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Abstract
Phylogenetic relations within Aconitum subgen. Aconitum (Ranunculaceae) in
Europe are still unclear. To infer the phylogeny of the nuclear (ITS) region and
chloroplast intergenic spacer trnL(UAG)-ndhF of the chloroplast DNA (cpDNA),
we analyzed 64 accessions within this taxon, 58 from Europe and six from the
Caucasus Mts. Nuclear ITS sequences were identical in 51 European and two
Caucasian accessions, whereas the remaining sequences were unique. cpDNA
sequences could be categorized into five haplotypes, i.e., A–E, including a
European-Caucasian Aconitum haplotype B. Ten cpDNA sequences were unique.
A 5-bp indel distinguished the diploids from the tetraploids. None of the extant
European diploids were basal to the tetraploid local group. A phylogenetic tree
based on combined ITS and cpDNA sequences (bayesian inference, maximum
likelihood, minimal parsimony) placed Aconitum burnatii (Maritime Alps, Massif
Central) and A. nevadense (Sierra Nevada, Pyrenees) in a sister group to all other
European species. A Bayesian relaxed clock model estimated the earliest split of
the Caucasian species during the Late Miocene [ca. 7 million years ago (Mya)],
and the divergence of A. burnatii and A. nevadense from the European genetic
stock during the Miocene/Pliocene (ca. 4.4 Mya). Diploids in Europe are likely to
be descendants of the Miocene European-Caucasian flora linked with the ancient
Asian (arctiotertiary) genetic stock. The origins of the tetraploids remain unclear,
and it is possible that some tetraploids originated from local, now extinct diploids.
Both the diploids and tetraploids underwent rapid differentiation in the Late
Pliocene – Quaternary period.
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Aconitum; Caucasus Mts; Europe; ITS; molecular clock; phylogeny; trnL(UAG)-
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1. Introduction

The family Ranunculaceae is one of the earliest diverging lineages among the
eudicots (Stevens, 2001), and might have radiated within Ranunculales 121–114
million years ago (Mya) (Anderson et al., 2005), or as early as 125.8–123.0 Mya,
as proposed by the “accelerated angiosperm evolution” hypothesis (W. Wang et
al., 2016). In Ranunculales, additional evidence from phylogenetic analyses of
MADS-box genes supports whole-genome duplication early in the diversification
of angiosperms (Landis et al., 2018; Tank et al., 2015). The split between Aconitum
and other genera occurred 24.7 Mya (Park et al., 2020), the divergence between
Aconitum L. subgen. Aconitum and subgen. Lycoctonum (DC.) Peterm. has been
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dated to have occurred approximately 8.24–20.7 Mya (L. Wang et al., 2009), and
lastly, Aconitum subgen. Aconitum began to radiate between 2.5 and 6.4 Mya (L.
Wang et al., 2009).
Aconitum and Delphinium L., the latter including Consolida Gray, Aconitella Spach,
and Staphisagria J. Hill, form the monophyletic tribe Delphinieae Schröd., subtribe
Delphiniinae Benth. & Hook (Jabbour & Renner, 2011a; Keener et al., 1999; M.
Tamura, 1993; Turland & Barrie, 2001; W. Wang et al., 2009). Zygomorphic flowers
and presence of diterpene alkaloids have been identified as synapomorphies within
this taxonomic group (Jabbour et al., 2009; Johansson, 1995). Aconitum consists
of the following subgenera: subgen. Aconitum, subgen. Fletcherum (Tamura) Y.
Hong & Q. E. Yang, subgen. Galeata (Rapaics) Y. Hong & Q. E. Yang, and subgen.
Lycoctonum (Hong et al., 2017; Jabbour & Renner, 2011b; Kita et al., 1995; Luo
et al., 2005; Utelli et al., 2000). The taxonomic rank of subgen. Anthora (Rapaics)
Peterm. is unclear and requires further investigation (Novikoff & Mitka, 2015).
The genus Aconitum (monkshood) consists of ca. 300 species distributed
across the temperate regions of the Northern Hemisphere, with a center of
diversification recognized in Eastern Asia (Himalaya, Southwestern China, and
Japan) (Kadota, 1987; Liangqian & Kadota, 2001; Luo et al., 2005). The subgenus
Aconitum includes more than 250 species, of which 22 native species (excluding
numerous hybrid species) can be found in Europe, a secondary center of Aconitum
diversification (Table 1) (Götz, 1967; Mitka, 2003; Mitka & Starmühler, 2000;
Novikoff & Mitka, 2011, 2015; Novikoff et al., 2016; Seitz, 1969; Starmühler &
Mitka, 2001). Recently, efforts have been made to clarify the taxonomic sectional
divisions of subgenus Aconitum in the Carpathian Mts, using cytogenetic criteria
(see Table 1) (Ilnicki & Mitka, 2009, 2011; Joachimiak et al., 1999; Mitka et al., 2007).
Eight species belonging to this subgenus occur exclusively in the Carpathian and
Balkans Mts.
Phylogenetic relationships within A. subgen. Aconitum in Europe have not yet been
analyzed and remain unknown. Only a few European accessions were included
in a genus-wide phylogenetic study, namely A. napellus L. and A. variegatum L.
(Luo et al., 2005). Jabbour & Renner (2011b) and Xiang et al. (2017) estimated a
split between the European accessions A. pentheri Hayek and A. napellus L. to have
occurred ca. 0.9 Mya. Thus, very few European accessions were examined, and
insufficient geographical sampling did not allow any relevant interpretation.
Aconitum L. subgen. Aconitum is known for its high morphological plasticity
and extensive interspecific hybridization (Kita & Ito, 2000; Krzakowa &
Szweykowski, 1976; Sutkowska et al., 2013; Sutkowska, Boroń, et al., 2017;
Sutkowska, Warzecha, & Mitka, 2017; Zieliński, 1982a, 1982b), and the latter is
considered to be a major cause of taxonomic unclarity (Kadota, 1981; Tutin et
al., 1993). Various Aconitum species have been found to possess identical chloroplast
DNA (cpDNA) sequences, resulting from horizontal gene transfer (Kita & Ito, 2000;
Kita et al., 1995; Luo et al., 2005; Utelli et al., 2000). In particular, Aconitum species
may contain multiple versions of the nuclear-encoded plastid genes (e.g., rpl32
paralogs), thus exhibiting phylogenetic incongruence (Park et al., 2020).
In a preliminary study, we found two cpDNA haplotypes in A. subgen. Aconitum
from the Carpathian Mts that generally fit the cytogenetic (diploids vs. tetraploids)
and taxonomic sectional division (sect. Cammarum vs. sect. Aconitum) (see Mitka
et al., 2016) criteria.
Here, we aimed to resolve the complicated genetic relationships among the Aconitum
taxa throughout its European range, using plastid (cpDNA) and nuclear DNA
(internal transcribed spacer, ITS) sequences of species distributed across Western,
Central, and Southern Europe, and in the Caucasus Mts. The primary purpose of
our phylogenetic analyses was to demonstrate the relationships between the studied
species and regions; thus, the pattern of clades retrieved here should not be used
solely as a justification for taxonomic decisions (Hörandl, 2006).
Taking the differences in the cytogenetic and ecological profiles of the European
and Caucasian Aconitum into consideration, we attempted to determine if: (i)
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Table 1 Sectional divisions of Aconitum subgen. Aconitum in Europe (Mitka et al., 2017).

Aconitum L. sectio Aconitum
subsectio Aconitum (2n = 32)

Series Aconitum
Aconitum anglicum Stapf
Aconitum bucovinense Zapał.
Aconitum corsicum Gáyer
Aconitum firmum Rchb.
Aconitum napellus L.
Aconitum plicatum Rchb.
Aconitum superbum Fritsch
Series Castellana Rottenst.
Aconitum castellanum (Molero & Blanché) Rottenst.
Series TauricaMucher ex Starm.
Aconitum clusianum Rchb.
Aconitum tauricum Wulfen

Aconitum L. sectio Aconitum
subsectio Burnatii Rottenst. (2n
= 32)

Aconitum burnatii Gáyer
Aconitum maninense (Skalický) Mitka
Aconitum nevadense Gáyer
Aconitum pentheri Hayek

Aconitum L. sectio Cammarum
DC. subsectio Cammarum (DC.)
Rapaics (2n =16)

Series Variegata Steinberg ex Starm.
Aconitum variegatum L.
Aconitum vitosanum Gáyer
Aconitum vivantii Rottenst.
Series Toxicum (Rchb.) Mucher
Aconitum degenii Gáyer
Aconitum lasiocarpum (Rchb.) Gáyer
Aconitum pilipes (Rchb.) Gáyer
Aconitum toxicum Rchb.

Aconitum sectio Angustifolium
(Seitz) Rottenst. (2n = 48)

Aconitum angustifolium Rchb.

the European tetraploids originated in situ from the diploid genetic stock, and
(ii) genetic signatures exclusive to diploid and tetraploid species exist, using
phylogenetic analyses based on ITS and cpDNA sequences (trnL(UAG)-ndhF region).

2. Material andMethods

2.1. The Study Taxon

The subgenus Aconitum L. in Europe consists of the (i) tetraploid sect. Aconitum
[2n(4x) = 32], (ii) diploid sect. Cammarum DC. [2n(2x) = 16], (iii) monospecific
sect. Angustifolium (Seitz) Rottensteiner, represented by allopolyploid A.
angustifolium Rchb. [2n(6x) = 48], and (iv) triploid nothosect. Acomarum Starm.
[2n(3x) = 24]. Sect. Aconitum consists of subsect. Aconitum and subsect. Burnatii
Rottensteiner, with the latter possessing a glandular indumentum, which is
unusual within the tetraploids (Table 1) (Starmühler & Mitka, 2001). In Europe,
10 species belonging to sect. Aconitum, seven to sect. Cammarum, and one to sect.
Angustifolium have been noted (Table 1). Intersectional hybrids (A. sect. Aconitum ×
A. sect. Cammarum) are circumscribed within the nothosect. Acomarum Starm.,
and consist of seven nothospecies and three hybrid formulae (Starmühler, 2001;
Wacławska-Ćwiertnia & Mitka, 2016).
The tetraploid Aconitum sect. Aconitum encompasses high-mountain species of
the subalpine and alpine zones (Table 1) (Ilnicki & Mitka, 2009; Mitka, 2000, 2002;
Novikoff & Mitka, 2011; Seitz, 1969; Sutkowska, Warzecha, & Mitka, 2017). The
diploid A. sect. Cammarum includes lowland and montane species (up to ca.
1,150 m above sea level) growing in forest environments (Ilnicki & Mitka, 2011;
Joachimiak et al., 1999; Mitka, 2003).
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The chromosome numbers were investigated using specimens from the Carpathian
and Sudetes Mts (Ilnicki & Mitka, 2009, 2011; Joachimiak et al., 1999; Mitka et
al., 2007), or obtained from the on-line DCBD database (Simon et al., 1999), which
is a conspect of chromosome numbers in the tribe Delphinieae (Bosch et al., 2016).
Both these sections (diploids and tetraploids) differ in their nuclear 2C DNA
contents (ca. 11 pg vs. 21–22 pg, respectively) (Joachimiak et al., 2018).

2.2. Taxon Sampling

The present study included 64 accessions representing A. subgen. Aconitum in
Europe, all of which were sequenced for the first in this study. These accessions were
as follows: sect. Cammarum: A. degenii Gáyerssp. degenii (one accession), A. d. ssp.
intermedium (Zapał.) Mitka (one), A. d. ssp. paniculatum (Arcang.) Mucher (two),
A. d. ssp. rhaeticum Starm. (one), A. ×hebegynum DC. (A. degenii × A. variegatum)
(one), A. lasiocarpum Rchb. ssp. kotulae (Pawł.) Starm. & Mitka (one), A. l. ssp.
lasiocarpum (one), A. ×pawlowskii Mitka & Starm. (A. lasiocarpum × A. variegatum)
(three), A. toxicum Rchb. spp. toxicum (four), A. pilipes (Rchb.) Gáyer (two),
A.variegatum L. ssp. nasutum (Rchb.) Götz (four), A. v. ssp. variegatum (two), A.
vitosanum (one); sect. Aconitum: A. anglicum Stapf (one), A. bucovinense Zapał.
(four), A. burnatii Gáyer (one), A. ×czarnohorense (Zapał.) Mitka (A. bucovinense
× A. ×nanum) (one), A. firmum Rchb. ssp. firmum (one), A. f. ssp. fissurae (two), A.
f. ssp. moravicum Skalický (one), A. maninense (Skalický) Mitka (three), A. ×nanum
(Baumg.) Simonk. (A. bucovinense × A. firmum) (one), A. napellus Rchb. ssp.
napellus (one), A. nevadense Gáyer (one), A. pentheri Hayek (two), A. plicatum Rchb.
ssp. plicatum (two), A. p. ssp. sudeticum Mitka (four), A. superbum Fritsch (one),
A. tauricum Wulfen (one); Nothosect. Acomarum: A. ×cammarum L. em. Fries (A.
napellus × A. variegatum), A. ×berdaui Zapał. (A. firmum × A. variegatum).
The Caucasian stock (Luferov, 2000) was represented by A. cymbulatum (Schmalh.)
Lipsky (one accession), A. nasutum Fisch. ex Rchb. (four), and A. pubiceps Rupr.
(one). In total, 27 taxa (species, subspecies, and nothospecies) from the Pyrenees,
Alps, Sudetes, Carpathians, and Balkans were included, covering most of the
taxonomic variability of A. subgen. Aconitum in Europe (Figure 1, Table S1).
Two accessions from A. subgen. Lycoctonum, i.e., A. lycoctonum L. em. Koelle and A.
moldavicum Hacq. (Kita et al., 1995) constituted the outgroup.

2.3. DNA Extraction, Amplification, and Sequencing

Recently collected samples (stored as silica-dried leaves) or herbarium specimens of
all accessions were obtained (Table S1). Samples for DNA extraction were prepared
from these materials, using ca. 2 cm2 of the fully developed leaf blade with no
symptoms of damage due to insects or fungal infections. Samples were ground in
2 mL microcentrifuge tubes with three stainless steel beads (ϕ 3 mm) by shaking in
an oscillation mill (MM 200-Retsch, Germany) for 4 min at 25 Hz. DNA was then
extracted separately for each sample with Genomic Mini AX Plant DNA extraction
kit (A&A Biotechnology, Poland), according to the manufacturer’s protocol.
Two target fragments were used for phylogenetic reconstruction: a fragment of
the maternally inherited cpDNA separating plastid trnL(UAG) and ndhF genes
(positioned between sites 115,891 and 114,942 relative to the A. kusnezoffii complete
plastid genome), and the biparentally inherited ITS region of the ribosomal RNA
gene cluster, a tested marker in Aconitum allowing resolution of the infrageneric
phylogeny within the genus (Jabbour & Renner, 2011b; Kita & Ito, 2000; Kita et
al., 1995; Luo et al., 2005; Utelli et al., 2000; L. Wang et al., 2009).
Undiluted DNA extracts were used as templates in the amplification
of both target sequences: trnL(UAG)-ndhF region: Primers
trnL(UAG) – 5′-CTGCTTCCTAAGAGCAGCGT-3′ and ndhF – 5′-
GAAAGGTATKATCCAYGMATATT-3′ (Shaw et al., 2007) and ITS region:
Primers ITS7A – 5′-GGAAGGAGAAGTCGTAACAAGG-3′ (Sang et al., 1995)
and ITS4 – 5′-TCCTCCGCTTATTGATATGC-3′ (White et al., 1990). The
reaction mixture contained 1× DreamTaq Green buffer (ThermoFisher Scientific,
USA), 3.5 mM MgCl2, 0.08 mM of each dNTP, 0.08 µM of both primers, and
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Figure 1 Geographical distribution of the cpDNA haplotypes of Aconitum subgen. Aconitum in Europe and the Caucasus. Haplotype
A: Aconitum ×cammarum 01; A. plicatum ssp. sudeticum 02, 2A, 68, 69; A. maninense 09, 23, 66; A. p. ssp. plicatum 16, 98; A.
bucovinense 25, 72; A. nanum 32; A. firmum ssp. moravicum 34; A. pentheri 36, 60; A. f. ssp. firmum 47; A. czarnohorense 48; A.
degenii ssp. paniculatum 50; A. lasiocarpum ssp. kotulae 59; A. superbum 64; A. ×berdaui 65; A. tauricum 109; A. f. ssp. firmum 119
(A). Haplotype B: A. d. ssp. degenii 07; A. toxicum 17, 49, 61; A. variegatum ssp. variegatum 26; A. bucovinense 29; A. vitosanum 42; A.
d. ssp. intermedium 45; A. v. ssp. nasutum 51, 67, 99; A. ×pawlowskii 57, 107; A. toxicum 61; A. nasutum 80, 133; A. pilipes 116; A. d.
ssp. rhaeticum 117; A. ×pawlowskii 118 (B). Haplotype C: A. hebegynum 52; A. d. ssp. paniculatum 111; A. ×exaltatum 113; A. v. ssp.
nasutum 114; haplotype D: A. f. ssp. fissurae 54, A. bucovinense 74; haplotype E: A. n. ssp. pubiceps 58; A. cymbulatum 121 (C). Ten
unique haplotypes – F: A. v. ssp. variegatum 03; G: A. l. ssp. lasiocarpum 33; H: A. firmum 81; I: A. superbum 87; J: A. nasutum 76; K:
A. nasutum 78; L: A. burnatii 100; M: A. nevadense 136; N: A. anglicum 46; O: A. napellus 101 (D). For details on accessions origin see
Table S1.

1 µL of DreamTaq DNA polymerase (ThermoFisher Scientific). Amplification
was performed in a total reaction volume of 50 µL, using a T100 Thermal Cycler
(Bio-Rad, USA) with the following temperature profiles:

• For the ITS fragment: 5 min at 94 ◦C; 25 touchdown cycles of 30 s at 94 ◦C; 30
s at decreasing annealing temperature (from 62.5 ◦C in the first to 48 ◦C in the
thirtieth cycle); 1 min at 72 ◦C; and 20 cycles of 30 s at 94 ◦C, 30 s at 55 ◦C, and 1
min at 72 ◦C; followed by 10 min at 72 ◦C.

• For the trnL(UAG)-ndhF fragment: 5 min at 94 ◦C; 25 touchdown cycles of 30 s at
94 ◦C; 30 s at decreasing annealing temperature (from 67.5 ◦C in the first to 55
◦C in the twenty-fifth cycle); 1 min at 72 ◦C; and 20 cycles of 30 s at 94 ◦C, 30 s at
55 ◦C, and 1 min at 72 ◦C; followed by 10 min at 72 ◦C.

Successful amplification was confirmed by agarose gel electrophoresis, and
positive PCR products were purified using Clean-Up DNA purification kit
(A&A Biotechnology). The purified PCR products were used as templates in the
sequencing reactions.
The two target regions were sequenced in both directions using the PCR
primers. However, due to the greater length and frequent polynucleotide
regions, a set of internal sequencing primers was used along with PCR
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primers to ensure bidirectional sequencing of the entire of trnL(UAG)-
ndhF spacer: V1_F – 5′-AGGTTGAGTTATTGGTGGATGA-3′,
V2_F – 5′-GTTCGCAAAGAACTGAAGTGAC-3′, V3_F – 5′-
TGGATGATAGAATAYATATCAAAATCA-3′ (forward primers),
and V2_R – 5′-TTTCCGGATTCACCAGCTCTT-3′ and V3_R – 5′-
CGAAAAGCCATTACATTCTTAAA-3′ (reverse primers).
Sequencing was performed using BigDye Terminator v.3.1 Cycle Sequencing Kit
(Life Technologies, USA) in a T100 thermal cycler (Bio-Rad) and 3500 Series
Genetic Analyzer (Life Technologies), using standard protocols.

2.4. Sequence Alignment

Individual sequencing reads were examined carefully and compiled into full contigs
with ChromasPro 1.7.6 software (Technelysium, Australia). As a relatively high level
of nucleotide ambiguity was detected in the ITS sequences, the two independent
reads for each contig had to be compared. A given nucleotide position was deemed
ambiguous when two peaks were detected at the same position in the sequencing
chromatogram, and the weaker peak was at least one third as high as the stronger
peak in both independent reads (Fuertes-Aguilar & Nieto-Feliner, 2003). Sequences
with ambiguous positions, encoded according to the IUPAC nucleotide code, were
used for all downstream analyses. Both ITS and trnL(UAG)-ndhF contigs were aligned
using the Clustal W algorithm (Thompson et al., 1994) of the MEGA 6 software
package (K. Tamura et al., 2013), followed by manual adjustment.

2.5. Phylogenetic Analyses

Separate analyses of the trnL(UAG)-ndhF and ITS data sets produced no significant
topological discordance for incongruent nodes with Bayesian inference (BI)
and maximum likelihood (ML) bootstrap proportions >70%, and the datasets
were therefore concatenated, yielding a matrix of 1,531 characters and 16
accession combinations (haplogroups), plus two accessions of the outgroup
(Table 2). Substitution model parameters were estimated separately for each
partition, using the GTR+G model (with four rate categories) for both the
trnL(UAG)-ndhF and ITS regions. The model was selected by FindModel
(https://www.hiv.lanl.gov/content/sequence/findmodel/findmodel.html), which uses
the ModelTest script (Posada & Crandall, 1998).
Tree searches were based on a BI method (Rannala & Young, 1996) implemented
in MrBayes v.1.10.4 (Huelsenbeck & Ronquist, 2001; Ronquist et al., 2005). The
analysis was carried out by sampling every hundredth generation for 5 million
generations, starting with a random tree. The first 1,250 million generations were
excluded as burn-in after convergence of the chains, which was evaluated by the
average standard deviation of the splitting frequencies below 0.01.
The ML analysis was performed for the concatenated data set in PhyML 3.0
(Guindon et al., 2010). The GTR model of nucleotide substitution was used.
Parametric bootstrap values for ML were based on 400 replicates.
DNA sequences were also analyzed using the maximum parsimony (MP) optimality
criterion (Felsenstein, 2004; Fitch, 1971) in PAUP* version 4.0.b10 (Swofford, 2002).
A heuristic search was conducted with random addition, tree bisection-reconnection
(TBR) branch swapping, and the MULTREES option on. The consistency index
(CI) and retention index (RI) were calculated with PAUP*, excluding uninformative
characters. The strict consensus tree and support for its branches were evaluated by
bootstrapping (BS) (Felsenstein, 2004), with 174 bootstrap replicates, each with 10
random stepwise additions performed using the same settings as above, and no more
than 100 trees were retained per replicate.

2.6. Molecular Clock Analyses

We used TempEst v.1.5.1 to test the clock-like behavior of the concatenated
dataset (Rambaut et al., 2016). Divergence dating was performed in Beast v.1.10.4
(Drummond et al., 2006; Drummond & Rambaut, 2007), which employs a Bayesian
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Table 2 Sixteen haplogroups (based on cpDNA haplotypes and ITS ribotypes) of
Aconitum subgen. Aconitum in Europe and the Caucasus (including the 10 unique
haplotypes) used in the phylogenetic analyses and the accessions within each haplogroup
(species codes are given in Figure 1 and Table S1).

Haplogroup/code cpDNA
haplotype

ITS
ribotype

No. of
accessions

A1* A R1 20
A3 (64) A R3 1
A4 (60) A R4 1
B1* (Europe + Caucasus) B R1 18
B5 (99) B R5 1
C1* C R1 4
D1* D R1 2
E2* (Caucasus) E R2 2
F1 (03) F R1 1
G1 (33) G R1 1
H1 (81) H R1 1
I1 (87) I R1 1
J6 (76) (Caucasus) J R6 1
K7 (78) (Caucasus) K R7 1
L8 (100) L R8 1
M9 (136) M R9 1
Accessions not used in phylogenetic analyses
02, 50 A n.d. 2
46 N n.d. 1
101 O n.d. 1
73, 79, 108 n.d. R1 3
Total - - 64

* Codes: haplogroup A1: 01, 09, 16, 23, 25, 32, 34, 36, 47, 48, 59, 65, 66, 68, 69, 72, 98, 109, 119, 02A;
haplg. B1: 07, 17, 26, 29, 42, 45, 49, 51, 57, 61, 67, 99, 80, 107, 116, 117, 118, 133, 50A; haplg. C1: 52, 111,
113, 114; haplg. D1: 54, 74; haplg. E2: 58, 121. n.d. – not determined.

Markov chain Monte Carlo (MCMC) approach to coestimate topology, substitution
rates, and node ages. All dating runs relied on the GTR+G model, a Yule prior, with
uncorrelated and log-normally distributed rate variation across branches.
Several estimations of the divergence time between the subgenera Aconitum
(ingroup) and Lycoctonum (outgroup) are available, considering the lack of any
reliable Neogene Aconitum fossils. All these estimates were based on the generally
accepted substitution rates, and served as secondary calibration points in Beast
MCMC analyses, verified by cross-validated calibration approaches (Jabbour &
Renner, 2011a). Jabbour and Renner (2011b) estimated the split between A. subgen.
Aconitum and A. subgen. Lycoctonum at ca. 11.49, Park et al. (2020) at 11.9, and
Xiang et al. (2017) at 15.13 Mya. We considered the age at the divergence of the
subgenera as 11.9 Mya (Park et al., 2020) for our analyses.
The MCMC algorithm was run for 3 million generations (25% burn-in), with
sampling at every thousandth generation and normal prior distributions and
standard deviations of 3 Mya. Tracer v.1.7.1 (Rambaut et al., 2014) was used
to confirm acceptable mixing, likelihood stationarity of the MCMC chain, and
adequate effective sample sizes for each parameter (>200). The minimum clade
credibility tree and associated 95% highest posterior density distributions around the
estimated node ages were computed using TreeAnnotator v.1.7.5. The constructed
trees were visualized with FigTree v.1.4.3 (2016).

2.7. Phylogenetic Networks

To visualize genealogical relations among the cpDNA haplotypes, we used the
TCS algorithm of Clement et al. (2000), implemented in POPART software (Leigh
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& Bryant, 2105). It is based on the concept of statistical parsimony and aims at
producing an unrooted haplotype phylogenetic network, in which two haplotypes
are joined by an edge only if the “probability parsimony” exceeds 0.95 for that edge
(Huson et al., 2010).

3. Results

3.1. Characterization of Nucleotide Data

The aligned ITS matrix included 18 unique sequences (16 ingroup + two outgroup)
and a total of 632 positions, of which 557 were constant, 60 (9%) were parsimony-
informative, and 15 were parsimony-uninformative.
For the cpDNA trnL-ndhF region, the matrix of 18 unique sequences contained a
total of 899 positions, with 836 constant, 43 (5%) potentially parsimony-informative,
and 20 parsimony-uninformative positions.
The combined (cpDNA + ITS) matrix consisted of 18 unique sequences and 1,531
positions, including 1,408 constant, 35 (2%) potentially parsimony-informative, and
88 parsimony-uninformative positions. Further information on the datasets and tree
statistics from MP analyses of the nuclear and chloroplast regions and concatenated
data is summarized in Table 3.

Table 3 Dataset and tree statistics from separate and combined analyses of nuclear (ITS)
and chloroplast (cpDNA) regions, including the two outgroup accessions.

ITS cpDNA
trn-ndhF

Combined ITS +
cpDNA

Sequences (n) 18 18 18
CI of MPTs 0.8989 0.9412 0.8889
RI of MPTs 0.9167 0.9434 0.9006
Number of MPTs 224 9 280
Length of MPTs 91 51 144

CI – consistency index; MPT – most parsimonial tree; RI – retention index.

3.2. Chloroplast DNA Variation and Geographic Distribution

The 64 accessions of Aconitum subgen. Aconitum (excluding the outgroup
accessions) could be categorized into five cpDNA haplotypes, i.e., haplotype A
(24 specimens), B (19), C (four), D (two), and E (two), whereas the remaining 10
sequences were unique (Figure 1A–D, Table 2). The trnL(UAG)-ndhF region could
not be amplified in three accessions, namely accessions 73, 79, and 108 (Table 2).
Haplotype A was distributed across Europe, hapl. B in Europe and the Caucasus,
hapl. C was absent in the Carpathians but present in the Alps, Sudetes, and West
Balkans, and hapl. D and hapl. E occurred exclusively in the South Carpathians or
the Caucasus, respectively (Figure 1).
Table 4 and Table 5 summarizes the site variations within the cpDNA haplotypes.
The most conspicuous genetic feature were the unique indels (sites 540–544 and
602–603) that distinguished the diploids from the tetraploids. In this context, the
Caucasian accessions appeared to correspond to the tetraploids. They shared indels
602–603 and 648–654 with the tetraploid group, excluding the A. burnatii/nevadense
group. A. burnatii and A. nevadense could be distinguished by a substitution at
site 505, and from the diploids and tetraploids by indels 540–544 and 648–654,
respectively (Table 4). The Caucasian group was heterogeneous. Haplotype K could
be identified by indels 612–616 and 723–731, hapl. J by indels 807–821, and hapl. E
by sites 781 and 602–603. In comparison, the diploid group was relatively uniform,
and point mutations were noted at sites 36, 91, and 118 and indels at sites 328, 333–
340, and 807–821 (Table 4 , Table 5).
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3.3. Nuclear ITS Genotype Variation

We observed extremely low nucleotide variation in Aconitum ITS sequences. The 64
accessions (excluding two of the outgroup) were arranged in two ITS ribotypes: R1
(51 specimens) and R2 (two specimens); the remaining seven sequences represented
specific ribotypes (ribotypes R3–R9; Table 2). The ITS region of four accessions,
namely 02, 46, 50, and 101, could not be amplified. R1 was distributed across Europe
and Caucasus, and R2, R6, and R7 occurred only in the Caucasian Mts (Table 2).

3.4. Phylogenetic Analysis

The BI tree, based on the combined DNA plastid and ITS dataset arranged into 16
haplogroups (Table 2), is presented in Figure 2. It suggested the basal, statistically
supported position of the Caucasian species (haplogroup E), A. nasutum 76
(haplg. J6), and A. nasutum 78 (haplg. K7) to the European clade. Among the
core European clades, two species from the Maritime Alps/Pyrenees, namely A.
burnatii 100 (haplg. L8) and A. nevadense 136 (haplg. M9), formed a sister group
to the remaining species, with high BI (1.00) and ML bootstrap support (94%)
values. The core of the European species was divided into two clades, i.e., the diploid
(0.80 BI, 90% ML, 77% MP) and tetraploid species (0.99 BI, 79% ML, 91% MP).
Two tetraploids [A. firmum 81 (haplg. H1) and A. superbum 87 (haplg. I1)] were
included in the diploid clade. This clade also included haplogroup B1, consisting of
both European and Armenian/Caucasian species (Figure 1B). A sister group with
moderate support (0.88 BI, 0.90%, ML, 63% MP), constituted of two species, namely
A. variegatum 03 (haplg. F1) and A. nasutum 99 (haplg. B5), was also included in
this clade (Figure 1).

Figure 2 Bayesian inference tree of Aconitum subgen. Aconitum in Europe and the Caucasus based on concatenated cpDNA + ITS
data (haplogroups). The numbers above branches indicate a posteriori probability (BI) and percentage bootstrap values for maximum
likelihood (400 replications) and minimum parsimony (174 replications), respectively; * – tetraploids. A1 (20 taxa), A3 – A. firmum
ssp. fissurae (the Carpathians), A4 – A. pentheri, B1 (18 taxa), B5 – A. variegatum ssp. nasutum (Šumava, Czech R.), C1 (four taxa),
D1 (two taxa), E2 (two taxa), F1 – A. v. ssp. variegatum, G1 – A. lasiocarpum, H1 – A. f. ssp. firmum (Russian Upland), I1 – A.
superbum, J6 – A. nasutum (Azerbaijan), K7 – A. nasutum (Armenia), L8 – A. burnatii, M9 – A. nevadense, 62 – A. moldavicum, 63
– A. lycoctonum (for haplogroups B1, C1, D1, and E2, see Table 2 and Figure 1).
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3.5. Haplotype Network

The TCS haplotype network of cpDNA haplotypes (Figure 3) showed a split between
the diploid hapl. B and tetraploid hapl. A. Among ingroup haplotypes, those from
the Pyrenees/Maritime Alps were genetically the most remote and characterized
by intermediate hypothetical haplotypes. These haplotypes, together with hapl. A
and B, formed a cyclic node-set, suggesting reticulation. Hapl. B exhibited a star-
like pattern, with the other diploid haplotypes radiating out, and linked with the
Caucasian species.

Figure 3 Haplotype cpDNA (A–K) + outgroup network obtained from the TCS analysis.
The size of the circles is proportional to the frequency of each haplotype. Each bar
represents a single mutational change and open circles represent hypothetical haplotypes
not observed in this study. Circle colors: blue – Sierra Nevada/the Maritime Alps, yellow
– rest of Europe, red – the Caucasus, grey – outgroup. For geographical distribution of
haplotypes see Figure 1.

3.6. Molecular Clock Estimations

Divergence time estimates for Aconitum in Europe and the Caucasus Mts are shown
in Figure 4. The Bayesian analysis showed that the earliest split of the Caucasian
genetic stock occurred around 7.3 Mya (Late Miocene). The earliest divergence in
Europe was between Aconitum burnatii and A. nevadense, at the Miocene/Pliocene
break approximately 4.4 Mya, and the remaining European diploids and tetraploids
started to differentiate ca. 2.6 Mya. Diversification within the diploid and tetraploid
sections appeared at the beginning of the Quaternary 1.8 Mya and continued till 0.5
Mya (Figure 4).

4. Discussion

4.1. Geographic-Historical Background

The occurrence of Aconitum in Central Europe can be traced back to as early as the
Late Miocene, as suggested by the Aconitum pollen deposits found in the Central
Paratethys realm (Central Europe) (Stuchlik & Shatilova, 1987). The Caucasian and
European lines diverged in the Late Miocene, and internally diversified mainly in
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Figure 4 Molecular clock chronogram of Aconitum subgen. Aconitum in Europe and the Caucasus Mts based on cpDNA + ITS
concatenated sequence data (haplogroups) created using BEAST. Bars indicate the 95% posterior density distribution of the nodes
and the horizontal axis shows the divergence time of the lineages in million years. The calibration point was 11.9 Mya, according to
Park et al. (2020). Photos (© J. Mitka): A. variegatum, Muranska planina, Slovakia (A); A. lasiocarpum, West Bieszczady Mts, East
Carpathians, Poland (B); A. napellus, Alps, Dolomites, Italy (C); A. superbum, Dinaric Mts, Bosnia and Hercegovina (D); A. burnatii,
Alpes Maritimes, Italy (E); A. nasutum, Transsilvania, Romania (F); A. moldavicum, West Bieszczady Mts, Poland (G); A. lycoctonum,
Beskids Mały, West Carpathians, Poland (H). For haplogroups, see Table 2 and Table S1.

the Quaternary, similarly to Ranunculus s. s. (Paun et al., 2005), Syringa (Kim &
Jensen, 1998), and Wulfenia (Surina et al., 2014), highlighting the significance of this
period for the evolution of the European mountain and high-mountain flora.
During the Late Miocene, the temperate forests along the southern coasts of Central
and Eastern Parathetys (spread to Western Asia) were continuously replaced by
open woodlands. The aridization trend corresponded to forest fragmentation and
appearance of open landscapes, the development of grasslands and xerophytic
plant communities, and disappearance of subtropical species from the fossil flora
(see Dénes et al., 2015; Ivanov et al., 2011). The process was accompanied by
a remarkable shift in the composition of fossil mammal assemblages from the
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Early/Middle Pannonian to the Late Pannonian, reflecting an increase in the
seasonality and aridity in the Pannonian Basin area (Harzhauser et al., 2004).
The ongoing fragmentation of forests could have disrupted the continuous
Aconitum distribution along the southern coast of the Parathetys, contributing to
its geographic isolation and evolutionary divergence. This process is illustrated by
the Aconitum haplogroup B1 and A. nasutum in the Caucasus and Europe.

4.2. The Role of the Caucasus and Central Asia in the European Alpine System

The Caucasus represents a spatial and evolutionary link for many European genera
of Asian origin (Ozenda, 2009), for example the genera Trollius L. (Després et
al., 2003), Acer L. (Grimm & Denk, 2014), and Prunus (Volkova et al., 2020). The
Asian genetic stock underwent further evolutionary migration to Europe (via
the Caucasus and Balkans), i.e., phylogenetic divergence leading to the origin of
sister taxa (Bräuchler et al., 2004; Dumolin-Lapègue et al., 1997; Song et al., 2016).
The relationships between these regions appear to be older than the Quaternary
(Hantemirova et al., 2016). This scenario may have applied to only the diploid
line of Aconitum, and the current links between Europe and the Caucasus have
been preserved in the diploid cpDNA of haplotype B. In a study on Aconitum in
Bela Krajina (Slovenia), Starmühler (1996) discovered a Caucasian species, A. ×
tuscheticum (N. Busch) N. Busch (see Luferov, 2000), another putative relict of the
South European-Caucasian floristic links.
The historical relationships between the Transcaucasia [including Hyrcan and
Colchis Tertiary refuges; see Maharramova et al. (2015)] and Europe are well
known (Mai, 1995). The European Alpine system, the Caucasus, mountains of
Central Asia, and stations on the Russian Lowland constitute the Altaic-Alpic
geographical subelement, represented by the geographical range of Juniperus sabina
L. (Zając & Zając, 2009), Saxifraga androsacea L., and Avenula versicolor (Vill.) M.
Lainz (Pawłowski, 1929). The phylogeographic links between Central Asia and
the European Alpine system, especially in Southeastern Europe, are unexpectedly
well pronounced in some cases (Kadereit et al., 2008; Ronikier, 2011; Winkler et
al., 2012).

4.3. Independent Evolution of Diploid and Tetraploid Lines

The origin and monophyly of the core European Aconitum subgen. Aconitum
remains elusive. Molecular clock analysis dated the split of the tetraploids from the
diploid stock at the beginning of the Quaternary (ca. 2.6 Mya). The sister position
of the diploid and tetraploid lineages could be misleading, as they could not have
originated in situ from a common ancestor and might represent independent genetic
lineages in Europe. In this context, A. subgen. Aconitum in Europe could be a
nonmonophyletic group.
The simplest “monophyletic” scenario is that the group originated in situ from an
ancient, local diploid stock. Molecular analyses did not retrieve any extant diploid
species as basal to the tetraploid group in Europe, as was observed for the Japanese
tetraploids, where a diploid species, A. volubile Koelle, formed a monophyletic group
with all East Asian tetraploid taxa, strongly suggesting it as their ancestral species
(Kita & Ito, 2000).
However, some extant European tetraploids could have originated in situ from the
local, possibly extinct, diploid genetic stock (Mitka et al., 2007), e.g., A. firmum
and A. superbum, presently placed in the diploid clade. Their current position
among the diploids is probably a relic of their initial diploid state and subsequent
tetraploidization or horizontal gene transfer via intersectional hybridization (see
below). Whole-genome duplication followed by diploidization in the ancient
lineages support the hypothesis of Aconitum palaeoploidy (Park et al., 2020).
Excessive accumulation of 5S rDNA clusters in Aconitum chromosomes (FISH) in
the tetraploid species (A. firmum and A. plicatum), followed by a reduction of the
basal genome size (Joachimiak et al., 2018), likely occurred during diploidization,
which is one of the stages of the cyclical process described as the “wondrous cycle
of polyploidy” in plants. It could be a nonrandom process, as suggested by the
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retention of the original diploid ancestral progenitor genomes (Wendel, 2015), at
least partially responsible for the paraphyly of the tetraploid and polyphyly of the
diploid clades.
Weak support of the European diploid clade and links with the Caucasian genetic
stock (haplogroup B1) might indicate its origin from multiple ancestor species that
disappeared between 4.4–2.6 Mya. If this is the case, their roots could trace back
to arctiotertiary temperate forest elements of Asian origin (Baskin & Baskin, 2016;
Deng et al., 2015; Popov, 1983; Zhang et al., 2014). Some of them disappeared
completely, whereas some underwent evolutionary divergence, including genome
doubling (tetraploidization), when the global temperatures dropped markedly
towards the end of the Pliocene (Abbott, 2008; Hultén, 1937).

4.4. Palaeonedemic Status of Aconitum burnatii/nevadense

Aconitum burnatii and A. nevadense represent the oldest genetic line in Europe,
dating back to ca. 4.4 Mya. Their present position at the base of the entire
European genetic stock could be a result of their initial diploid status and
further palaeoploidisation or speciation by ploidy (see Brochmann et al., 1998;
Favarger, 1960; Verlaque et al., 1997). According to this hypothesis, both A. burnatii
and A. nevadense are autotetraploids, arising from conspecific Tertiary diploid
parents, which are now extinct. It may have occurred at the time of the Neogene
cooling phases, which culminated in the onset of major glaciation in the Northern
Hemisphere (Pearson & Palmer, 2000). It is widely accepted that environmental
stress resulting from the climatic cooling episodes was the driving force behind the
widespread formation of polyploids. These species often occupy habitats different
from those of their diploid parents and have been proposed as superior colonizers
(Baduel et al., 2018; Soltis & Soltis, 2000; Stebbins, 1984). This relict group exhibited
an independent evolutionary trajectory from the European Aconitum since the
Miocene/Pliocene break. Another hypothesis states that the oldest diploid genetic
lineage in Europe originated from the extant Central/East Asian diploid species, and
this warrants further investigation.
The Pyrenees, Sierra Nevada, and the Maritime Alps, where paleoendemic
Aconitum species occur, are one of the most important “cumulative refugial” areas
of Mediterranean flora (Aeschimann et al., 2011; Casazza et al., 2005; Médail &
Diadema, 2009) and fauna (Schmitt, 2009) in Europe, representing floristic (Pauli
et al., 2003; Väre et al., 2003) and “phylogeographical” (Médail & Diadema, 2009)
hotspots. The refugial character of the Pyrenees was further confirmed by a
phylogeographic study on the subalpine herb Ranunculus platanifolius (Stachurska-
Swakoń et al., 2013), where the number of AFLP genetic groups was the highest
across the European mountain ranges. The Maritime and Ligurian Alps are believed
to be shelters for many Tertiary species, including Saxifraga florulenta Moretti,
Silene cordifolia All., Berardia subacaulis Vill., and Viola argenteria B. Moraldo &
G. Forneris (see Casazza, Barberis, et al., 2016; Cassaza, Zappa, et al., 2016).
A mechanism underlying the origin of such a pattern could be explained using the
example of Silene ciliata Pourret, whose ancestral populations in the Mediterranean
Basin might have been forced to migrate northward at the onset of climatic
oscillations during the Late Tertiary and the Quaternary periods, resulting in the
gradual taxonomic and phylogenetic splitting of the once monophyletic group
(Kyrkou et al., 2015).

4.5. Reticulation Among European Aconitum

We believe that intersectional hybridization and subsequent genetic introgression
are the most relevant factors responsible for the paraphyly of the tetraploid clade
(Figure 2) (Mitka et al., 2007, 2015; Sutkowska, Boroń, et al., 2017; Sutkowska,
Warzecha, & Mitka, 2017). Hybridization is frequent in Aconitum (Kita & Ito, 2000).
Present horizontal transfer of the cpDNA gene between diploid and tetraploid
Aconitum species (via reverse “triploid bridge”) has been reported in the Tatra Mts
(Sutkowska, Boroń, et al., 2017, Zieliński, 1982a, 1982b). Such horizontal gene
transfer could be responsible for the observed interchange of cpDNA between the
different sections of A. subgen. Aconitum in Europe.
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The TCS algorithm showed ancient reticulation among the hypothetical ancestors
of the A. burnatii/nevadense group and diploid/tetraploid haplotypes. All these
observations indicate the ancient and complicated evolutionary history of the
subgenus in Europe, including palaeoploidization, and recent and historical
reticulations.

4.6. Taxonomic Consequences

The relationships between Caucasian and Balkan/Alpine A. nasutum Rchb.
(Götz, 1967) remain to be resolved. This species includes both diploid and tetraploid
lines (Mucher, 1991, Seitz et al., 1972). According to our results, the Caucasian
accessions of A. nasutum (76, 78) are tetraploids. Moreover, according to Seitz et
al. (1972), A. nasutum from Northeast Turkey is tetraploid. The Transcaucasian-
European A. nasutum 051, 080, 099, and 133 (haplotype B) were diploids, based on
the marker indel 540–544. Thus, they may belong to different sections, and their
taxonomic status should be reevaluated based on their morphological, genetic, and
cytogenetic data from Europe, Asia Minor, and the Caucasus. A Caucasian/Asian
Minor tetraploid species A. nasutum Fisch. ex Rchb. Il. Acon. 9, 1 (1823) emend.
Rupr. Fl. Cauc.: 39 (1869) belonging to sect. Aconitum subsect. Catenata (Steinb. ex
H. Riedl) Luferov (2000) was described from the Caucasus [Type: “ad Caucasicum,
Herb v. Chamisso!” (Reichenbach, 1819); Distribution: Armenia, Iran, Turkey
(Davis, 1965; Luferov, 2000)].

5. Conclusion

The diploid and tetraploid lines of Aconitum in Europe form independent
phylogenies. The links of the European and Caucasian diploid species represented by
haplotype B indicate its ancient history in the region and arctiotertiary Asian origins.
Paraphyly in the tetraploid clade could have been caused by ancient and present
horizontal gene transfer at the section level. High-mountain European tetraploids
likely originated from unknown ancestors in the Miocene age, presumably of Asian
origin, as early as ca. 2.6 Mya, which is the estimated divergence time for the diploid
and tetraploid lines in Europe. Similarly, presumed ancestral diploids, presently
extinct, could be ancestral to the extant tetraploid A. burnatii/nevadense line,
independent at least since the Late Miocene/Pliocene (4.4 Mya), which may have
undergone tetraploidization and evolutionary divergence at least ca. 2.3 Mya.

6. SupportingMaterial

The following supporting material is available for this article:

• Table S1. List of the Aconitum accessions from Europe and the Caucasus used in
this study.
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