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In this short review definition, mechanism, and recent developments of the Stetter reaction, in 
the period last ten years from 2011 to 2021 are presented. This reaction comprises N-

heterocyclic carbene (NHC)-catalyzed umpolung of aldehydes followed by their capturing with 
activated carbon-carbon double bonds (Michael acceptors). This work includes also progresses 

in the inter-molecular and intra-molecular versions and enantioselective transformations. 
Underscoring the recent advances in the applications of Stetter reaction in the synthesis of 

various heterocyclic systems and total synthesis of natural products have been also 
introduced. 
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1. Introduction 

1The Stetter reaction is fundamental and plays an 
essential role in the total synthesis of natural products and 

biologically active compounds. 1,4-bifunctional compounds 
such as γ-ketonitriles, γ-ketoesters, and γ-diketones 
represent mainly the products of the Stetter reaction. It can 
be defined as the 1,4-conjugate addition of an aldehyde to 

an a,β-unsaturated compound, initially catalyzed generally 
by NHC-carbenes. This creates an unnatural functional 
group interval that cannot be created using conventional 
methods, but rather through a specific process called 

umpolung (polarity reversal) (Bugaut & Glorius, 2012; 
Enders & Balensiefer, 2004). 

The strategy was first developed by Stetter and 

Schreckenberg in 1973 (Stetter & Schreckenberg, 1973). In 
1976, Stetter developed the thiazolium-catalyzed highly 
selective conjugate addition method to connect a wide 
variety of aliphatic aldehydes and (hetero) aromatic with 

Michael acceptors (Dvorak & Rawal, 1998). This reaction 
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carries on an intermolecular, as well as intramolecular style 

(Moore, et al., 2011; Um, et al., 2011; MináKim, et al., 
2011). The catalysis take place by using a broad range of 
NHC-carbenes derived from thiazolium salts and triazolium 
salts that are generally applicable in enantioselective Stetter 

reactions (Kerr & Rovis, 2004; Enders, Han & Henseler, 
2008; Enders & Kallfass, 2002; Murry, et al., 2001; Qi, et 
al., 2011). In this paper, we are going to introduce a brief 
review about the Stetter reaction due to the huge 

applications in different important fields. This include 
reaction mechanism, limitations of the reaction and recent 
developments in the last ten years. In each year from 2011 
until now, one example has been introduced with citing 

related literature. It has been found that this reaction huge 
number of contributions has been reached in the recent 
time and much researchers are involved on the development 
this reaction in the abroad. 

2. Reaction Mechanism 

    Breslow demonstrated the mechanism of the benzoin 
reaction catalyzed by a thiazolium salt or a cyanide anion, 
proceeding via the key enaminol intermediate (called the 
Breslow intermediate) (Moore, et al., 2011). The mechanism 

of the Stetter reaction is similar to that of the benzoin 
reaction, the difference being the irreversible nature in this 
case as well as the addition of the Breslow intermediate to 
Michael acceptors).   

According to the proposed mechanism for the NHC-
catalyzed Stetter reaction, the resulting free carbene I from 
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the azolium precursor upon formerly treatment with base, 
adds to the aldehyde (Equation. 1), generating nucleophilic 

Breslow intermediate III, via the tetrahedral intermediate II 
as displayed below (Equation 2) (Moore, et al., 2011). 

 
 I 
Equation. 1. Addition of thiazolium salt to the α-ketoaldehyde 

 
 II III 
Equation. 2. Formation of Breslow intermediate 

Then the Breslow intermediate III can lead to the 

intermediate IV by irreversible addition to the Michael 
acceptor. Proton transfer and subsequent release of free 
NHC-carbene gives the aimed Stetter product as follows 
(Scheme 1) (Breslow, 1958). 
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Scheme. 1. Reaction of Breslow intermediate with Michael acceptor 

resulting the Stetter product 

Generally, Formation of enantioselective 1,4-bifunctional 

compounds can be realized by using chiral NHCs, which can 
lead to an asymmetric reaction. 

2.1. Limitations and Scope of the Reaction 

Aryl aldehydes such as benzaldehyde or 2-heteroaromatic 

aldehyde together with γ-aryl substituted- β,γ-unsaturated- 
or β-alkyl β,γ-unsaturated-α-ketoester as α-ketoester 
acceptors are the Stetter reaction components. Aliphatic 
aldehydes have been also used in restricted manner instead 

of the aromatic aldehyde component because of the 
formation of both the Stetter and cross-benzoin products. In 
addition, a variety of NHC-precatalysts in order to enhance 
the chemo-, region-, and enantioselectivity of Stetter 

reaction. 

It is obvious that the development scope in recent years of 
intramolecular Stetter reaction still thoroughly differ in 

comparison to intremolecular Stetter reaction. In contrast to 
intermolecular one, high yields and enantioselectivities with 
the intramolecular Stetter reaction were achieved by 
Ciganek, Enders, Rovis and many others. Meanwhile a 

major limitation to the intermolecular Stetter reaction is the 
restricted substrate scope. The lower enantioselectivity of 
the intermolecular reaction makes one of the reaction deficit 
and could possibly because of the easily racemization 

process of the 1,4-addition products during the reaction 
periods. The other reaction problem of the intermolecular 
Stetter reaction could be the formation of the contrary 
Crossbenzoin product on account of Stetter product as 

inseparable mixture (Enders, et al., 1996; Trost, Shuey, & 
DiNinno Jr, 1979; Fang, et al., 2011; Liu, et al., 2011; 
DiRocco, et al., 2012; Jousseaume, Wurz & Glorius, 2011). 

2.2. Chronological developments of Stetter reaction 

beginning from 2011 to 2021 

Rong and co-workers synthesized in 2011 a chiral 
triazolium camphor NHC-catalyst that observed as highly 
effective for enantioselective intramolecular Stetter reaction 

(Equation 3) (Rong, et al., 2011). 

 
Equation. 3. Enantioselective intramolecular Stetter reaction via chiral 

camphor NHC-catalyst 

In 2012 a recent class of transformations was 
accomplished by  A. T. Biju and co-workers. Umpolung of 
aldehydes and subsequently addition of the acyl anion 

equivalent to inactivated carbon–carbon multiple bond leads 
to the hydroacylation reaction (Equation 4) (Biju, Kuhl & 
Glorius, 2011).  

 

Equation. 4. NHC-catalyzed Hydroacylation reaction of aldehyde 

In 2012 K. M. Steward, and co-workers have displayed a 
dynamic kinetic transformation method as an useful 

asymmetric synthesis to synthesize five-membered lactones 
from β-aryl α-keto esters via asymmetric transfer 
hydrogenation reaction. In the reaction racemic compounds 
can be converted into enantiomerically enriched products 

using a newly constituted (arene)RuCl2(monosulfonamide) 
ligand (Scheme 2) (Steward, Gentry & Johnson, 2012). 
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Scheme. 2. Asymmetric synthesis of five-membered lactones from β-aryl α-

keto esters 

In 2014 A. Patra, and co-workers presented a simple 
Synthesis of important class of molecules namely γ-
Ketophosphonates using an intermolecular Stetter reaction 

beginning from vinylphosphonates. The used N-heterocyclic 
carbene catalysis are derived from N-mesitylimidazolium 
chloride (Equation 5) (Patra, Bhunia, & Biju, 2014; Zhang, 
et al., 2013; Ghosh, et al., 2018; Rezazadeh Khalkhali, 

Wilde, & Gravel, 2020). 

 
Equation. 5. Synthesis of γ-Ketophosphonates from vinylphosphonates as 

an intermolecular Stetter reaction. 

In 2015, Schäfer research group used the cyanide ion to 

obtain a nucleophile from the electrophilic carbon atom in 
various aldehydes via Stetter reaction. Methyl 12-aryl- and 
methyl 12-heteroaryl -l9,12-dioxododecanoates represent 
the products of this reaction (Equation 6)  (Hinkamp & 

Schäfer, 2015; Zobel & Schäfer, 2016; Büttner, Steinbauer 
& Werner, 2015). 

 
Equation. 6. Synthesis of Methyl 12-aryl- and methyl 12-heteroaryl -l9,12-

dioxododecanoates via cyanide-catalayzed Stetter reaction 

In 2016 Ema and co-workers have applied a solvent-free 
intramolecular asymmetric Stetter reaction using 0.2-1 mol 
% of 1,2,4-triazolium NHC-catalyst (Rovis catalyst). This 
reaction was performed using Rovis catalyst and cesium 

carbonate as base in a solvent-free under and argon 
atmosphere at 30 °C (Equation 7) (Ema, et al., 2016; 
Harnying, et al., 2021; Shen, et al., 2021; Ranjbari, Tavakol 
& Manoukian, 2021). 

 

 
Equation. 7.  A 1,2,4-triazolium NHC-catalyzed solvent-free intramolecular 

asymmetric Stetter reaction 

In 2017 a number of 1,2,4-trifunctionalized pyrroles have 
been synthesized by Glorius and co-workers. Under using 
Glycolaldehyde dimer as a C1-buildingblock NHC-catalyzed 
hydroformylation occur, followed by a Paal-Knorr 

condensation using primary amines in a one-pot synthesis 
(Equation 8) (Fleige & Glorius, 2017; Zarganes-Tzitzikas, 
Neochoritis & Dömling, 2019). 

 
Equation. 8. A one-pot synthesis of 1,2,4-trifunctionalized pyrroles 

Krishna and co-workers used oxazolium salts as catalysts 

for the umpolung of aldehydes to synthesize α-hydroxy 
ketones in high yields. In comparison to common thiazolium 
and triazolium salts, N-mesityl oxazolium salt catalyzed 
homobenzoin reaction of aromatic, heteroaromatic and 

aliphatic aldehydes was found to be an effective to apply on 
demanding substrates such as β-alkyl-α,β-unsaturated 
ketones and electron-rich aromatic aldehydes (Stetter 
reaction) (Equation 9) (Garapati & Gravel, 2018). 

 
Equation. 9. Synthesis of α-hydroxy ketones and β-alkyl-α,β-unsaturated 

ketones via umpolung of aldehydes 

In 2018 A. Ghosh, and co-workers synthesized 2018 the 
synthetically valuable 1,4-naphthoquinone derivatives using 

the NHC-catalyzed intramolecular Stetter reaction and 
subsequently air oxidation. This oxidation reaction is an 
application of the cross dehydrogenative coupling (CDC) 
firstly found by Chao-Jun Li at McGill University (Equation 

10) (Ghosh, et al., 2018). 
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Equation. 10. NHC-catalyzed intramolecular Stetter reaction and 

subsequently air oxidation 

In 2018 Building of optically pure sugar-based 
naphthoquinones and dihydroisoflavanones have been 
obtained by using NHC-Catalyzed dual Stetter reaction. R. 

N. Mitra, and co-workers used a mild and powerful NHC-
organocatalysis to construct cascade cyclization, 
homoatomic C−C cross-coupling, and heteroatomic O−C 
bond formation, and utilizing nitro substituent as EWG 

under mild conditions (Scheme 3)  (Mitra, et al., 2018; 
Barman, et al., 2021; Chen, Gao & Ye, 2020). 

 
Scheme. 3. Synthesis of optically pure sugar-based naphthoquinones and 

dihydroisoflavanones. 

In 2019 M. Draskovits, and co-workers utilized recently 
different sugars as a raw material and N-heterocyclic 
carbene catalysis to achieve formylation of α,β-unsaturated 
compounds in a connecting Stetter reaction. Herewith the 

selectivity of NHCs for aldehydes in the reducing sugars for 
either intercepted dehomologation or a following 
redoxlactonisation were thoroughly demonstrated (Equation 
11)  (Draskovits, et al., 2019; Zhu, et al., 2022; Draskovits, 

et al., 2018). 

 
Equation. 11. Formylation of α,β-unsaturated compounds using sugars 

In 2021 M. R. Khalkhali, and co-workers presented the 
role of Bis(amino)cyclopropenylidenes catalyst together with 

a substoichiometric amount of water as an additive on 
simple aldehydes and enones to reach a highly 
enantioselective intermolecular Stetter Reaction. 
Enantioselectively 1,6-conjugate addition reactions were 

also reached using Chiral BACs 
Bis(amino)cyclopropenylidenes catalyst on paraquinone 
methides (Equation 12) (Wang, et al., 2021; Zhou, Bao & 
Yan, 2022; Li, et al., 2022). 

 
Equation. 12. Chiral BACs-catalyzed Enantioselectively 1,6-conjugate 

addition reaction 

3. Conclusion 

Since the Stetter reaction is actually a special C-C bond 

formation reaction by a 1,4-addition reaction in the presence 
of a nucleophilic catalyst, it is first catalyzed by cyanide and 
then catalyzed by a thiazolium salt or NHCs developed. It 
has shown, the Stetter reaction competes with the respective 

1,2-addition, known as the benzoin condensation. 
Nonetheless, the benzoin-condensation is reversible, and 
since the Stetter reaction results in more stable molecules, 
the chief product is consequential of 1,4-addition. In this 

review, different kinds of Stetter inducing inter and 
intramolecular, dual Stetter reaction, Stetter cascade and 
radically Stetter reaction have been described. Moreover, the 
importance of the Stetter reaction in the total synthesis of 

natural products and biologically active compounds may be 
displayed. It has been also, shown that the Stetter reaction 
is one of the most significantly simple reactions playing vital 
role in the total synthesis of natural products. 
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