun, Li, et al. (2013) reported that melatonin treatment reduces drought-
induced stress in apple plants, by improving the efficiency of photosystem II, via
mitigation of the stress-induced inhibition of photosynthesis, and maintaining a
higher level of CO2 assimilation and stomatal conductance. In another experiment
with cucumber seedlings treated with melatonin, a decline in chlorophyll
degradation along with an increase in the photosynthetic rate and antioxidant
enzymes was observed, which reduced the inhibitory effects of water stress (Zhang
et al., 2013). Exogenous application of melatonin relieved rapeseed seedlings from
the negative impact of drought stress on growth, and substantially increased the leaf
area, and root and shoot biomass. The plants accumulated more soluble sugars and
proteins and significantly less H2O2. Moreover, melatonin significantly increased
the activity of APX, CAT, and POD under drought stress (Li, Zeng, et al., 2018).
Similarly, melatonin treatment neutralized the impact of drought stress on seed
germination and root viability. It also increased net photosynthesis and chlorophyll
content (Zhang et al., 2013). In another study on wheat seedlings, melatonin
treatment remarkably reduced drought stress, promoting the accumulation of
antioxidant enzymes and decreasing ROS formation. It also reduced membrane
damage, maintained the grana lamella, and protected chloroplast and leaf structure.
Melatonin enhanced the photosynthetic rate and efficiency of photosystem II, and
the activity of enzymes and the accumulation of transcripts related to GSH and AsA
function (Cui et al., 2017). Moreover, melatonin-mediated lateral root formation in
Malus species improved the water absorption capacity (Li et al., 2015).

5.2. Salinity Tolerance in Plants

Salt stress is one of the most common challenges that hinder plant growth and
development. Salt stress leads to water scarcity and damages various physiological
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functions in plants (Parida & Das, 2005). Various studies have reported the role of
melatonin in reducing the adverse effects of salt stress in plants by its effect on the
salt-tolerant genes. In rice seedlings experiencing salt stress, melatonin treatment
induced salt tolerance by delaying cellular senescence and apoptosis, reducing
chlorophyll degradation, downregulating senescence-related genes, enhancing
antioxidant enzyme activity, and decreasing H2O2 accumulation. Thus, overall
plant health was significantly improved (Liang et al., 2015). Similarly, melatonin
treatment mitigated salt-induced growth inhibition in wheat seedlings, as evident
from increased biomass of shoots, higher chlorophyll level, enhanced photosynthetic
rate, and photosystem II efficiency. The plants also exhibited a reduction in the
accumulation of hydrogen peroxide (H2O2), which suggests a definitive role of
melatonin in overcoming salt stress in plants. It is worth emphasizing that melatonin
can be regulated via the positive-feedback loop and an increase in the concentration
of endogenous melatonin levels by the activation of the TaSNAT transcript,
encoding a key enzyme in melatonin biosynthesis (Ke et al., 2018). In addition,
exogenous melatonin increased salt tolerance in watermelon, by neutralizing its
adverse effects on photosynthetic rate and reducing the accumulation of ROS (Li et
al., 2017). Seed germination in cucumber was also promoted by melatonin through
the promotion of energy production (Zhang, Zhang, et al., 2017).

5.3. Heavy Metal Tolerance

Heavy metal contamination is a severe environmental problem for all organisms,
and particularly in plants. However, melatonin application appears to have a
beneficial effect on plant tolerance to different metal stresses. Cucumber seedlings
pretreated with exogenous melatonin not only exhibited an improved endogenous
melatonin concentration, but also showed a positive response in alleviating nitrate-
induced growth retardation (Zhang, Sun, et al., 2017). Melatonin application was
found to upregulate the transporters, viz., ABC transporter, PDR8 (PLEIOTROPIC
DRUG RESISTANCE 4), and HMA4 (HEAVY METAL ATPASE 4), leading to a
decline in the accumulation of cadmium and an improvement of the operating
redox imbalance in plants (Gu et al., 2017). Similarly, in watermelon, melatonin
eased vanadium stress and increased chlorophyll content and sugar accumulation,
and positively affected both growth and development. An increase in chlorophyll
content, shoot biomass, and antioxidant enzyme activity, as well as a reduction
in cadmium accumulation, was observed in Malachium aquaticum and hyper-
accumulator Galinsoga parviflora by melatonin application (Tang et al., 2018). In
addition, melatonin increased the photosynthetic efficiency, chlorophyll content,
and activity of enzymes related to carbon assimilation in wheat seedlings exposed
to nano-ZnO (Zuo et al., 2017). The positive role of melatonin in alleviating metal
toxicity has been reported in other studies, e.g., mitigation of aluminum toxicity
in soybean seedlings (Zhang, Zeng, et al., 2017), protecting red cabbage seedlings
against toxic effects of copper ions (Posmyk et al., 2008), and improvement of
cadmium tolerance in tomato plants (Li, Hasan, et al., 2016). Moreover, Hasan et
al. (2015) reported that melatonin treatment eases the toxicity caused by cadmium
stress in tomato plants by enhancing antioxidant enzyme activity, directly relieving
plants from the oxidative burst, augmenting their growth and development,
and increasing the photosynthetic rate and accumulation of photo-assimilates.
Melatonin also facilitated the repair of damage caused by photooxidation, by
enhancing the turnover/synthesis of D1 proteins (Zhou et al., 2016). Recent
studies have revealed that melatonin stimulates the expression of genes involved
in photosynthesis, carbon assimilation, fatty acid metabolism, and ascorbate
biosynthesis (Arnao & Hernández-Ruiz, 2015b).
Melatonin is known to alleviate environmental stress by its well documented free
radical scavenging activity, also during heat stress. Exogenous melatonin improved
thermal tolerance in kiwifruits by alleviating the H2O2 content, which might be
due to its electron neutralizing property and upregulation of genes involved in
the synthesis of antioxidant enzymes like SOD, CAT, and POD, which ultimately
decrease the content of reactive oxygen species and H2O2 (Arnao & Hernández-
Ruiz, 2019; Galano, 2011; Galano et al., 2011; Reiter et al., 2002). Similar results
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were also observed in C. sativus (Zhao et al., 2016), C. dactylon (Shi et al., 2015), and
Malus sp. (Wang, Sun, Chang, et al., 2013). Ahammed et al. (2019) described the
role of endogenous melatonin in tomato under high heat conditions by silencing
the CAFFEIC ACID O-METHYLTRANSFERASE 1 (COMT1) gene involved
in melatonin formation and lignin synthesis. This silencing of the melatonin
biosynthetic gene resulted in the induction of oxidative stress and an increase in
the electrolyte leakage percentage and malondialdehyde concentration, followed
by a decrease in the activity of key antioxidant enzymes, viz., APX and CAT, the
main regulators of thermotolerance in plants. Moreover, the exogenous application
of melatonin improved the level of endogenous melatonin, effectively mitigating
the oxidative stress-induced under adverse effects of heat. Under global warming
predictions, melatonin may be of potential use in neutralizing the impact of higher
temperatures for better crop productivity.

6. Relation with Other Phytohormones

The growth-promoting activity of melatonin shows a similarity with that of the
known phytohormone auxin. In various experimental studies, melatonin has been
shown to enhance the growth of both aerial as well as underground parts, in Prunus,
Triticum, Brassica, Hordeum, Avena, Lupinus, Arabidopsis, Oryza, Helianthus,
Punica, Cucumis, Solanum, Glycine, and Zea plants (Arnao & Hernández-
Ruiz, 2017). Its growth-enhancing capacity is evident even under unfavorable
conditions, e.g., as shown in Helianthus annuus, Z. mays, A. thaliana, C. dactylon,
and Malus sp. (Kim et al., 2016; Li, Liang, et al., 2016; Mukherjee et al., 2014; Shi
et al., 2015). Melatonin improves stem growth and root regeneration by up to 3
or 4 times in plants like Lupinus, Phalaris, Triticum, Hordeum, Arabidopsis, and
Cucumis, in comparison to control seedlings (Arnao & Hernández-Ruiz, 2017).
Growth-promoting activity of melatonin has also been demonstrated in wheat
(Turk et al., 2014), perennial ryegrass (Zhang, Shi, et al., 2017), cucumber (Zhang,
Zhang, et al., 2017), pepper (Korkmaz et al., 2017), lentil, and bean (Aguilera et
al., 2015). Melatonin treatment has been shown to increase auxin concentration
by 1.4–2.0 times in Brassica juncea (Chen et al., 2009) and tomato plants (Wen et
al., 2016). Conversely, in transgenic plants, its application decreased the endogenous
auxin concentration by about 7 times in tomato and by about 1.4 times in A.
thaliana. Exogenous melatonin in transgenic lupin plants developed auxin-like
responses, such as root growth and rhizogenesis, increase in adventitious roots,
apical dominance (Wen et al., 2016), and more lateral adventitious roots, by
modifying the order of root arrangement/distribution, time interval, number, and
length (Arnao & Hernández-Ruiz, 2007). Transgenic A. thaliana contains 2–4 times
more melatonin than the wild type. This increment in melatonin level is caused by
the transfer of Malus zumi N-acetylserotonin-O-methyltransferase (MzASMT1) gene
from drought-stressed apple plants (Arnao & Hernández-Ruiz, 2007; Koyama et
al., 2013). Similar results were also observed in tomato plants (Wen et al., 2016),
cucumber (Zhang, Sun, et al., 2017), pomegranate (Sarrou et al., 2014), and sweet
cherries (Kang et al., 2010; Murch et al., 1997). Furthermore, Chen et al. (2009)
reported that application of exogenous melatonin increased the auxin concentration
in Brassica juncea. This suggests that melatonin has similar effects to indole-3-acetic
acid (IAA), in both adventitious and lateral root induction (Arnao & Hernández-
Ruiz, 2014a).
It must be noted that though the auxin-like the role of melatonin is well
documented, evidence suggests that this is a result of the depletion of the
substrate pool – as tryptophan serves as the substrate for both IAA and melatonin
biosynthesis pathways (Arnao & Hernández-Ruiz, 2015b; Perez-Llorca et al., 2019).
Wang et al. (2014) reported that the upregulation of an ovine AANAT transgene in
‘Micro-Tom’ tomato plants triggered an increase in the melatonin level. However, a
decline in the auxin level was noted, which was ultimately correlated with the loss of
apical dominance.
Regarding its comparability with GA, the application of exogenous melatonin
alters GA level by upregulating genes associated with GA biosynthesis, such as
GA20ox and GA3ox, leading to greater accumulation of GA4 (Zhang, Zhang, et
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al., 2014). Another important feature of melatonin is its involvement in gravitropism
of underground tissues. Arnao and Hernández-Ruiz (2017) demonstrated that
the disruption of natural auxin level by melatonin-enriched agar blocks gave rise
to lateral roots with a loss of verticality. They concluded that melatonin induces
negative gravitropism. Application of melatonin downregulates the darkness-
induced senescence process by reducing chlorophyll loss in barley leaves, in a dose-
dependent manner, similarly to cytokinins, but at a relatively slower pace (Arnao
& Hernández-Ruiz, 2009b). Similarly, the impact of melatonin on the process of
senescence has been reported in various other species, including ryegrass (Gu et
al., 2017; Zhang, Shi, et al., 2017), cassava tuber (Hu et al., 2018; Ma et al., 2016),
sunflower (Mukherjee et al., 2014), rice (Liang et al., 2015), Malus domestica (Wang
et al., 2012), and C. sativus (Zhang et al., 2013). Application of melatonin in A.
thaliana (Weeda et al., 2014) and Malus hupehensis (Wang et al., 2012) has been
shown to downregulate chlorophyll-degrading enzymes.
Zhang et al. (2016) observed that melatonin downregulated senescence-associated
genes (LpSAG12 and Lph36) in Lolium perenne, which delayed senescence and
favored growth, and improved tiller number, cell membrane stability, chlorophyll
retention, and photosynthesis, in addition to increasing the level of cytokinin
precursors, such as isopentenyladenine and trans-zeatin riboside, under heat stress.
Cytokinin biosynthetic pathway genes (LpIPT2 and LpOG1) were also activated
under unfavorable stress conditions. In the case of ABA, melatonin treatment
decreases its content by downregulating the key enzyme (9-cis-epoxycarotenoid
dioxygenase), involved in ABA biosynthesis. Furthermore, melatonin can trigger
the overexpression of genes associated with ABA catabolism (Huang et al., 2018).
Pretreatment of drought-stressed apple seedlings with melatonin decreased the ABA
concentration by half, which was attributed to the alteration of expression of genes
involved in ABA biosynthesis or catabolism (Li et al., 2015).
Melatonin treatment upregulates 1-aminocyclopropane-1-carboxylic acid (ACC)
synthase expression, leading to an increase in ethylene generation. In addition,
melatonin regulates NR (never-ripped) and ETR4 (ethylene receptor 4), ethylene
receptor genes, as well as LeEIL1, LeEIL3, and LeERF2 (encoding ethylene-
transducing factors) (Sun et al., 2015). Upregulation of genes related to ACC
synthase was also observed in melatonin-treated A. thaliana (Weeda et al., 2014). In
tomato plants treated with melatonin, the expression of cell wall modifying proteins,
including polygalacturonase, pectin esterase 1, β-galactosidase, and expansin 1, was
upregulated. Melatonin also increased ethylene production, which was correlated
with altered ACC synthase expression. This suggests that melatonin can influence
ethylene to regulate textural changes in tomato fruit (Sun et al., 2015).

7. Melatonin Signaling Under Stress Conditions in Plants

Previous studies have highlighted the involvement of melatonin in the metabolism
of ROS and upregulation of antioxidants, which are responsible for the stress
resistance properties of melatonin in plants (Zhang, Sun, et al., 2015). In recent
years, several important reports have improved our understanding of the
mechanism of melatonin-mediated stress responses in plants. The first melatonin
receptor candidate γ-protein-coupled receptor 2/phytomelatonin receptor 1
(CAND2/PMTR1) was identified in A. thaliana, where it was associated with
receptor-mediated closure of stomata. It acts via heteromeric G protein α subunit-
regulated H2O2 and Ca2+ signals. CAND2 receptor is located on the plasma
membrane with seven transmembrane helixes that directly interact with melatonin.
Their interaction triggers the dissociation of G protein α, β, and γ subunits, which
in turn activates NADPH oxidase-dependent H2O2 production. The production of
H2O2, intervened by the cell-membrane-located NADPH oxidase, activates Ca2+
channels and enhances the Ca2+ influx, resulting in inactivated inward K+ currents
which facilitate stomatal closure (Wei et al., 2018; Wen et al., 2016).
In comparison to other phytohormones, melatonin has a secondary role as a
signaling molecule, especially under stress conditions. Transcription factors play
a crucial role in stress responses by directly regulating the transcription of stress-
responsive genes, and by establishing a cross-talk between multiple signaling
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pathways (Arnao & Hernández-Ruiz, 2015b; Shi et al., 2015; Zhang, Sun, et
al., 2015). In A. thaliana, the melatonin-mediated stress response involves four
transcription factors, i.e., Zinc Finger protein 6 (ZAT6), which is essential for
melatonin-mediated freezing stress response, Auxin Resistant 3 (AXR3)/IAA
inducible 17, which contributes to the process of natural leaf senescence, class A1
Heat Shock Factors, which are involved in melatonin-mediated thermotolerance,
and C-repeat-Binding Factors (CBFs)/Drought Response Element Binding 1
factors (DREB1s), which are essential for sugar accumulation and may also be
partially involved in melatonin-mediated stress response. Moreover, diurnal changes
in AtCBF/DREB1s expression may be regulated by corresponding changes in
endogenous melatonin level, which could subsequently be involved in the diurnal
cycle of plant immunity (Shi et al., 2016). Melatonin treatment also improves the
level of sugars and glycerol in A. thaliana, leading to an increase in endogenous
nitric oxide (NO), which confers immunity against bacterial pathogens via SA and
NO-dependent pathways (Qian et al., 2015; Shi et al., 2016). Furthermore, Lee and
Back (2016) reported that mitogen-activated protein kinase (MAPK) signaling,
through MAPK kinase 4/5/7/9-MPK3/6 cascades, is also required for the melatonin-
mediated establishment of innate immunity in plants.

8. Conclusion

The data presented here prove that melatonin is a potential signaling molecule
with a substantial impact on the maintenance of plant growth and development
and mitigation of various abiotic stresses (Figure 2). It plays an important role
in overcoming stress in plants by maintaining the germination process as well
as growth and development by increasing the GA level. It improves the rate
of photosynthesis by increasing the level of associated proteins, efficient CO2

assimilation, and by protecting the cell against damage induced by adverse effects
of stress. In addition, the role of melatonin in altering the activity of senescence-
associated genes and alleviating the level of various phytohormones, and its ubiquity
among different plant species may indicate its potential application for improving
yield in a wide variety of crops. It is evident that impressive advances have been
made in the field of melatonin research in plants, relating not only to its universal
presence but also to its role in different physiological functions. However, many
questions related to melatonin remain to be answered.

Figure 2 A simplified network of melatonin-mediated responses in plants.
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