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Abstract
Plants experience a range of light intensities and qualities in their environment.
Leaves are subjected to spatial and temporal gradients in incident light, which has
major consequences in the photosynthetic carbon assimilation. Plants acclimate to
light by developing a range of mechanisms, from adjustments in leaf morphology
to changes in the photosynthetic apparatus stoichiometry. In C4 plants, light
intensity is a major limiting factor for photosynthesis at optimum temperatures.
Under limiting light, it is not clear if all of factors (e.g., temperature, mineral
nutrition, water supply) are co-limiting or if there is one primary limitation.
Differences in light quality and intensity have a profound impact on C4
photosynthesis, where pathways require metabolic coordination of the mesophyll
and bundle sheath cycles. Changes in the linear versus cyclic electron flux in
maize (NADP-malic enzyme C4 subtype) in the mesophyll and bundle sheath
chloroplasts in response to light may lead to an imbalance in the coordination of
the C3 and C4 pathways. Additionally, the rearrangement of the thylakoid
complexes of both types of chloroplasts in maize optimizes the light energy
distribution between the mesophyll and bundle sheath cells and may also
participate in energy dissipation. is review aims to highlight the changes in the
understanding of the functions of photosystem II in maize bundle sheath
chloroplasts and the role of super and megacomplexes in the thylakoids.

Keywords
C4 plants; light reaction of photosynthesis; maize; mesophyll and bundle sheath
thylakoids; photosystem II

1. Introduction

Light is one of the most dynamic environmental factors that directly affect plant
performance; therefore, it is important to understand how plants acclimate to light
changes (Ruban, 2015). Plants can adjust their photosynthetic apparatus to a wide
spectrum of daily and seasonal fluctuations in light conditions (Vialet-Chabrand
et al., 2017). Acclimation to different light intensities and qualities is manifested by
changes in the quantum yield of photosynthesis and the relative levels of the
thylakoid components, including photosystems I and II (PSI and II; Bailey et al.,
2001; Kono & Terashima, 2014, 2016). C4 plants have evolved adaptation
mechanisms to cope with high irradiance in their natural habitats to optimize the
utilization of the absorbed light energy and minimize photodamage (Osborne &
Sack, 2012). us, low light (LL) levels favor the accumulation of the C3 fixation
enzyme Rubisco, whereas high light levels lead to the accumulation of both Rubisco
and the C4 fixation enzyme phosphoenolpyruvate carboxylase (PEPC)
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(Bassi & Passera, 1982; Langdale et al., 1988; Nelson & Langdale, 1989).
Both biomass production and CO2 fixation increase at a faster rate with higher light
intensity and CO2 concentration in C4 plants than in C3 plants, which reflects the
more efficient use of light and CO2 in C4 plants (Wang et al., 2012).
e photosynthetic rate and biomass of different C4 subtypes depend on the
environmental conditions, including the water and nitrogen supply (Buchman et al.,
1996). Although the basic features of C4 photosynthesis are well understood,
the quantitative significance of the elements that are responsible for high
photosynthetic efficiency is not well defined for C4 photosynthesis.
Most C4 plants contain two types of photosynthetic cells, the mesophyll (M) and
bundle sheath (BS) cells, which differ structurally and functionally, each with a
distinct chloroplast type.
In C4 photosynthesis, Rubisco is localized only in the interior cell layer, surrounding
the vascular tissues known as the BS tissues (Kranz anatomy; Hatch, 2002;
von Caemmerer & Furbank, 2003). In C4 plants, there are two M cells between
neighboring vascular bundles, and the BS cells in C4 plants are large and contain
more chloroplasts than the M cells (Figure 1). ere are three C4 subgroups based
on the differences in the decarboxylation mechanisms (Hatch, 1999): NADP-malic
enzyme (NADP-ME), NAD-malic enzyme (NAD-ME), and phosphoenolpyruvate
carboxykinase (PEPCK). CO2 enters the M cell cytoplasm where it is first converted
to bicarbonate ions by carbonic anhydrase and then fixed by PEPC localized in the
M cells, which binds the bicarbonate to phosphoenolpyruvate (PEP) to form a

Figure 1 Leaf structure and C4 metabolic pathways of maize [NADP-malic enzyme
(NADP-ME) type]. Enzymes: carbonic anhydrase (CA), phosphoenolpyruvate carboxylase
(PEPC), malate dehydrogenase (MDH), NADP-ME and pyruvate, and orthophosphate
dikinase (PPDK). Labels: 1, 6 – epidermis; 2 – mesophyll cell; 3 – xylem; 4 – phloem;
and 5 – bundle sheath cell.
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four-carbon organic acid, oxaloacetic acid (OAA; Figure 1). en, OAA is modified
to malate or amino acid aspartate and is transported to the BS tissue where Rubisco
is localized. In the BS cells, the four-carbon acid is decarboxylated to release CO2
and form a three-carbon product, pyruvate, or alanine. Next, the three-carbon
organic acids resulting from the decarboxylation reactions are returned to the
M cells, where they are used to regenerate the CO2 acceptor pool. Lastly, the released
CO2 accumulates at a high concentration in the BS chloroplasts where it is refixed by
Rubisco, and such highly concentrated CO2 largely inhibits the binding of oxygen by
Rubisco; thus, photorespiration is very low (von Caemmerer & Furbank, 1999).
Accumulating evidence indicates that many C4 plants use a combination of organic
acids and decarboxylases during CO2 fixation and that the C4-type categories are
not rigid (Bräutigam et al., 2014; Furbank, 2011). e ability to transfer multiple
organic acid species and utilize different decarboxylases has been suggested to give
C4 plants an advantage in variable and stressful environments by facilitating an
energy balance between the two cell types involved in CO2 assimilation (Ludwig,
2016). Meister et al. (1996) suggested that malate decreases PSII activity in BS cells
because the replacement of malate by aspartate as a source of CO2 in the BS cells of
NADP-ME species decreases the reducing equivalents transferred to these cells, and
the role of aspartate is to increase PSII activity in the BS cells to compensate.
However, little information is available on how combination pathways may enable
C4 plants to mitigate the effects of fluctuating environmental factors or stress.
e presence of alternative decarboxylation pathways, with differing contributions to
M and BS cell energy demands, is important for maintaining cell-type energy
balance and high CO2 assimilation rates in the leaves under different light conditions
(Bellasio & Griffiths, 2014). Each of the C4 subtypes is characterized by specialized
leaf anatomy, and there is a correlation between anatomy, ultrastructure, and the
decarboxylation mechanism of BS (Kranz) chloroplasts. e NADP-ME species have
chloroplasts that are agranal and located toward the outer part of the Kranz cells.
Also, the PEPCK species have granal chloroplasts located near the centrifugal
position, whereas the NAD-ME species have chloroplasts in the centripetal position
with grana (Rao & Dixon, 2016). In addition, in some C4 species, there is chloroplast
size dimorphism, with the BS cell chloroplasts being larger than the M chloroplasts
(Laetsch, 1971; Voznesenskaya et al., 2006). In NAD-ME and PEP-CK species, the
chloroplasts of the BS may be photosynthetically very similar to those of the M;
however, this is yet to be fully investigated. e concentric anatomy of C4 leaves
allows light to reach the M cells before the deeper BS cells (Long et al., 1989) and
modifies the light-harvesting process. In a previous study (Zienkiewicz et al., 2015)
it was shown that the response of C4 plants to light is species-dependent because
chloroplasts are stimulated differently; this is probably due to differences in light
penetration across the leaves and the redox status of the chloroplasts, which
influences the C and N metabolisms.
Light signals are interpreted by plants via the transduction cascade and enzymatic
activity. e response to light involves the activation of gene expression and
posttranslational modification of proteins; light also activates phosphorylation and
redox cascades. Transcripts involved in protein synthesis, folding, and assembly are
more abundant in M cells than in BS cells in NADP-ME plants. e differentiation of
transcriptional and post-transcriptional regulatory mechanisms in both NADP-ME
type cells might be associated with the unequal distribution of metabolites within the
cells (Rao et al., 2016). For instance, the messenger RNA (mRNA) of light-harvesting
complex II (LHCII) and LHCII gene translation product(s) accumulate at a lower
level in BS cells than in M cells (Vainstein et al., 1989). is could be because of
transcriptional/post-transcriptional control and a less efficient transport system for
LHCII in BS cells than in M cells. Covshoff et al. (2008) showed that in C4 plants,
the relative levels of gene transcripts do not correlate with the corresponding protein
levels, suggesting the involvement of transcriptional/translational regulation during
C4 differentiation. For acclimation to light intensity, the M and BS chloroplasts of
Zea mays use different mechanisms of adjustment and optimization of their
functions, depending on the irradiance conditions prevailing during their growth.
Light acclimation to high light in maize is a tightly coordinated by adjustment of the
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light reaction components/activity to balance light utilization in both the M and BS
chloroplasts (Drożak & Romanowska, 2006).

2. Structure and Function of Photosystem II in Agranal Maize Bundle
Sheath Chloroplasts

e literature agrees with the existence of an active PSI in NADP-ME plants in both
cell types; however, there is disagreement about the existence of PSII activity and the
presence of some PSII proteins in maize BS cells (Edwards & Huber, 1981). It has
been suggested that agranal chloroplasts have less PSII activity than granal M
chloroplasts, associated with reduced amounts of some proteins and mRNAs for PSII
components (Schuster et al., 1985). Additionally, it is argued that the agranal BS
chloroplasts of maize are typical of the genus and do not appear to be influenced by
irradiance (Downton & Pyliotis, 1971) and that the PSII activity of BS thylakoids is
very low, if at all detectable (Ghirardi & Melis, 1983; Leegood et al., 1983; Usuda
et al., 1975), and they have low water oxidation capacity (Edwards & Walker, 1983;
Ivanov et al., 2005; Mayne et al., 1974). For instance, Bazzaz and Govindjee (1973)
showed using fluorescence characteristics that total chlorophyll a fluorescence in the
BS chloroplasts of maize is 40% lower than that in M chloroplasts, and electron
transport is present in both types of chloroplasts. ere have also been other reports
on functional PSII complexes in the BS chloroplasts of maize, which claim that it is
up to 50% of the whole-chain electron-transport capacity seen in the thylakoids of
C3 plants (Hardt & Kok, 1978; Walker & Izawa, 1979). Furthermore, Pfündel et al.
(1996) showed using fluorescence measurements of pure M and BS thylakoids using
flow cytometry that the excitation energy of the PSII complex in BS chloroplasts
contributes significantly to the functional antenna of PSI despite their relatively low
concentrations. ese data agree with the suggestion of Bassi et al. (1995) that the
PSII LHCII antenna functions as an antenna for PSI in BS chloroplasts. Nevertheless,
it was also suggested that BS thylakoids contain only traces of LHCII and lack
polypeptides of the oxygen-evolving complex (OEC) and ferredoxin NADP
reductase. ese discrepancies may occur because of differences in tissue age and
different light intensities during growth and could be due to the cross-contamination
of BS with M chloroplasts during chloroplast isolation.
In C4 plants (NADP-ME type), where chloroplasts are differentiated into M (granal)
and BS (agranal) types (Figure 2A), BS thylakoids generally exhibit only PS I activity
and contain traces of PSII. As conflicting data on PSII activity in BS chloroplasts
have been reported, the degree of PSII deficiency in BS chloroplasts of NADP-ME
species has always been a matter of debate (Edwards & Huber, 1981). Examples that
are contrasting to BS chloroplasts in maize could include other NADP-ME species,
such as Echinochloa crus-galli and Digitaria sanguinalis, representing the scope of

Figure 2 (A) Schematic of maize (NADP-malic enzyme C4 type) mesophyll and bundle
sheath chloroplasts. (B) Model of State 1 to State 2 transitions in maize chloroplasts,
where mesophyll chloroplasts have typical State 1 to State 2 transition; whereas bundle
sheath chloroplasts have permanent State 2, where light-harvesting complex II antennas
are bound to photosystem I (Rogowski et al., 2018).
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Table 1 Summary of the properties of PSII in BS chloroplasts in maize.

Description Reference

PSII monomer Bassi et al., 1995
PSII dimer Romanowska, Kargul, et al., 2008
Lack of smallest proteins of LHCII Vainstein et al., 1989
High amount of LHCII with respect to D1 Bassi et al., 1995;

Drożak & Romanowska, 2006
Absence of LHCII and PSII Broglie et al., 1984
Presence of OEC and LHCII in low amount Sheen & Bogorad, 1987
Lack of OEC Lu & Stemler, 2002; Schuster et al., 1985
Traces of LHCII Schuster et al., 1985
Lack of 33 kDa protein of OEC Bassi et al., 1995
Linear electron transport not occurs Bassi et al., 1995
Linear electron transport is present Bazzaz & Govindjee, 1973
Deficiency of PSII Polya & Osmond, 1972; Usuda et al., 1975
Lack of PSII activity Ku et al., 1974; Schuster et al., 1985;

Woo et al., 1970
Lack of O2 evolution Leegood et al., 1983
Capacity for O2 evolution Chapman et al., 1980; Edwards & Walker,

1983; Ivanov et al., 2005; Mayne et al., 1974;
Woo et al., 1970

variation in the abundance of grana in BS chloroplasts (Ueno et al., 2005). It has also
been demonstrated that the level of PSII in maize is regulated by the synthesis of key
core components (Meierhoff & Westhoff, 1993), and it has been postulated that the
PSII content of BS chloroplasts may be proportional to the amount of aspartate that
is transported from the M to BS cells (Chapman & Hatch, 1981; Meister et al., 1996).
Furthermore, studies on NADP-ME subtype monocots found that M chloroplasts
had a PSII activity that was approximately tenfold higher than that in BS chloroplasts
when compared on a chlorophyll basis (Ketchner & Sayre, 1992). Undoubtedly, great
variation in the observed PSII composition and activities in the BS chloroplasts of
maize (Table 1) could either be due to different experimental assays or the
cross-contamination of one cell type as a result of the harsh procedure that is
necessary for chloroplast isolation from the robust maize BS tissue.
Consequently, we attempted to re-evaluate the photochemical activities of
chloroplasts in BS cells by optimizing the conditions of the isolation procedure.
Two different methods for the isolation of BS chloroplasts (mechanical and
enzymatic) were compared to address the question of whether PSII is inactivated
during the differentiation of maize leaves or the isolation procedure. Romanowska
et al. (2006) provided evidence that all the protein components of the PSII complex
are present in maize BS chloroplasts and net O2 evolution was not detected, but the
electrons were transferred from water through PSII using DCPIP. ese results
suggest that PSII acts as a poising agent for PSI and it is required for cyclic electron
flow in BS chloroplasts. Furthermore, the organization of PSII in the BS thylakoids in
maize was investigated using blue native/sodium dodecyl sulfate polyacrylamide gel
electrophoresis and single particle analysis, and for the first time, it was shown that
PSII in BS chloroplasts exists in a dimeric form and forms LHCII-PSII
supercomplexes (Romanowska, Kargul, et al., 2008). Also, earlier data suggested that
residual PSII activity in BS chloroplasts may supply electrons to control cyclic
electron flow around PSI and prevent PSI over-oxidation, which is essential for CO2
fixation in BS cells, and hence may optimize adenosine triphosphate (ATP)
production within this compartment. is supports the view that the photosynthetic
apparatus of the maize BS chloroplasts has limited noncyclic phosphorylation.
us, PSII in BS agranal chloroplasts is not equivalent to PSII in the stromal
membranes of C3 plants.
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3. Changes in the Activity and Structure of Mesophyll and Bundle Sheath
Chloroplasts in Response to Light Intensity

Romanowska et al. (2017) studied whether the chloroplasts of NADP-ME species
possess the same mechanisms capable of inducing similar responses to high light
conditions, thereby maintaining high photosynthetic efficiency. For the first time,
they found that different NADP-ME species, Zea mays, Echinochloa crus-galli, and
Digitaria sanguinalis, cultivated under the same light conditions differed in their
photosynthetic and respiratory responses to high light treatment (Romanowska
et al., 2017). ese differences might be due to the imbalance in the excitation energy
between the photosystems present in the M and BS cells and the differences in the
penetration of light inside the leaves. It was found that the non-radiative dissipation
of energy in the studied plants was not dependent on carotenoid content, and the
activity of the antioxidant enzymes and the malondialdehyde and H2O2 levels were
similar. is suggests that other photoprotective mechanism(s) might have been
involved in NADP-ME species under high light stress (Romanowska et al., 2017).
Among the investigated species, E. crus-galli was best adapted to the high light
treatment. e high resistance of the photosynthetic apparatus of E. crus-galli toward
photoinhibitory light was accompanied by elevated levels of phosphorylation of the
PSII protein subunits, photochemical quenching, organization of the PSI and PSII
complexes, integrity of the thylakoid membranes, and an elevated ATP/adenosine
diphosphate (ADP) ratio.
e effects of environmental factors (level of irradiance, temperature, and heavy
metals) on photosynthesis and the abundance of components of the thylakoid
complexes and antenna systems in C4 plant subtypes are not well known. ere is
also limited knowledge on the ability of C4 plants to modulate the photosynthetic
apparatus depending on the plant species, growth conditions, and intensity of the
environmental stresses. e energy requirements of the cell types of C4 species vary
because of the differences in the decarboxylation mechanism and the respective C4
cycles. ese differences in the energy requirements are reflected in the differences
in the chlorophyll a/b ratio and the distribution of the photochemical activities
between cells. Generally, NADP-ME species have relatively high activities of
non-cyclic electron transport in M chloroplasts and cyclic electron flow in BS cells
(Munekage & Taniguchi, 2016). Whereas in NAD-ME and PEPCK species, the main
photochemical activity is localized in BS cells. e ATP that is required to convert
pyruvate to PEP can be provided by cyclic, noncyclic, or pseudocyclic electron
transport (Bellasio & Griffiths, 2014). Cyclic phosphorylation in NADP-ME M
chloroplasts occurs at a higher light saturation than noncyclic and pseudocyclic
photophosphorylation (Edwards et al., 1979). us, qualitative changes in ATP may
be generated by different types of electron flow (Takabayashi et al., 2005). At high
light intensities, increased cyclic photophosphorylation may contribute to the C4
pathway (Romanowska, Drożak, et al., 2008). Nevertheless, there have been relatively
few studies on photophosphorylation in the chloroplasts of PEPCK and NAD-ME
C4 plants, and no distinction was made between M and BS origin (Edwards &
Walker, 1983) or high cyclic phosphorylation capacities that were observed in the BS
chloroplasts of NADP-ME plants (Chapman et al., 1980; Leegood et al., 1981).
Earlier results demonstrated that M and BS chloroplasts of the three C4 subgroups
(NADP-ME, NAD-ME, and PEPCK) that grew under the same light conditions
differed significantly with respect to organization and activity (Romanowska &
Drożak, 2006). For instance, Z. mays (NADP-ME) leaves that were acclimated to
different light conditions showed changes in the LHCII complexes in both types of
chloroplasts, whereas in NAD-ME and PEPCK plants, although some changes
occurred at the chloroplast organization level, the abundance of the light-harvesting
complex proteins was similarly affected (Romanowska, Powikrowska, et al., 2008).
In all the examined species, the intensity of the light caused changes in the
plastoquinone (PQ) levels, which suggests that the PQ pool and its changes in the
redox state are associated with different acclimation responses among the C4
subtypes. An additional candidate is the ATP content in both the M and BS
chloroplasts. However, it is unclear why such responses to light are different in the
C4 subtypes (differing in the amounts of the thylakoid components and their activity
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and/or the chloroplast ultrastructure). is is probably related to a photoprotective
strategy for the better utilization of absorbed light in the different subtypes.
However, the differences in photosynthetic activity probably reflect the
rearrangement of the membrane complexes. Since the PQ pool differs significantly
in M and BS chloroplasts under the same light conditions and between subtypes,
this may suggest that the acclimation plasticity of C4 plants with respect to light
intensity and quality is differently regulated by phosphorylation, which affects the
energy distribution between photosystems.
It was shown that photosystem II in maize M thylakoids contained (on average)
1.5 ± 0.1 or 2.3 ± 0.2 phosphoryl groups in plants grown under either low or high
light, while in BS membranes there were 0.25 ± 0.1 or 0.7 ± 0.2 phosphoryl groups,
respectively (Fristedt et al., 2012). is strongly suggests that the structure of the
thylakoid membrane governs both the phosphorylation and turnover of
photosystem II. For all the C4 subtypes, the light intensity had a strong effect on
electron transport through PSI and PSII in both the BS and M chloroplasts.
However, the light intensity did not affect the level of D1 protein (Pokorska &
Romanowska, 2007), but high light increased the accumulation of CF1 and
cytochrome b6f proteins in the M and BS chloroplasts of all tested C4 plants
(Romanowska & Drożak, 2006; Romanowska, Kargul, et al., 2008; Romanowska,
Powikrowska, et al., 2008). Furthermore, in an earlier study on the effects of
irradiance on C4 chloroplasts, a significant increase in ATP synthase activity in the
M and BS chloroplasts was observed in response to high light. e results showed
that the two CF1α isoforms coexist in the chloroplasts; the CF1α′ isoform is more
abundant in high light-grown plants than in low light-grown plants (Romanowska,
Powikrowska, et al., 2008). It was suggested that in the M and BS chloroplasts of C4
plants a mechanism(s) regulates the ATPase composition in response to light
irradiance. us, accumulation of the α′ isoform may have a protective role under
high light stress against over-protonation of the thylakoid lumen and photooxidative
damage to PSII. e data also indicated that ATP production in C4 plants is
regulated by two separate mechanisms: one under normal growth conditions and the
other when plants are exposed to stressful environments. erefore, the metabolic
separation of M and BS cells plays an important role in the acclimation process
because it enables the regulation of the ATP/ADP ratio in both types of chloroplasts.

4. Light Regulation of Photoinhibition, Photosystem II Turnover,
the Phosphorylation of Proteins, and the Composition of the Thylakoid
Membranes of theMesophyll and Bundle Sheath Chloroplasts

e BS chloroplasts in the NADP-ME subtype are agranal (cyclic electron transport
dominate) with structures similar to that of the stroma lamellae of C3 chloroplasts.
Whereas the BS and M chloroplasts in both the NAD-ME and PEPCK subtypes are
granal (with cyclic and noncyclic electron transport); however, it is unknown
whether the structural and functional heterogeneities in PSI and PSII exist in these
subtypes. Some data concerning the NADP-ME subtype are incompatible,
presumably because of environmental factors, especially light intensity and
temperature, which cause substantial changes in the aggregation of the antenna
systems, pigment content, and photosystem efficiency. Dynamic and reversible
changes in the composition of the thylakoid membranes have great importance in
sustaining the photosynthetic and respiratory activities of plants under variable and
stressful conditions. Also, the efficiency of metabolite exchange between the BS and
M cells may be important. e ATP and/or NADPH produced in the light reactions
of both types of C4 cells can regulate not only photosynthetic metabolism but also
mitochondrial respiration. However, little is known about the precise mechanisms of
acclimation to light in both types of chloroplasts. Nevertheless, it was established
that M and BS chloroplasts of various C4 plant species differ with respect to the
photosynthetic membrane (thylakoid) organization and activity, even when exposed
to the same light conditions (refs from Romanowska’s lab). Recent work points to
dynamic changes in the redox balance of the PQ pool (the electron carrier that
mediates electron transfer between PSII and PSI) and the ATP level as the two key
strategies that have evolved in both types of chloroplasts in the various C4 plant
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species for acclimation to light. Nevertheless, little is known about how these
processes regulate the dynamics of the adaptive responses to light in various C4
plants, which are manifested by changes in the macroorganization of photosynthetic
membranes, such as the remodeling of the grana stacks and their key components,
light-harvesting complex I (LHCI) and LHCII, and changes in the stoichiometry of
the photosynthetic complexes.
Plants grown under stable environmental conditions develop mechanism(s) that are
responsible for the optimal efficiency of photosynthesis, and the redox signal derived
from photosynthetic electron transport plays an important regulatory role by
modulating the expression of genes that encode photosynthetic components
(Allen, 2002, 2004; Walters, 2005). It is also possible that under constant conditions,
the redox changes are too small to be measured, but plants still respond to these
changes. When plants are suddenly subjected to stress conditions (e.g., low
light → high light), other acclimation mechanisms may be activated, including
metabolic signals, alteration in the ATP/ADP ratio, and turnover of the D1 protein
from the reaction center of PSII. e rapid turnover of the D1 protein is an example
of the plasticity of the photosynthetic apparatus and prevents the inhibition of
photosynthesis in plants under variable environmental conditions, especially
variations in light intensity and low temperatures (Allakhverdiev & Murata, 2004;
Andersson & Aro, 2001). e rate of D1 protein degradation is regulated by its
phosphorylation and magnesium and ATP levels (Rintamäki, Kettunen, & Aro,
1996). It has been shown that D1 can only be digested in its dephosphorylated form
(Ebbert & Godde, 1996). Additionally, PSII core proteins, including D1, are
phosphorylated in grana thylakoids, whereas their dephosphorylation and
degradation occur in non-appressed membranes (Rintamäki, Salo, et al., 1996),
where most thylakoid proteolytic enzymes are localized (Haussühl et al., 2001;
Itzhaki et al., 1998). Illumination leads to reversible phosphorylation of photosystem
II proteins and phosphorylation of LHCII increases the transfer of energy to PSI
(state transitions). Also, LHCII kinase is activated by the over-excitation of PSII.
erefore, reversible phosphorylation regulates the relative rates of cyclic and
noncyclic electron transport and coordinates the rate of ATP synthesis. e two
photosystems did not have identical light-absorption spectra and spectral light-use
efficiencies. ese differences arise from the differences in the pigments and the
binding of the pigments in the two photosystems. erefore, changes in the spectra
have great potential to disrupt the balanced activities of PSI and PSII, which are
required for optimal linear electron transport (Laisk et al., 2014). us, state
transitions represent a fast excitation-balancing mechanism that operates in minutes
in response to imbalances in electron transport through PSI and PSII (Allen et al.,
1981).
Hence, chloroplasts of NADP-ME C4 species with different amounts of grana
systems in BS chloroplasts are a good model for investigating the mechanism(s) that
are responsible for the optimal production of energy and redox equivalents for CO2
assimilation. High ATP concentrations in chloroplasts increase protein
phosphorylation while simultaneously inhibiting phosphatases (Rintamäki,
Kettunen, & Aro, 1996). In contrast, the ATP level also appears to affect the activity
of proteases (Lindahl et al., 2000). PSII in the BS membranes of maize contains all
the polypeptides involved in electron transport and oxygen evolution, but they are
with very low activity (Romanowska et al., 2006). Pokorska and Romanowska (2007)
demonstrated that the D1 degradation cycle is very efficient in BS maize thylakoids,
confirming that PSII plays an important role in these membranes. e relative
amount of Deg1 proteases in Z. mays BS chloroplasts is significantly higher than that
in M chloroplasts, despite the lower content of PSII (20%) in the BS than in the M
chloroplasts (Pokorska et al., 2009). Furthermore, protease Deg1-mediated
degradation of not only the photosystem II core proteins D1/D2 but also the minor
LHCII proteins CP26, CP29, and PSII-associated PsbS protein were found in both M
and BS chloroplasts (Zienkiewicz et al., 2012). It has been postulated that PsbS,
CP26, and CP29 are the main players in the dissipation of excess excitation energy
and adaptation to changing light conditions during state transitions (Bonente et al.,
2008; Kargul & Barber, 2008). is indicates the possible involvement of Deg1 in the
regulation of these photoprotective mechanisms by cleavage of the photodamaged
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PSII core and antenna subunits in the C4 plant Z. mays. erefore, BS chloroplasts of
the NADP-ME species of C4 plants with different amounts of grana (10%–30% as
compared to that in M chloroplasts; Hatch, 1987) provide an appropriate model to
study the interrelations between the ultrastructure, electron transport, and turnover
processes.
e extent of acclimation varies between C4 species per the metabolic differences
among chloroplasts and differences in energy demand (Edwards et al., 2001). It was
found that in BS chloroplasts of a PEPCK plant (Panicum maximum), where the
demand for ATP is higher than that in NAD-ME plants (Panicum miliaceum),
the accumulation of ATP synthase isoforms was stimulated by high light intensity
(Romanowska, Powikrowska, et al., 2008). is is in addition to the observation that
in maize (NADP-ME subtype), high light increased the level of the CF11α isoform.
is may indicate that the same signal operates at both low and high light intensities.
erefore, the extent of acclimation would not simply depend on the photon flux
density but rather depend on both the protein content and intensity of electron
transport. e acclimation to the light intensity that was observed for the CF1α
isoforms in both the granal and agranal chloroplasts suggests that this kind of
response to light is universal. e CF1α isoforms, regardless of their physiological
significance, might be a general feature of chloroplast ATP synthase complexes in
many other plant species. In the BS chloroplasts of NADP-ME species, PSI activity is
very high, which supports the view that the photosynthetic apparatus of BS
chloroplasts generates ATP through a PSI-dependent cyclic pathway of electron
transport (Ivanov et al., 2007).
erefore, the following question arises: what is the function of PSII in BS agranal
chloroplasts? Pfündel et al. (1996) showed that the excitation energy of PSII was
efficiently transferred to PSI in the BS chloroplasts of many NADP-ME species
despite the relatively low concentrations of PSII, but they did not demonstrate that
the light energy was used for ATP synthesis. Earlier results suggested that differences
in ATP synthase activity may play a role in the regulation of photosynthetic energy
conservation to allow for flexibility in the stoichiometry of the ATP/NADPH ratio
(Romanowska & Drożak, 2006). Since PSII in the maize BS chloroplasts exists in the
dimeric form and forms LHCII-PSII supercomplexes (Romanowska, Drożak, et al.,
2008), this suggests that residual PSII may supply electrons to poise cyclic electron
flow around PSI and prevent PSI over-oxidation, which is essential for CO2 fixation
in BS cells, and hence, may optimize ATP production within this compartment
(Romanowska, Kargul, et al., 2008). us, the role of PSII would be complementary
to that of NADH-PQ reductase, which is enriched in the BS chloroplasts (Darie
et al., 2006) and injects electrons into the PQ pool depending on the redox status of
the stroma.
It was hypothesized that in BS chloroplasts, some of the LHCII antennas can be
permanently bound to PSI and that cyclic electron transport is highly stimulated by
ATP synthesis. It is unknown how the redox state of PQ influences kinase activity
and what is the role of the cytochrome b6f complex in the BS. us, in C4 plants,
short-term acclimation to changes in light intensity and quality are likely to be
mediated by redox-dependent kinases, which are involved in the signaling cascades
that ultimately lead to the phosphorylation and structural rearrangement of the
light-harvesting antennas that are associated with both photosystems in the process
of state transitions (Kargul & Barber, 2008). Phosphorylation of the key proteins in
the photosynthetic membrane regulates the profound reorganization of the electron
transfer chain and remodeling of the thylakoid membranes (Allen, 1992; Bennett,
1977). It is a mechanism for reconfiguring the photosynthetic light-harvesting
apparatus in response to changing light conditions through phosphorylation of
LHCII (Tikkanen et al., 2010; Wollman, 2001). is is achieved by the migration of a
part of the LHCII antenna between PSI and PSII (Pesaresi et al., 2011). In plants,
state transitions are typically induced by changing the spectral quality of the light:
far-red (FR) light that favors PSI is used to promote State 1, while orange or blue
wavelengths that favor PSII are used to induce State 2. Plants under low light
intensities are usually in State 2 when some of the LHCII antennas are bound to PSI.
us, “state transitions” act as a mechanism for balancing the excitation of the two
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photosystems under changing light regimes. Furthermore, earlier results showed
that the short-term action of FR light has a strong effect on LHCII protein
phosphorylation in BS chloroplasts, and stimulates PSI activity in these chloroplasts
(Zienkiewicz et al., 2015). Rogowski et al. (2018) provided novel insights into the
connections between the membrane structures of M and BS chloroplasts, protein
phosphorylation, and photosystem function. In M chloroplasts, FR light induced
dephosphorylation of LHCII and detachment of the antenna from PSI. In the BS
thylakoids, FR light initiated the dephosphorylation of free and aggregated LHCII
antenna. e dephosphorylated antenna can bind to PSII, which strongly increases
its fluorescence, while part of the LHCII pool remains associated with PSI. us,
aggregates of LHCII tended to be resolubilized in FR light, which allowed LHCII to
connect to PSII without changes in the pool of PSI-LHCI-LHCII. ese results
indicate that M chloroplasts have “state transitions,” as is known to exist in C3 plants,
whereas BS chloroplasts exhibit a uniquely permanent State 2, where LHCII is
associated with PSI (Figure 2B); this is independent of the light quality.
e permanent presence of State 2 in the maize BS chloroplasts may be aimed at
maximal functioning of cyclic electronic flow around PSI for ATP production;
whereas changes in the PSII antenna may change the intensity of linear electron flow
for PSI protection. is indicates that the standard “state transitions” model must be
revised. Such regulation is likely necessary for the efficient use of light in C4 plants.
Furthermore, for the first time, research was conducted on the organization of
complexes in the stroma lamellae and margin regions of maize M chloroplasts,
where different types of complexes are expected to occur (Urban et al., 2020).
Grieco et al. (2015) suggested that in addition to the movement of LHCII, entire
photosystems may also be relocated during “state transitions.” is allows for direct
energy transfer from PSII to PSI under light, which preferentially excites PSII.
e movement of PSII-LHCII toward the margins allows for the mixing of the
photosystems and an energetic linkage between them. It was found that in these
membranes, PSI may simultaneously exist in two forms: the most abundant type
being composed of PSI-LHCI-PSII-LHCII megacomplexes, and the other type being
composed of PSI-LHCI-LHCII supercomplexes (Urban et al., 2020). ese
complexes were formed under both low and high light growth conditions but at
different concentrations. Changes in the levels of the megacomplexes are controlled
by the light intensity during growth and actual light quality. e results suggest a
different function of super- and megacomplexes organization than the classic “state
transitions” model, which assumes that the movement of LHCII trimers in the
thylakoid membranes is a mechanism for balancing light absorption between the
two photosystems under light stress. Light-dependent modifications control both the
docking and disconnecting of PSI and PSII proteins; thus, they can balance energy
distribution between the two photosystems, can participate in the repair of the
photosystems, and, as can be seen from the effects of the growth light, can
participate in energy dissipation. erefore, the behavior of the described complexes
does not seem to be well explained by the “state transitions” model, rather, the role of
these complexes in excitation quenching for PSI and turnover for PSII is indicated.
Schwarz et al. (2018) suggested that in C3 and C4 (NAD-ME type) plants, PSI-LHCII
megacomplex formation requires thylakoid stacking; depends on the growth light
intensity, leaf age, and PSII core phosphorylation; and is correlated with changes in
the PSI/PSII ratios. ey proposed that the migration of LHCII antennas protects PSI
against excessive stimulation and regulates PSII turnover and, thus, repair the cycle.
Although PSII is extremely sensitive to variable environmental factors, it shows great
potential for adaptation to diverse environmental conditions. e molecular
mechanisms of PSII quantum efficiency optimization and defense against
photodamage provide the basis for a better understanding of the plasticity of the
photosynthetic apparatus. Nevertheless, little is known about how these processes
regulate the dynamic adaptive responses to light in various C4 plants, which are
manifested in changes in the macroorganization of the photosynthetic membranes,
such as changes in the grana stacks and their key components, the LHCI/II, and the
stoichiometry of the photosynthetic complexes. is knowledge will provide insights
into the significance of these systems in C4 plant physiology and ecology, contribute
to attempts to increase C4 crop yield and ensure global food security, predict the
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effects of different climate change scenarios on natural and agricultural C4
species-rich environments, and assist with designing future strategies in plant
biotechnology.

5. The Influence of Light Penetration Into the Leaves on theMetabolite
Distribution and Structure and Function of Mesophyll and Bundle
Sheath Cells

C4 photosynthesis is related to the intensive exchange of intermediates between the
photosynthetic cells. e diffusion of intermediates in C4 photosynthesis subtypes is
driven by an intermediate concentration gradient (Leegood, 2000) and the
plasmodesmata at the interface of M and BS cells are particularly numerous, possibly
enabling efficient metabolite diffusion (Botha & Evert, 1988; Evert et al., 1977).
is hypothesis is supported by a positive correlation between the photosynthetic
rate and the plasmodesmata number in a few grass species originating from South
Africa with different photosynthesis subtypes (Botha, 1992). is relationship has
not been studied in other species, and the short-distance transport of photosynthates
has not been studied directly. Nevertheless, short-distance transport studies have
been conducted on maize (Danila et al., 2016; Sowiński, 1998; Sowiński et al., 2007).
When studying the compartmentation of the enzymes that are involved in the
photosynthetic carbon metabolism in the different chloroplast-containing tissues of
various C4 species, the partitioning of carbon into carbohydrates is unclear. It has
been proposed that sucrose is predominantly synthesized in the M cells, whereas
starch is normally synthesized in the BS cells. However, the enzymes involved in
their biosynthesis are found in both cell types (Leegood & Walker, 1999).
To determine the distribution of the metabolites between the M and BS cells during
C4 photosynthesis, fluorescence techniques were used and short-distance transport
was measured. Additionally, in the NAD-ME and PEPCK subtypes, the
mitochondria of the BS cells are also involved in photosynthesis, since acid
decarboxylation by mitochondria-located NAD-specific malic enzymes provides
ATP for the cytosol-located PEPCK (in PEPCK species). e importance of
mitochondrial activity for carbon and nitrogen metabolism in C3 plants has been
well documented (Atkin et al., 2000; Krömer, 1995), however, little is known about
their activity under light and darkness in the leaves of C4 plants. Studies (Rogowski
et al., 2019) have shown that the respiration rate of C4 leaves, similar to that in C3
leaves, also increases following illumination/photosynthesis. However, this increased
respiration, termed light-enhanced dark respiration, was dependent not only on the
amount of CO2 fixed but also on the light reactions. is provides evidence for a link
between photochemical activity and mitochondrial respiration.
Notably, in maize, the rate of photosynthesis is dependent on the light intensity
during measurement (actual light intensity) and not on the growth light intensity.
Coordination of both the light and dark reactions of photosynthesis results in a high
efficiency of this process under changing light conditions. For acclimation to light
intensity, M and BS chloroplasts use different mechanisms of adjustment and
optimization of their functions, depending on the irradiance conditions prevailing
during growth, and these mechanisms are associated with different light penetration
across the leaf. Zienkiewicz et al. (2015) showed that light quality has various effects
on photochemistry and protein phosphorylation in Z. mays thylakoids, owing to the
different degrees of light penetration across the leaves and the redox status in the
chloroplasts. ese acclimation changes that are induced by light quality are
important in the regulation of chloroplast membrane flexibility and function.
us, the consequences of light gradients through a leaf have been identified in the
chloroplast ultrastructure (Terashima et al., 1986) and photosynthetic function
(Evans & Vogelmann, 2003), showing that differential acclimation occurs for
individual cells or chloroplasts according to their position within a leaf. erefore,
differences in the light quality penetration into a leaf are likely to have profound
impacts on C4 photosynthesis because the C4 photosynthetic pathways require
metabolic coordination of the M C4 and BS C3 cycles. Additionally, it is known that
the rate of photosynthesis is reduced under blue light compared to red or green light
(Evans & Vogelmann, 2003; Loreto et al., 2009) and this is attributed to the poor
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penetration of blue light into the BS cells. us, this results in insufficient production
of ATP in the cells to match the rates of M cell CO2 pumping (Evans et al., 2007).
is suggests that cooperation of both BS and M cells is required for high
photosynthetic activity in C4 leaves; however, further experiments are needed
focusing on the distribution of the metabolites to fully understand this process.

6. Main Conclusions

• PSII in maize BS chloroplasts is not equivalent to PSII in the stroma membranes
of C3 plants; it exists in the dimeric form and forms LHCII-PSII supercomplexes.
Also, it is susceptible to photoinhibition, supporting the hypothesis that
photoinhibition is not exclusively dependent on the electron transport rate.

• Mesophyll chloroplasts have “state transitions,” which are known to exist in C3
plants, whereas BS chloroplasts exhibit a uniquely permanent State 2,
independent of light quality, where LHCII is associated with PSI.

• In the stroma lamellae and margin regions of the maize, the M chloroplasts have
PSI-LHCI-PSII-LHCII megacomplexes and PSI-LHCI-LHCII supercomplexes,
formed under both low and high light growth conditions. e role of these
complexes is in excitation-quenching for PSI and turnover for PSII.

• Regulation of the distribution of light intensity between M and BS cells shows
that co-operation between both metabolic systems determines effective
photosynthesis and reduces the harmful effects of high light on the degradation
of PSII.
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