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Abstract 

We have determined the equilibrium constants and pairwise interaction energies between the 

species and the complexes of liquid CuSn, AgAl and FeSi, alloys on the basis of regular 

associated solution model.  These parameters are then used to estimate the heat of mixing of each 

alloy. The observed asymmetry in the heat of mixing of each alloy with respect to concentration 

is well explained. 
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1. Introduction 

Several models have been proposed to solve the difficulties and complexities of 

obtaining thermodynamic parameters. One of the models successfully used for accounts 

of the thermodynamic characteristics of binary liquid alloy systems, is the model of 

regular associated solution model. In regular associated solution model, it is assumed that 

strong associations among the constituent species exist in the liquid phase close to the 

melting temperature. These associations are given different names  such as 'complexes', 

'pseudomolecules', 'clusters', 'associations' etc. This assumption has been used by several 

researchers [1-12] to explain the asymmetry of the properties of mixing for binary alloys. 

Thus binary alloys in a liquid phase can be considered as a ternary mixture of 

unassociated atoms of components and complexes, all in chemical equilibrium. Jordan 

[3] proposed that activity of unassociated atoms and the complexes can be estimated by 

treating the mixture as a ternary system and termed this mixture as regular associated 

solution. Jordan [3] applied this idea in the congruently melting semiconductors Zn-Te 

and Cd-Te and determined thermodynamic equations for liquidus curve (the melting 

temperature against concentration curve) of these alloys. This model is further extended 

and applied by other researchers [4, 5, 12] for the determination of thermodynamics and 

microscopic parameters of different alloy systems in molten state. In present paper, we 

intend to apply regular associated solution model to obtain the heat of mixing of liquid 

CuSn, AgAl and FeSi alloys. For this, we have assumed Cu3Sn ,Ag3Al  and  
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Fe2Si  complexes in liquid  CuSn, AgAl  and FeSi alloys respectively by studying their 

corresponding phase diagram in solid state[13].  

Theoretical formalism is given in section 2, section 3 deals with the numerical 

result and discussion. Conclusion is provided in section 4. 
 

 

2. Theory 

 

Suppose there be three species in equilibrium in the liquid alloy, namely, 

monomers A, B and ApB molecules in the respective concentrations ,n,n BA and ApBn  

moles. Considering a solution of 1n  atoms of A and  2n  atoms of B, the formation of 

ApBn   complex requires ApBA1 pnnn +=  and ApBB2 nnn +=  for conservation of mass in 

the partially associated solution. When there is association, the thermodynamic behaviour 

of complexes A and B components is governed by their true mole fractions Ax , Bx   and 

ApBx  rather than their gross mole fraction 1x  and 2x , where  )nn/(nx 2111 += etc. and 

)nnn/(nx ApBBAAA ++= etc.                     

Using above relations, the two sets of mole fractions are related to each other by the 

relations 

  ApB21A xpxxx −= , ApB22B x)px1(xx −−=                                                 (1) 

In regular associated solution solutions, the gross chemical potentials of components 

1 and 2 are equal to the chemical potentials of the monomeric species A and B [14]. The 

activity coefficients Aγ , Bγ  and ApBγ  of monomers and complex can be expressed in 

terms of pairwise interaction energies through [3] 
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where 12ω , 13ω  and 23ω  are interaction energies for the species A, B ; A, ApB and B, ApB 

respectively, T the temperature and R stands for the universal gas constant. The 

equilibrium constant in a regular associated can be obtained [6] as 
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Now using the equations listed above the integral excess free energy xs
G∆  is given by  

klnRT
)px1(

x
)xlnxxlnx(RT)xlnxxlnxxlnx(

)px1(

RT
)xxxxxx(

)px1(

1
G

ApB

ApB

2211ApBApBBBAA

ApB
23ApBB13ApBA12BA

ApB

xs

+
++−++

×
+

+ω+ω+ω
+

=∆

        (4) 

Once the expressions for G∆ )]xlnxxlnx(RTG[ 2211
xs ++∆=  is obtained, heat of mixing 

can be found using standard thermodynamic relation  

P,T
T

G∆
TG∆H∆ 














∂

∂
−=            (4a) 

The pairwise interaction energies and equilibrium constant are determined by the 

following method:   

In a regular associated  solution AA11 γxγx =  and BB22 γxγx = , where 1γ  and 2γ  are 

respective gross activity coefficients of components 1 and 2. Thus  

1

A
A1

x

x
lnlnln +γ=γ                                                                      (5a) 

and   
2

B
B2

x

x
lnlnln +γ=γ                                                                       (5b) 

the pairwise interaction energies, the equilibrium constants and the activity coefficients at 

infinite dilution can be written as [9]       
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where o
γ1  and o

γ 2  are activity coefficients of component A and that of B at zero 

concentrations. 

Solving equations (2a) and (2b) we obtain 
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 Using equations (6), (16) and (17), we can derive 
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3. Results and Discussion 
 

To find heat of mixing of binary alloys, we have found the complex concentration 

in a regular associated solution of respective alloys by using equations (6), (9) and 

observed data of corresponding activities [13]. The complex concentration of liquid  

alloys in molten state are presented in table 1. We have found the equilibrium constants 

and the pairwise interaction energies between the species and the complexes using 

equations (3), (4), (6), (7), (8), and observed data of corresponding integral excess free 

energies of mixing. The equilibrium constants and pairwise interaction energies of 

different binary alloys are listed in table 2.  

 

3.1 CuSn alloys at 1400K 

 

It is found from the analysis that the heat of mixing is negative at all concentration. 

Our theoretical calculation shows that the minimum value of the heat of mixing is -4.95 

kJ at Cux  = 0.8 which exactly matches with the experimental value [1]. Further it is 

observed that the concentration dependence of asymmetry in H∆ can be explained only 

when one considers the temperature dependence of the pairwise interaction energies. The 

agreement between the calculated and experimental values is also good. The calculated and 

observed values of heat of mixing are compared in figure 1. 

 

 

 
 
Figure-1: Free energy of mixing (∆HRT) versus xCu of liquid CuSn solution (1400K) ;(–––) theory, (○○○) 

experiment [13] 
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3.2 AgAl alloys at 1273K  

   

It is found from the analysis that the enthalpy of mixing is negative at all 

concentration, being minimum around stoichiometric composition ( H∆ = -0.611RT at xAg 

= 0.72). Further it is observed that the concentration dependence of asymmetry in H∆ can 

be explained only when one considers the temperature dependence of the pairwise 

interaction energies. The calculated and observed values heat of mixing is compared in 

figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Figure-2: Free energy of mixing (∆H/RT) versus xAg of liquid AgAl solution (1273K); (––––) 
theory, (○○○) experiment [1] 

 

 

 

3.3 FeSi alloys at 1873K 

 

It is found from the analysis that the heat of mixing is negative at all concentration. 

Our theoretical calculation shows that the minimum value of the heat of mixing is -2.585 

kJ at Fex  = 0.55. Further it is observed that the concentration dependence of asymmetry 

in H∆ can be explained only when one considers the temperature dependent of the  
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pairwise interaction energies. Figure 3 show the comparison between the experimental 

and calculated values of heat of mixing and entropy of mixing.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure-3: Free energy of mixing (∆G/RT) versus xFe of liquid FeSi solution (1873K); (––––) 
theory, (○○○) experiment [13] 

 

 

Table 1 

xCu/ xAg/ xFe SnCux
3

 AlAgx
3

 SiFex
2

 

0.1 0.001095 0.008257 0.01635 

0.2 0.008378 0.03075 0.05294 

0.3 0.02658 0.0656 0.1086 

0.4 0.05146 0.1138 0.1869 

0.5 0.08541 0.1803 0.2903 

0.6 0.1240 0.2517 0.3337 

0.7 0.1525 0.3075 0.3720 

0.8 0.1650 0.2355 0.2968 

0.9 0.1192 0.1056 0.1098 
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Table 2 

Liquid alloy Systems  

Parameter CuSn at 1400K AgAl  at 1273K FeSi  at 1873K 

k 0.1652 0.0494 0.004139 

12ω (Jmol
-1 

) -13500 -11382 -64170 

13ω (Jmol
-1 

) -24900 -617 -14720 

23ω (Jmol
-1 

) -16500 -28064 -45500 

 

 

 

4. Conclusion  

 

The regular associated solution model is found to be suitable to estimate the heat 

of mixing for both weakly and strongly interacting binary liquid alloys. The observed 

asymmetries in the heat of mixing of binary liquid alloys with respect to the 

concentrations are well explained on the basis of regular associated solution models.  

 

 

Acknowledgement 

 

 

One of the authors (D. Adhikari) is thankful to University Grant Commission (UGC), 

Nepal, for providing financial support to pursue the research. 

 

 

References 

 

[1] Bhatia, A.B. and Hargoove, W.H. 1974.Phys. Rev. B-10:316 . 

[2] Singh, R.N. 1987. Can J. Phys. 65: 309. 

[3] Jordan, A.S. 1970. Metall. Trans. 1:239. 

 [4] Lele, S.and Ramchandra Rao, P. 1981. Metall. Trans.  12 B: 659. 

[5] Osmura, K. and Predel , B. 1977. Tans. J. Phys. Inst. Met. 18 :765 . 

[6] K. Hoshino and W.H. Young, J. of Phys. F: Met. Phys. 10,1365 (1980). 

[7] McAlister, S.P. and Crozier, E.D. 1974. J. of Phys. C-7:3509. 



 8 

D. Adhikari et al. 

 

[8]  Jha, I.S. ,Singh, R. N. Shrivastava ,P.L. and Mitra, N.R. 1990.Phil. Mag. 61:8445. 

[9]   Singh, R. N. , Jha, I.S. and Pandey, D.K. 1993.J. Condens. Matter 5: 2469 . 

[10] Bhatia,A.B. and Singh, R. N. 1980.Phys. Letters A-78:460 . 

[11] Gerling, U. Pool ,M. J. and Predel, 1983.B. Z. Metallkde 74:616 . 

[12] Adhikari, D., Jha, I.S. and Singh, B. P. 2010.Physica B- 405 :1861 .   

[13] Hultgren, R. Desai, P. D.,Hawkins, D.T., Gleiser, M. and Kelley, K.K. (ASM,Metal    

       Park,1973).Selected Values  of the Thermodynamic Properties of Binary Alloys  

[14] Prigogine, I. and Defay, R. ,( Longmans Green and Co.London, 1974) Chem.   

       Thermodynamicsp.257. 

 

 

 

 

 


