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Abstract 

The paper discusses how recognition of individual and combined muscular activation modes 
(functions) and the prediction of intended such modes can be accomplished by identifying 
parameters of noninvasive surface EMG signals.  It outlines the mathematical  analysis of 
surface EMG signal to facilitate such recognition and related prediction, including recognition 
of intention (in terms of attempts) to activate motor functions  from the EMG, without 
accessing the CNS itself, in cases where a patient, say, a high-level amputee does not have the 
final-activation muscles and joints. The EMG activity thus allows to interpret and recognize 
CNS commands from minute variations in the parameters of surface EMG signals that record 
changes in the firing of motor neurons triggering contractions in related muscle fibers. We note 
that although in popular media this is sometimes referred to as detection of “thoughts”, no 
thoughts are detected, but only motor-outcomes of thoughts as found in the EMG signal. 
Examples of concrete cases where such recognition or prediction were accomplished in the 
author’s lab and in devices that came out of that lab, are given as are references to these in the 
literature over the last 35 years. 
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The paper discusses how recognition of individual 
and combined muscular activation modes (functions) 
and the prediction of intended such modes can be 
accomplished by identifying parameters of noninvasive 
surface EMG signals. The EMG activity thus allows to 
interpret and recognize CNS commands from minute 

variations in the parameters of surface EMG signals 
that record changes in the firing of motor neurons that 
trigger contractions in related muscle fibers. 
Recognition and discrimination between several modes 
of muscular contractions were first reported in 1975 
[7], as was the related mathematical derivation. It was 
subsequently employed by others, such as in [3,18,20]. 
Such recognition and prediction is important for 
controlling prosthetic and orthotic devices [7,14] and 
for controlling electrical stimulation on paraplegic 
patients [9,10,12]. It is also important for detecting 
onset of tremors in patients suffering from neurological 
diseases such as Parkinson Disease (PD) and Essential 
Tremors [1], in order to adaptively control deep brain 
electrical stimulation (DBS). Other applications are to 
predict and detect onset of sleep apnea and hypopnea 
events [24], to allow early warning of such events, to 
allow high-level above-elbow [13] and shoulder-
disarticulation [14] amputees to activate at will (via a 
single pair of shoulder-EMG electrodes to activate 
three below-amputation joints of a prosthesis (six 
functions), namely, elbow-flexing/extension, wrist 
rotation (wrist pronation/supination) and hand’s grasp-
opening/closing [13,14], or to activate the same six 
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functions on a robotic arm, as was performed and 
filmed in the author’s lab since the early 1970’s. 
The paper outlines the mathematical analysis of surface 
EMG signal to facilitate such recognition and related 
prediction, including recognition of intention (in terms 
of attempts) to activate motor functions from the EMG, 
without accessing the CNS itself, in cases where a 
patient, say, a high-level amputee does not have the 
final-activation muscles and joints. We note that 
although in popular media this is sometimes referred to 
as detection of “thoughts”, no thoughts are detected, 
but only motor-outcomes of thoughts as found in the 
EMG signal. 
In the coming sections, the paper will discuss the role 
of the surface EMG signal, analysis methods for 
retrieving complex information from the surface-EMG 
signal and specific examples of concrete applications, 
mainly from the author’s lab. 

1. The role of the surface EMG signal 
We note that parameters of surface EMG signals for a 
given limb function or combination of such functions  
(which is executed by contractions of certain related 
muscle fibers that are activated by their appropriate 
motor neurons), start to change, at least slightly, even 
before the actual desired function is executed. 
Furthermore, in order to execute such functions, the 
motor cortex must first balance the contractions of 
other muscle fibers upstream from the joint involved to 
balance the body for balanced execution of the desired 
end function. Hence, changes in shoulder and upper 
arm muscle take place well above an elbow that is to 
be bent or a wrist that is to be rotated. The above serve 
to allow a person amputated at the shoulder to be able 
to control his/her missing elbow (actually, an elbow 
prosthesis) or even his/her missing hand’s grasp 
function. It also allows to discriminate between 
different arm functions from the same surface EMG 
signal, since the surface EMG is a spatial integration of 
many hundreds or more motor neurons that may 
activate different muscle fibers. Furthermore, not all 
these fibers contract in the same manner for different 
major functions (elbow or grasp, elbow bending or 
extension). The model in Fig. 1 is a schematic for the 
mathematical input-output model. The filter block 
(denoted: Muscle and skin tissue) is the transfer 
function between input and output. It encompasses the 
propagation of the motor unit’s propagation-response 
through the muscle fibers [21] and the effects of skin 
tissue all the way to the skin electrode where the 
surface EMG is measured. Through the recording of 
surface EMG at the quadriceps muscles of complete 
thoracic-level paraplegics during electrical stimulation 
at that same location, we verified this model. The 
recording of this signal, which we termed as Response-
EMG, was possible since, in complete paraplegics the 
only EMG that can be measured at this stimulated site 
is due to the stimulation. By separating the resulting 

EMG from the artifact of the stimulus, the resulting 
EMG was nothing but a very strong motor-unit action 
potential, which was in fact the sum of action 
potentials from many motor-units firing simultaneously 
due the stimulation pulse [6,8,10]. Fig. 2 shows the 
response EMG at a paraplegic’s quadriceps during FES 
stimulation immediately after the patient stood up (via 
FES, of course) and then after prolonged stading, when 
muscle fatigue started to take its toll. At extreme left 
the stimulus’ artifact is visible. We note that similar 
results are given in [17]. The EMG is a neuromuscular 
signal that is, of course, controlled by the CNS. It 
allows indirect reading of certain “thoughts”, namely 
those related to muscular activity, without having to 
record it at the CNS itself. 
All such applications require adequate placements of 
the EMG electrodes so that they access the muscle 
fibers whose contractions are of interest and hence, 
indirectly, the motor neurons of interest. They also 
require utilization of a broad frequency band in the 
recording and the subsequent signal processing of the 
recorded EMG signals. Finally, and not least, they 
require utilization of rigorous advanced signal 
processing methods to deal with stochastic time 
varying signals and to be sensitive to detect changes in 
the mathematical parameters involved, such as AR or 
ARMA analysis [4], wavelet transform (WT) analysis 
[16] and blind signal separation (BSS) algorithms, such 
as ICA [2] and AMUSE [22], in presence of 
environmental and recording noise. 
With the advent of extremely fast (GHz rates) and 
miniature computer hardware, the practicality of these 
applications and their cost are no more prohibitive, as 
processing speed is well above what is needed even for 
the most complex algorithms that are and will be 
involved, noting that all biological signals and 
processes lie in or below the KHz range (a million 
times below the hardware rate) and that micro-
miniaturization is widely available. 

2. Analisis 

2.1 The Basic Temporal Model of the Surface EMG Signal 

In Fig. 1 we show surface EMG signals as an output 
y(t) of a system whose input in an array of (seemingly 
– for the outside observer) random trains of firings 
(impulses) of individual motoneurons denoted as xi (t), 
where t denotes time and where i = 1, 2, . N, N being 
the number of neurons considered (recorded) at a given 
pair of surface EMG electrodes. The muscle and skin 
fibers between the motor neurons above and the EMG 
skin electrode (that is non-invasive) is considered as a 
low-pass filter that transforms the train of pulses into 
the surface EMG signal y(t) as above. 
The input array {xi} of impulses of random arrival time 
can be considered to be a Poisson process. 
Furthermore, in [15] it is shown that if a Poisson input 
is applied to a low pass filter having a dominant time 
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Fig. 1 The Surface EMG Signal (a) Schematic of the signal (b) 

The surface EMG signal as a stochastic process (time 
series) 

                          
 

Fig. 2 Response EMG during stimulation in paraplegia  

constant that is considerably longer than the mean of 
the Poisson process then the filter’s output converges 
to a Gaussian process. In [7] we have shown that the 
surface EMG signal satisfies or approximates a 
Gaussian process, in [19] it is experimentally shown 
that indeed the surface EMG is Gaussian. 
Since a Gaussian process is linear, we have shown in 
[7] that it can be modeled by a linear AR (pure 
autoregressive), as in eqn (1) or a mixed ARMA (AR 
and moving average model), as in eqn (2), namely: 
y(k) = a(1) y(k-1) + a(2) y(k-2) + .... + a(m) y(k-m) + w(k)        (1) 
y(k) = a(1) y(k-1) + a(p) y(k-p) + w(k) + b(1) w(k-1) +  .. + b(q)  
w(k-q)                                                                                              (2) 
that are equivalent representations [4], k denoting 
discrete time (k = 0, 1, 2,....), and where w(k) is 
discrete white noise, satisfying: 
E[y(k-i) y(k-j] =0  if i differs  from  j    for all i  and  j                     (3) 
and 
E [y 2 (k-i)]= W <    Infnite                                                            (4) 
I and j being integers and E[...] denoting Expectation. 
We note that w(k) is the innovations of y(t), being the 
true residual to which y(t) converges, namely, the 
prediction error when the model orders m, p and q of 
eqn. (1) or (2) are correct [4,7]. It is shown in [1] that 
whereas theoretically m should be infinity, in practice, 
some low value (between 4 and 10) suffices. Orders p, 
q of eqn (2) can be computed via a(i) of eqn (1), as 
shown in [4]. 

2.2 Non-Stationarity: Stochastic Time Series Approach 

The problem of distinguishing between modes or 
combinations of modes of muscle contractions, of 
predicting the onset of certain oncoming types of 
contraction or of activating certain limb or other motor 
functions, as in robotics, prostheses, orthotics, or of 
control of electrical stimulation, including deep brain 
stimulation, reduces to identifying the parameters {ai} 
of eqns, (1) or (2) or their equivalents. In doing so, one 
must keep in mind that the parameters {ai} of eqns. (1) 
and (2) are not stationary, but always change over time. 
Parameter identification is in itself a stochastic process 

that requires a minimal number of samples of the EMG 
data to be at all possible, the number being at least as 
high as the number of parameters that need be 
identified. We cannot artificially sample at a high rate 
to get more samples. Sampling must be at least at the 
Nyquist rate, namely twice the highest frequency at 
which there is any information in the signal [4]. But 
over-sampling is wasteful and may yield non-
information. Furthermore we must guarantee that we 
use an algorithm whose identification results are 
mathematically rigorously proven to converge 
(convergence “in probability” or “with probability 
one”) and unbiased (not converging to a constant 
error). Algorithms not proven to converge “in 
probability” are useless. If the conditions of 
convergence in probability and unbiasedness are 
satisfied, and given enough samples, we shall converge 
to the true but unknown parameters, if the number of 
parameters is adequate [4]. Ref. [4] guides us also to 
finding an adequate number of parameters. The data 
length must be such that the parameter estimates seems 
to reach steady state values. A rule of thumb is that we 
need at least 100-120 samples per parameter if a 
statistically efficient [4] algorithm is employed. In 
cases of signal tendency towards instability (it never 
reaches infinity but may start to grow rapidly for some 
time), one has to follow the discussion in [4] on 
unstable processes, but not to avoid identification. 
Still, even at 120 samples per 4 parameters (480 
samples total) at a sampling rate of 350-400/sec 
(adequate for surface EMG), we need approx 1 second 
to complete the identification (computer time is no 
detriment with today’s technology). This may be just 
about the limit to what one may require for EMG 
control of fast movements. When movements change, 
then parameters change too and we must re-identify. 
Now, there are algorithms that require many more 
samples than others. One must therefore select an 
algorithm that can be mathematically proven to be 
statistically efficient (namely, satisfying the Cramer-
Rao bound [4] with an equality). Fortunately there is a 
rather simple algorithm that is convergent in 
probability unbiased and that can be proven to be 
statistically efficient. This is the sequential - 
(recursive-) least squares algorithm [14]. 
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Fig. 4 Single EMG channel controlling 6 functions 
(three joints) of above elbow prosthesis. Top:  
Schematic of Prosthesis. Bottom: System’s block 
d

 
Fig. 3 EMG signal from single source forms 2 different   

2-dimensional  vectors  to detect  two fuctions  

Doing so will rigorously satisfy that we can cope with 
non-stationarities in {ai}. To avoid getting stack it is 
best to restart identification from 0 with each new 
identification run. Even better is to run N parallel 
identification algorithms (N being the number of 
samples per one complete run, say, 480 in our 
example) and to consider only the identified 
parameters from the last run that was completed. Thus 
identification is updated at each sample. 

2.3 Non-Stationarity of Model: The Wavelet Approach 

An alternative to the algorithm of Section 3.2 is to 
perform a Wavelet Transform (WT) of the data y(t)  
above [19]. The WT is a time-frequency 
transformation of data, such that it yields a time-
varying frequency representation of that data. It can be 
viewed as an extension of frequency transform analysis 
(the Fourier Transform) for processes whose 
parameters (say, spectrum) varies over time. A 
parallelism between the WT and the discrete stochastic 
time-series analysis of Sect. 2.2 is discussed in [23]. 
The continuous time WT (CWT) is given by: 

where XWT ( τ, s) is the CWT of a time-domain signal 
x(t) , τ denoting the dilation, namely, the location of the 
WT as it is shifted in time (or in space) and s denoting 
scale and corresponds to the frequency information, 
and the asterisk denoting complex conjugate. Hence, 
XWT (τ, s) is clearly  a two dimensional function, of time 
and frequency. The dicrete form of eqn. (5) yields the 
discrete WT (DWT), which is easily computed.  It is 
conveniently presented in terms of an array of freqency 
bands (band-pass filters) where the spectrum in each 
band changes over time. 

2.4 Neural Network for Clusteing 

Since the parameters as obtained via 2.2 or 2.3 are 
never exactly repeatable since the EMG signal itself is 
never repeatable [even an opera singer can never 
duplicate the exact signature of his/her voice, namley 
the voice signal, which rather resembles Fig. 1 b each 
time (s)he repeats any given aria], one must cluster 
parameters that represent any given muscular or joint 
contraction/movement [5,6]. An afficient way to 
perform such clustering is doing it with artificial neural 
newtworks (NN). Differnt NNs can be used, such as 
ART, Counter-propagation, LAMSTAR and others [5]. 
In [11] we presented an ART algorithm for clustering 
EMG signals for controlling electrical stimulation for 
walking by thorachic-level paraplegic patient. 

2.5 Discrimination between Different Motor Functions from 
EMG Parameters 

Discrimination between different motor functions or 
modes of muscle contraction is accomplished by 
detecting differences in one or more parameters that 
are consistent for a given mode of contraction relative 
to others. The parameters considered are either time 
series parameters (Sect. 2.1), or changes over time in 
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(a) Elbow flexion (b) Elbow extension 

         
 

(c) Grasp closing (d) Grasp opening 
 

Fig. 5 High above-elbow amputee operating 4 limb functions by EMG from shoulder electrode pair 

 
 
Fig. 6 EMG electrode placement to activate above-elbow 

prosthesis (patient as in Fig. 5) 

one or more frequency DWT bands (Sect. 2.2) that are 
different at certain times than those at same band for a 
different mode of contraction. Neural networks can be 
employed also to aid in such discrimination, especially 
if they are somewhat hidden from direct observation. 
Center of clusters can serve as parameters for 
discrimination. 
Fig. 3 illustrates the basic mathematical problem of 
discrimination in terms of m-dimensional parameter 
vector-space [in case of Fig. 3, we employ a 2-D space, 
describing identification via only 2 parameters, 
namely, a1 and a2 – see eqn. (1) above]. Obviously, 
discrimination requires that the sub-space of one 
function (in case of artificial limb control by EMG as 
in Fig. 5c – Grasp Closing) will not overlap another 
function to be discriminated. If overlap occurs over a 
very small percentage of a subspace, training of the 
user (patient, in this case) must be carried out to reduce 
the probability of discrimination error. Else, either 
finer analysis must be done (more sensitive and more 
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 (a)-schematic (b) T-9 complete 
 

Fig. 7  EMG electrodes at above spinal cord lesion of thoracic-level complete 
paraplegic patient, to control activation of Electrical Stimulation for ambulation 

repeatable identification algorithms to reduce the size 
of the subspaces, if at all possible), improved NN 
clustering methods, or electrode placement must be 
changed. 

 3. Applications 

3.1 Discrimination of Six Contraction Modes in EMG 
Recorded at Shoulder Electrode: To Control Multi-
Degree-of-Freedom Above-Elbow Prosthesis 

Since our initial study of [7], we have applied the 
signal discrimination via the mathematical approaches 
of Sect. 2 to control up to six limb functions (Elbow 
extension, elbow flexion, wrist pronation, wrist 
supination, grasp opening, and grasp closing) to several 
high above–elbow and shoulder disarticulation 
amputees [13,14]. See Figs. 4, 5 and 6. In the above, 
we have used a single pairs of EMG electrodes, located 
on biceps, between biceps and triceps (this gave often a 
“richer” mixture of muscle fibers involved in the 
artificial-limb’s functions that we wanted to activate by 
EMG), or shoulder (if  the stump did not allow a lower 
placement). We requested the patient to pretend and try 
to use his/her remaining muscles as if he could a 
ctually perform the intended function. Still, it is 
possible, if necessary to have patient try to perform 
other task, as long as those do not activate other limbs 
or joinys. Response was of the order of a second or 
more. However, this was all done from 1961 to 1973 

(then our lab switched to work on paraplegia - FES for 
walking - and other topics) and computer processing 
time was very slow. With today’s (2010), the delay 
will be below a second, and this mainly since a 
reasonable number of samples must be collected for 
parameter identification to converge. 

3.2 Discrimination of Several Muscle Contraction Modes 
in EMG from Electrodes - To Control Activation of 
Steps for Walking - via Electrical Stimulation of 
Paraplegia 

Since early 1982 [10] we fisrt succeded to have 
thoracic-level paraplegic patients (T-1 to T-12) activate 
steps via functional electrical simulation (FES), where 
the command for taking a left step or a right step came 
from processing EMG signals taking from EMG 
electrodes placed on the patient’s chest as shown in 
Fig. 7) as we reported in [10] and in later publications 
[8,9,11,12]. All patients had a complete SCI lesion, and 
hence no motor function and no sensation below the 
lesion (Fig. 7). As in the cases discussed in Sect. 3.1, 
we requested the patients to contract soulder, chest and 
arm muscles as if they were healthy and could walk. 

3.3 Fixed-Time-Interval Prediction of Onset of Sleep Apnea 
via Submental EMG 

In our recent work on predicting the onset of sleep 
apnea and hypopnea events [24], we found that 
Submental EMG, we developed an artificial neural-
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network-based system that employs 5 sources of 
continuously monitored  data for that prediction. The 
neural network (NN), namely, the LAMSTAR network 
also ranks the source signals concerning their 
significance to successful prediction and computed the 
Submental EMG to be the most significant of all 
sources. Prediction is of an event to occur within 30 
seconds, between 30 and 60 seconds and between 60 
and 120 seconds. Success rate in our study was 81% 
[24]. 

4. Conclusions and perspectives 
We have shown that surface EMG is a powerful and 
totally noninvasive tool for medical diagnosis and 
prediction in many fields of medicine, provided that 
they are processed with adequate mathematical 
extraction and parameter identification algorithms. 
Furthermore, the progress in ultra-high speed 
computation, the most powerful mathematical 
procedures are already fast enough for real-time 
control of patient functions, be they prosthetics, 
orthoses, elecrical stimulation, (includiding deep brain 
simulation, paraplegia, etc.), or other body functions 
and for early warning of events (sleep apnea, epilepsy 
and beyond). Also, technology allows this to be 
achieved compactly, to fit the needs and comfort of 
patients. 
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