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Abstract—We present a stochastic model moti-
vated by gene expression which incorporates unspe-
cific interactions between proteins and binding sites.
We focus on characterizing the distribution of free
(i.e. unbound) protein molecules in a cell. Although
it cannot be expressed in a closed form, we present
three different approaches to obtain it: stochastic
simulation algorithms, system of ODEs and quasi-
steady-state solution. Additionally we use a large-
system-size scaling to derive statistical measures
of approximate distribution of the amount of free
protein, such as the Fano factor. Intriguingly, we
report that while in the absence of or in the excess
of decoy binding sites the Fano factor is equal to
one (suggestive of Poissonian fluctuations), in the
intermediate regimes of moderate levels of binding
sites the Fano factor is greater than one (suggestive
of super-Poissonian fluctuations). We support and
illustrate all of our results with numerical simula-
tions.

Keywords-Gene Expression; Master Equation;
Small Noise Approximation; Stochastic Simulation

I. INTRODUCTION

The number of proteins and other species
present in the biological processes inside the cells
such as gene expression is usually small [6],
[28]. Therefore, deterministic modeling of such
reactions can be quite inaccurate and we often
turn to stochastic methods [18]. They account
for discrete number of molecules and can easily
be simulated through stochastic simulation algo-
rithms, in particular the Gillespie algorithm [10],
[11]. Being a very timely topic, gene expression
spurred a revival of interest in Markovian models
of chemical kinetics, e.g. [25]. We assume that the
protein is produced with a constant rate and that
the rate of its decay is proportional to the number
of proteins. We study the protein dynamics in pres-
ence of so-called decoy binding sites [17] on the
DNA. Our model takes into account protein bind-
ing/unbinding reactions with these binding sites.
Similar models have already been studied previ-

Copyright: c© 2017 Hojcka et al. This article is distributed under the terms of the Creative Commons Attribution License
(CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and
source are credited.
Citation: Michal Hojcka, Pavol Bokes, Non-monotonicity of Fano factor in a stochastic model for
protein expression with sequesterisation at decoy binding sites, Biomath 6 (2017), 1710217,
http://dx.doi.org/10.11145/j.biomath.2017.10.217 Page 1 of 17

http://www.biomathforum.org/biomath/index.php/biomath
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.11145/j.biomath.2017.10.217


Michal Hojcka, Pavol Bokes, Non-monotonicity of Fano factor in a stochastic model for protein ...

ously; in particular [9] investigated the model with
protected complexes, i.e. the case when bound
proteins were immune to degradation, showing
that the steady-state distribution is Poissonian. Our
model allows bounded proteins to degrade, which
introduces additional noise into the model [2],
[3]. For simplicity, we ignore effects of burst-like
protein synthesis or transcriptional auto-regulation
[2], [4], [26]. In section II we formulate the Master
equation for the probability distribution of free
protein; unfortunately, we are unable to find its
solution in a closed form. However, biochemical
reactions often operate on different timescales as
was already thoroughly investigated in works such
as [14], [12], [13]. Specifically, in the current
context the interactions between the protein and
its binding sites occur on a substantially faster
timescale than the turnover of protein (by tran-
scription and decay) does [1]. This allows us to
successfully use singular perturbation methods [5],
[22], [23] to obtain the quasi-steady-state solution
to our problem. Obtaining the quasi-steady-state
approximations in our model involves finding an
equilibrium of binding/unbinding reaction, which
is a specific case of a reversible bimolecular reac-
tion studied by Laurenzi in [16]. In section III we
expand the Master equation using the linear noise
expansion as proposed in [29].

II. STOCHASTIC APPROACH

The number of proteins expressed from a single
gene can often be quite small [31]; it would
therefore be inaccurate to use deterministic ap-
proach, which treats reactants as continuous vari-
ables. Instead we take a stochastic approach, in
which we model each species as a discrete random
variable and each reaction as a random event with
a given probability to occur. Some protein species
are present at even less than 10 copies per E.
coli cell [28], therefore we also work with mean
number of proteins below 100 in this paper. As
we use discrete variables it is quite clear that
we need to simulate these reactions through a
simulation algorithm. Such algorithms gained a
wider recognition after the work of Gillespie [10].

A. Model Description

In this section we present a minimalistic model
for gene expression. We neglect the effect of
mRNA translation and production of proteins in
bursts; instead we focus on the interaction between
the proteins and decoy binding sites. Unlike in
[26], we assume that bounded proteins are subject
to degradation processes.

Let us use the following notation for our vari-
ables:

X - protein (free or bound),
Xf - free protein,
Y - binding site,
Yf - free binding site,
C - complex (protein bound to the binding
site).

For the sake of simplicity we omit ’decoy’ from
the binding site notation as we do not take into
account any other binding sites. We assume that
three reversible reactions can take place:

1) Protein production/decay.

∅
k−⇀↽−
γ

Xf

2) Protein binding/unbinding reaction.

Xf + Yf

k+−⇀↽−
k−

C

3) Decay of the complex (whereby a binding site
is vacated).

C
γ−→ Yf

We use upper-case letters in italics to represent
a number of corresponding species throughout this
paper. We reserve the corresponding lower-case
letter as a notation for a concentration of a given
species. In order to avoid confusion with X , we
use N instead of Xf as the number of free protein.
Although we mentioned five different variables,
the problem is just two-dimensional, with the
following straightforward conservation laws held
between the variables:

Biomath 6 (2017), 1710217, http://dx.doi.org/10.11145/j.biomath.2017.10.217 Page 2 of 17

http://dx.doi.org/10.11145/j.biomath.2017.10.217


Michal Hojcka, Pavol Bokes, Non-monotonicity of Fano factor in a stochastic model for protein ...

Fig. 1: Simulation using the Gillespie algorithm.

- Y is a known constant (the number of binding
sites)

- C = X −N (the number of complexes is the
same as the number of bound protein)

- Yf = Y −C = Y −X + N (the number of
free binding sites is the same as the number
of all binding sites without the complexes)

Therefore we can express the Master Equation
of the system in terms of X and N (with a constant
total number of binding sites Y ):

ṖX ,N= kPX−1,N−1 − kPX,N

+γ(N +1)PX+1,N+1−γNPX,N

+k+(N +1)(Y −X +N +1)PX,N+1

−k+N (Y −X +N )PX,N

+k−(X−N +1)PX,N−1−k−(X−N )PX,N

+γ(X−N +1)PX+1,N−γ(X−N )PX,N ,
(1)

where PX ,N is the abbreviation of P (X(t) =
X ,Xf(t) = N ). We can use the Gillespie al-
gorithm to simulate this process (parameters of
the reactions are set to Y = 10, k = 3, γ =
0.1, k+ = 1, k− = 10 with no proteins at the
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beginning: PX ,N (0) = δX ,0δN ,0. We illustrate the
individual components of the process in Figure 1.

B. Total Protein distribution

Our first goal is to obtain the marginal distribu-
tion of the total protein number. It can be obtained
as the sum of PX ,N through all possible N ’s:

PX =
∞∑

N=−∞
PX ,N . Let us use an abbreviation

∑
N

for the sum through all integers. In order to derive
an equation PX from (1) let us sum both sides
of the equation through all N ’s. As the sum goes
through all integers (if N < 0 is the probability is
naturally equal to zero), we can use the fact that∑
N

f(N ) =
∑
N

f(N ± 1), obtaining

ṖX=k
∑
N

(PX−1,N−PX,N )

+γ
∑
N

N (PX+1,N−PX,N)

+γ
∑
N

((X−N +1)PX+1,N−(X−N )PX,N) ,

which simplifies to

ṖX=k (PX−1−PX )+γ ((X +1)PX+1−XPX ) .
(2)

A system of differential equations in this form can
be solved using the method of generating functions
[15]. First we multiply both sides by sX and sum
them through all integer X ’s.

∂

∂t

∑
X

sXP (X, t)=k

(∑
X

sXPX−1−
∑
X

sXPX

)

+γ

(
(X +1)

∑
X

sXPX+1−X
∑
X

sXPX

)
.

(3)

Now we can use the definition of the generating
function G(s, t) =

∑
X

sXPX and its derivative

∂G
∂s =

∑
X

X sX−1PX in order to transform (3) into

a partial differential equation:

∂G

∂t
= k(s− 1)G+ γ(1− s)∂G

∂s

= (s− 1)

(
kG− γ ∂G

∂s

)
. (4)

In the steady state we can omit the left-hand side
of the equation (as ∂G

∂t = 0) and easily solve
it using the separation of variables. We come to
the solution G(s,∞) = e

k

γ
(s−1), which can be

recognized as the probability generating function
of the Poisson distribution parametrized by λ = k

γ .
Using the notation 〈X 〉 = λ for the distribution’s
mean we can write PX (∞) = 〈X 〉X e−〈X〉

X ! . Away
from the steady state, (4) is an example of a non-
homogeneous first-order linear partial differential
equation, which can be solved for suitable initial
conditions. Using a common extension of the
method of characteristics for (quasi-)linear PDE’s
(see e.g. [8]) we introduce an auxiliary function
u = u(s, t,G), which satisfies

∂u

∂t
+ γ(s− 1)

∂u

∂s
+ k(s− 1)G

∂u

∂G
= 0.

The characteristic system of this equation has the
form:

ṫ = 1,

ṡ = γ(s− 1),

Ġ = k(s− 1)G,

t(τ) = τ + C1

s(τ) = C2e
γτ + 1

dG

G
= k(C2e

γτ )dτ

(5)

By finding the functions which are constant on
the characteristics, we obtain solutions in the form
G(s, t) = ψ

(
t− ln(s−1)

γ

)
·e

ks

γ . We can specify the
results for any particular initial conditions. Let us
investigate the case when there is no protein at the
beginning, i.e. P (x, 0) = δx,0, which gives us an
initial condition G(s, 0) = 1 also for the generat-
ing function. Using the initial condition we come
to the solution G(s, t) = e−

k

γ
(e−γt(s−1)+1)+ ks

γ =

e−
k

γ
(s−1)(e−γt−1), which is again the Poisson dis-

tribution, just with different, time-dependent, pa-
rameter meaning that 〈X (t)〉 = k

γ ·
(
1− e−γt

)
.

Taking t → ∞ we can easily see that the time-
dependent solution converges to the steady-state
one.
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C. Free Protein distribution

Searching for an exact formula for the free
protein distribution yields no apparent results: the
master equation (1) does not have solution in the
closed form (unless Y = 0). Therefore we have
to look for alternative ways to obtain it.

1) Stochastic Simulation Algorithms: The first
approach consists of using the techniques of
stochastic simulation algorithms, in particular the
Gillespie algorithms (see [7] for a practical guide).
With their help we can simulate the time evolution
of all species involved in a system of reactions.
The simulation technique is based upon the follow-
ing scheme: we generate two uniformly distributed
random numbers, the first of which determines
the time of the next reaction and the second one
determines which reaction will occur. When we
use a sufficient number of sample trajectories, we
obtain a robust estimate for the distribution of any
variable. The main problem of this approach is its
limited computational capacity. In order to obtain
a robust distribution of variables we have to run
a substantial number of simulations; this can be
very time-consuming and even unrealistic when
calculating results for many different parameter
sets.

2) System of ODEs: The second option is to
transform the Master equation, which is an infinite
system of equations, into a finite system of ordi-
nary differential equations. The most straightfor-
ward way to obtain this is to set threshold values
of the discrete variables, replacing the unknown
probability by zero whenever these thresholds are
exceeded (see [20], in our case we set all PX ,N

to zero, whenever X > 100). In this way, the
overall sum of probability distribution is no longer
conserved at one, but in return we get a finite
system of differential equations. We use the MAT-
LAB ode15s solver for stiff problems to calculate
the solution. But this system is also very time-
consuming, as the number of equations and the
computational difficulty grows rapidly with raising
the thresholds for the non-zero probabilities of
PX ,N .

3) Quasi-steady-state solution: In order to ob-
tain the solution in a closed form, which is as
close to exact solution as possible, we proceed
to obtain the so-called quasi-steady-state solution
[24], [27]. We utilize the fact from biological
background that binding/unbinding reactions are
fast compared to protein production/degradation
(k− � γ). In order to use this fact we perform
the singular perturbation reduction [9] using the
ratio γ/k− as a small parameter. Let us introduce
new dimensionless time and the parameters:

ε =
γ

k−
, kb =

k−
k+
, t =

τ

γ
.

The master equation then reads

ε
d

dτ
PX ,N = ε

k

γ
(PX−1,N−1 − PX ,N )

+ ε ((N + 1)PX+1,N+1 − γNPX ,N )

+
1

kb

(
(N + 1)(Y −X + N + 1)PX ,N+1

−N (Y −X + N )PX ,N

)
+ (X −N + 1)PX ,N−1 − (X −N )PX ,N

+ ε ((X −N + 1)PX+1,N − (X −N )PX ,N ) .
(6)

As ε tends to zero, we obtain an equation for
the leading-order approximation of PX ,N . The
number of total protein X is constant after this
approximation, so that we can abbreviate PX ,N

by PN , writing

(N + 1)(Y −X + N + 1)PN+1 =

(N (Y −X + N ) + kb(X −N ))PN−
− kb(X −N + 1)PN−1.

(7)

Solving (7) subject to boundary conditions (see
e.g. [16]) PN (N <0)=0 and
PN (N >X ∨N <X−Y )=0 yields

PN =PX,N =
kNb C(X )

N !(X −N )!(Y −X +N )!
, (8)

where C(X ) is a constant with respect to N ,
dependent only on the value of X .

The multiplicative constant C(X ) can be deter-
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Fig. 2: Quality of approximation by the quasi-steady-state solution as function of k−/γ

mined from the relation

PX =

X∑
N=max{X−Y ,0}

PX ,N ,

since

PX =

X∑
i=max{0,X−Y }

PX ,i

= C(X )

X∑
i=max{0,X−Y }

kib
(X−i)!(Y −X +i)!i!

,

and thus

C(X )=PX

 X∑
i=max{0,X−Y }

kib
(X−i)!(Y−X+i)!i!

−1

.

Since we already know about the Poisson character
of steady-state solution for PX , we are ready to
calculate the number of free protein in quasi-
steady state:

PN =

N+Y∑
X=N

PX · kN
b

N !(X−N )!(Y−X+N )!

X∑
i=max{0,X−Y }

kib
(X−i)!(Y−X+i)!i!

(9)

This represents a major improvement in terms of
computational requirements necessary to get the
distribution of free protein amount.

In order to illustrate the quality of this approx-
imate solution, let us investigate the differences
between the simulated distribution (by Gillespie
algorithm) and the approximate quasi steady state
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Fig. 3: Mean of free protein probability distribution

solution (9) for selected values of ε−1 = k−
γ ,

which is assumed to be large as justified above. We
assumed the following values of the parameters:
Y = 10; k = 3, γ = 0.1 ⇒ 〈X 〉 = 30; k+ =
a, k− = 10a⇒ kb = 10. We vary the value of a in
order to change the value of

(
ε−1
)

while keeping
kb fixed; thus the distribution obtained from (9)
remains the same. The results are shown in Figure
2, where the green histogram is estimated from
repeated simulations (105 trajectories) of the Gille-
spie algorithm on a sufficiently long timescale.
The blue line is the probability distribution of free
protein in quasi-steady state (9). It is easy to see
that with the lowering of k−

γ , we diverge from
exact distribution results estimated by the Gillespie
algorithm histogram. To evaluate the goodness of
the fit, we calculate the `2 distance between these
two realizations of free protein distribution for all
N ’s from 0 to 100 (see TABLE I).

k−/γ Diff
1000 0.0031
100 0.0036
10 0.0071
1 0.048

0.1 0.1483

TABLE I: The `2 distance between the quasi-
steady state approximation and the exact distribu-
tion estimated by stochastic simulation.

D. Moments of free protein distribution

In this section we focus on the analysis of the
free protein probability distribution in the quasi-
steady state. We focus on four basic statistical
characteristics: mean ((Figure 3)), variance, the
Fano factor (F = σ2

µ ) (Figure 4) and the squared
coefficient of variation (CV 2 = σ2

µ2 ). We use the
number of binding sites as a free parameter, which
we vary on the horizontal axis. We sometimes
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use an abbreviation BS instead of binding site.
We study the change in these characteristics for
selected choices of the total protein production
〈X 〉 and the dissociation constant kb. The values
γ = 0.1 and k− = 10 are fixed. Different choices
of k and k+ are used to modify 〈X 〉 and kb.

Without any binding sites (Y = 0) the Poisson
distribution follows, so that µ = σ2 and thus
F = 1. Very large dissociation constants imply
that proteins bind weakly to the binding sites
and thus the system exhibits characteristics that
are consistent with the Poisson distribution. It is
apparent that for large values of Y , the mean
and variance tend to 0, Fano factor tends to 1
and CV 2 diverges to infinity. The convergence of
the Fano factor to one suggests an approximate
Poisson distribution in the excess of decoy binding
sites. Below, we show with asymptotics that this
is indeed the case.

Provided that Y � X , we can use the ap-
proximation for the factorial (Y − X + N )! ≈
Y !Y N−X . Substituting this into (9) and using bi-
nomial theorem and basic algebraic manipulation,
we obtain a simplified equation for the probability
distribution of the free protein:

PN =

N+Y∑
X=N

PX ·
(
X

N

)(
kb

kb+Y

)N ( Y

kb+Y

)X−N
.

This formula can also be rewritten as
∑
PX ·PN |X ,

where PX has a Poisson distribution with pa-
rameter 〈X 〉; we see that PN |X has a binomial
distribution with probability of a Bernoulli trial
given by kb

kb+Y and the number of trials given
by X . Therefore, we can express the free protein

distribution to be that of a random N =
X∑
i=0

ξi,

where P (ξi = 1) = kb
kb+Y . After some algebraic

manipulation with probability generating functions
(such as the rule for calculating probability gener-
ating function of the sum of independent random
variables) we arrive at:

GN (s) = GX (Gξ(s)) . (10)

It is clear now that probability generating function
for free protein is given as a composition of

generating functions for GX (Poisson distribution)
and Gξ (Bernoulli distribution). Substituting the
well-known formulae for generating functions of
these distributions into (10), we obtain

GN (s) = exp (〈X 〉 (Gξ(s)− 1))

= exp

((
kb〈X 〉
kb + Y

)
(s− 1)

)
,

(11)

which again indicates the Poisson distribution, but
with a different parameter

〈N 〉 = 〈(N − 〈N 〉)2〉 =
kb〈X 〉
kb + Y

. (12)

Computing the probability distribution in quasi-
steady state for large values of binding sites is
infeasible as the formula works with the terms of
the order Y !; therefore, we use the Gillespie algo-
rithm (with 105 repetitions) to estimate the mean
and the variance of the distribution. The results
are provided in TABLE II. Other parameters used
are 〈X 〉 = 10 and kb = 10). As the distribution
is Poissonian, the Fano factor tends to one and
CV 2 = 1

〈N 〉 , which tends to infinity.

Y approximate 〈N 〉 〈(N − 〈N 〉)2〉
100 0.9091 1.0027 1.0124
500 0.1961 0.1999 0.2009
1000 0.099 0.0999 0.0998
5000 0.02 0.02 0.02
10000 0.01 0.0101 0.01

TABLE II: The approximate value (12) against
simulated estimates of the mean and variance in
the large Y regime.

E. Comparison of the methods

In this section we compare the probability dis-
tributions generated by the three methods men-
tioned earlier: stochastic simulation by Gillespie
algorithm (referred to as Gill in the TABLE III),
transforming master equation into the finite system
of ODEs (ODE in TABLE III) and calculating the
solution in quasi-steady state (Quasi in TABLE
III). Obviously we use the same set of parameters
in all three approaches: Y = 10, k = 3, k+ =
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Fig. 4: Fano factor of free protein probability distribution

1, k− = 10 and γ = 0.1. Initially, the system
is set to contain no proteins: PX ,N = δ(0,0). The
output of each method is the probability surface
PX ,N in all given time points. In TABLE III we
record the differences in the probability surfaces
obtained by the three methods. We define the
distance between the two methods as the `2-matrix
norm, i.e.:

‖A‖2 =

√√√√ n∑
i=1

m∑
j=1

|aij |2,

which we apply to the differences between the two
probability surfaces.

III. SMALL NOISE APPROXIMATION

In the second part of this paper we focus on the
limit case when the size Ω of the system is large
enough and try to obtain the statistical moments
of free protein distribution in the closed form for
this case. The noise in free protein distribution
has two sources; the first one is the reversible

Time Gill-ODE Gill-Quasi ODE-Quasi
0 0 0 0
1 0.02 0.0111 0.0219
2 0.0058 0.0055 0.0071
3 0.0027 0.0035 0.0031
4 0.0022 0.0034 0.0027
5 0.0066 0.0024 0.0064
10 0.0044 0.0018 0.0043
20 0.0016 0.0019 0.00061
50 0.0014 0.0016 0.00061
100 0.0018 0.0019 0.00055

TABLE III: Distances between various numerical
implementations of the probability surface.

association of protein and binding site and the sec-
ond one is new protein production/degradation. Let
us first concentrate on the reversible association
Xf + Yf

k+−⇀↽−
k−

C. In the course of this reaction,

we can treat the values of x (total protein concen-
tration) and y (total binding sites concentration)
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as constants. We would like to underscore the fact
that lowercase letters denote the concentration of a
given reactant denoted by corresponding uppercase
letter.

A. Deterministic case

If we assume large protein numbers, we can
obtain the mean of the distribution by finding the
stationary state of deterministic reaction kinetics.
This approach is used since the inception of chem-
ical kinetics [19]. We know that in the stationary
state (see e.g. [21]), we have n · yf = c, where
the concentrations xf of free protein, yf of free
binding site, and c of their complex are measured
in units of the dissociation constant. If we combine
this equation with conservation laws, n + c = x
for the total protein and yf + c = y for the total
binding-site concentration, we will obtain a system
of three equations with three unknown variables.
This system has a single non-negative solution,
which we refer to as n̄, ȳf , c̄. We can obtain it
by solving the quadratic equation

c̄2 + c̄(−x− y − 1) + xy = 0,

which gives us the solution in the form

c̄(x, y)=
x+y+1−

√
x2+y2+1+2x+2y−2xy

2
,

n̄(x, y)= x− c̄,
ȳf (x, y)= y − c̄.

(13)

For the sake of parsimony, we omit the explicit
notation of dependence of c̄, n̄, ȳf on the total
concentration of x and y in all non-ambiguous
cases.

B. Stochastic component

As we mentioned before, we were not able to
obtain the distribution of free protein in a closed
form; therefore we have to choose an alternative
approach. The number of free protein is affected
by binding and unbinding reactions as well as by
the production/degradation of new proteins. As the
timescales of these two processes are diametrically
different, we can treat them separately. Let us

divide the stochastic component into the part cor-
responding to binding/unbinding and the part cor-
responding to total protein production/degradation.

1) Constant X (total protein count): First we
assume that the number of total protein remains
constant, focusing only on the binding/unbinding
reactions:

Xf + Yf

k+−⇀↽−
k−

C.

Using the shift-operator notation from [29]
(Eif(x) = f(x+i)), we can write down the Master
equation in the steady state for this reaction as

0 = (E−1)k−CPC +(E−1−1)k+NYf PC , (14)

where PC denotes probability mass function of
C , Xf = X − C and Yf = Y − C , and the
shifting is executed with respect to C . We further
assume that size Ω of the system is large, whereby
we identify the system size with the dissociation
constant Ω = k−

k+
. This will naturally lead to the

macroscopic dissociation constant being equal to
unity after the system-size reduction is performed.
Now we can write down the relation between the
total species count (uppercase letters in italics)
and their corresponding concentrations (lowercase
letters): N = Ω · n, Yf = Ω · yf and C = Ω · c.
Inserting this scaling into (14) yields

0 = (E− 1)cPc + (E−1 − 1)nyfPc, (15)

Using the Taylor expansion together with the fact
that C is large (i.e. Ω−1 is small), the shift
operators can formally be expanded as follows:

E=e∂C =eΩ−1∂c =1+Ω−1∂c+
Ω−2

2
∂2
c +. . .

E−1=e−∂C =e−Ω−1∂c =1−Ω−1∂c+
Ω−2

2
∂2
c−. . .

(16)

Inserting (16) into (15) and neglecting terms of
order of Ω−1 we obtain

∂c

[
(c− nyf )Pc +

Ω−1

2
∂c ((c+ nyf )Pc)

]
= 0.

(17)
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If we now integrate this equation with respect to
c (with zero-flux conditions) we come to

(c− nyf )Pc +
Ω−1

2
∂c ((c+ nyf )Pc) = 0.

We denote by terms A = (c− nyf ), B = c+ nyf
the terms which appear in the above equation.
Since Ω−1 � 1, we can use a small-noise approx-
imation (variance of c is of order Ω−1), which is
based on Taylor-expanding A and B around the
deterministic mean value:

A(c) = c− (x− c)(y − c)
A′(c) = 1 + x+ y − 2c = 1 + n+ yf

A(c) ' A(c̄) +A′(c̄)(c− c̄) = A′(c̄)(c− c̄)
= (1 + n̄+ ȳf )(c− c̄)

B(c) ' B(c̄)

= c̄+ n̄ȳf = 2n̄ȳf .
(18)

Substituting approximations (18) into (17) yields

(1 + n̄+ ȳf )(c− c̄)Pc + Ω−1n̄ȳf∂cPc = 0,

i.e.

∂cPc = −
1 + n̄+ ȳf

Ω−1n̄ȳf
· (c− c̄)Pc (19)

This equation can be easily solved by separation
of variables, which yields

Pc ∝ exp

(
1

2
·

(1 + n̄+ ȳf )

Ω−1n̄ȳf
· (c− c̄)2

)
.

We have found an approximate distribution of c;
to put it in other words, we can say that

c ∼ N
(
c̄,

Ω−1n̄ȳf
1 + n̄+ ȳf

)
(20)

as Ω→∞. As n and yf can be computed directly
from c as x − c, resp. y − c, they have the same
variance as c.

2) Fluctuating X (total protein count): In the
second part, instead of taking X to be a constant,
we assume that total protein count fluctuates due
to creation of new protein molecules and decay of
old ones, which is denoted by a reversible pair of

chemical reactions

∅
γ−⇀↽−
k

X.

We already know that these processes operate
on a much slower timescale that the associa-
tion/dissociation processes. Furthermore, we have
already found the steady-state distribution of X
(from II-B); the result is that it is Poissonian
with 〈X 〉 = Var(X ) = k

γ . We use the system-
size scaling k

γ = 〈x〉 · Ω. As Ω → ∞, we
can approximate the Poissonian distribution by a
small-noise Gaussian distribution

x =
X

Ω
∼ N

(
〈x〉,Ω−1 · 〈x〉

)
. (21)

In order to calculate the statistics of n (free protein
concentration) we have to combine the results (20)
and (21) given that n is expressed in terms of
slowly fluctuating x (total protein concentration).
The free protein concentration also naturally de-
pends on y (total concentration of binding sites),
but as it is a constant through the whole process,
we can neglect it from our notation for the sake of
simplicity. We can use the variance decomposition
theorem in order to solve this problem (see [30]).
It expresses the total (unconditional) variance as
the sum of the expectation of conditional variances
and the variances of conditional expectations, in
our case, we can write

Var(n) = E (Var(n|x)) + Var (E(n|x)) . (22)

We already know (from (20)) the solution for
E(n|x) and Var(n|x); we utilize the fact that x
fluctuates much more slowly that n and thus we
can obtain results for n subject to constant x.
Using the large Ω approximation, we can write

E(n|x) = n̄ = n̄(x)

Var(n|x) =
Ω−1n̄(x)ȳf (x)

1 + n̄(x) + ȳf (x)
.

(23)

Since the variance of x is of order Ω−1 and
we neglect all terms of order higher than Ω−1, we
can use the approximations n̄(x) ' n̄(〈x〉) and
ȳf (x) ' ȳf (〈x〉) in the formula for the conditional
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variance, which yields

E(Var(n|x)) ' Var(n|〈x〉) =
Ω−1 · n̄ȳf
1 + n̄+ ȳf

, (24)

evaluated at 〈x〉 (mean of total protein concen-
tration) and y (constant concentration of binding
sites). The final term left to calculate is Var(n̄(x)).
If we used the approximation n̄(x) = n̄(〈x〉),
we would end with zero, which would incorrectly
neglect all the variance. Therefore we also include
terms of next order by using the linear variance
approximation, i.e. by writing

n̄(x) ' n̄(〈x〉) +
dn̄

dx
· (x− 〈x〉).

From this expression we can find that

Var(n̄(x)) '
(
dn̄

dx

)2

|x=〈x〉
· V ar(x)

=

(
dn̄

dx

)2

|x=〈x〉
· Ω−1〈x〉

(25)

Hence, the last item to calculate is the derivation
of n̄ with respect to x. In order to find it, let us
differentiate the equations

n̄ȳf = c̄, n̄+ c̄ = x, ȳf + c̄ = y

that define the dependence of n̄, among others, on
x, with respect to variable x; this yields

dn̄

dx
· ȳf +

dȳf
dx
· n̄ =

dc̄

dx
, (26)

dn̄

dx
+
dc̄

dx
= 1, (27)

dȳf
dx

+
dc̄

dx
= 0. (28)

Substituting (28) into (26), we eliminate dȳf
dx and

obtain
dn̄

dx
· ȳf =

dc̄

dx
· (1 + n̄).

Now using equation (27) we get

dn̄

dx
=

1 + n̄

1 + n̄+ ȳf
. (29)

Thus we are now in a position to find the moments

of n. We get the mean by substituting 〈x〉 into the
deterministic results (13) and we get the variance
by substituting the partial results (24), (25) and
(29) into the variance decomposition theorem (22).
For mean we obtained the formula

E(n)= n̄(〈x〉)

=
〈x〉−y−1+

√
〈x〉2+y2+1+2〈x〉+2y−2〈x〉y

2
.

(30)

Variance can be expressed in the form

Var(n)=Ω−1

(
n̄ȳf

1+n̄+ȳf
+

(
1+n̄

1+n̄+ȳf

)2

〈x〉

)
.

(31)
Combining these two results gives us the possibil-
ity to obtain the Fano factor as

F =
Var(N )

E(N )
' Var(Ω · n)

E(Ω · n)
= Ω · Var(n)

E(n)
. (32)

After some simplifying steps we come to the
expression

F = 1 +
n̄ȳf (1 + n̄)

(1 + n̄+ ȳf )2
, (33)

where 1 can be interpreted as the Poissonian noise
and the residual fraction as an additional non-
Poissonian noise present due to the interaction
with decoy binding sites.

C. Numerical simulations

In the current section we perform numerical
simulations in order to visualize of our results
and to confirm the validity of the approximation
scheme presented above.

1) Fano factor based on system-size approach:
In the first simulation we investigate the relation
between 〈x〉 and the Fano factor. In the first figure
(Figure 5) we plot the dependance of Fano factor
on the number of binding sites. We calculate the
Fano factor for different values of 〈x〉. All values
are meant as the concentrations; therefore to obtain
the corresponding number of molecules we have
to multiply them by Ω. We clearly see that for
larger values of 〈x〉 we are able to reach larger
values of F . An interesting point to observe in
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Fig. 5: Fano factor for large system size.

the graphs is the slope near y = 0. We see that
for small values of 〈x〉 the slope increases with
increasing 〈x〉 , but for larger values of 〈x〉 the
slope starts to decrease. In order to investigate this
phenomenon into further depth, let us calculate
Taylor expansion near F (x, 0):

F (x,∆y) = 1 + ∆y · x

(1 + x)2
.

We can find the maximum of this value by differ-
entiating

∂F (x,∆y)

∂x
= ∆y · 1− x

(1 + x)3
,

which confirms that the maximal slope is obtained
for 〈x〉 = 1.

In Figure 6 we take the ratio y/〈x〉 (number
of BS divided by mean number of total protein)
as the independent variable and plot Fano factor
again for several different choices of 〈x〉.

We can see that for larger values of 〈x〉 the max-
imum of Fano factor is achieved near y/〈x〉 = 1.
In order to investigate this phenomenon further,
let us express the Fano factor in terms of new
variables a = y

〈x〉 and b = 1
x . This substitution

yields

F (a, b) = 1 +
1

2
· a(1− a− b+

√
?)

?
,

? = a2 + b2 + 1 + 2b+ 2a− 2ab.

(34)

The problem of finding the maximum of Fano
factor with respect to a is equivalent to finding the
solution of ∂F (a,b)

∂a = 0, with F (a, b) from (34).
This yields a very complex implicit function. As
we are interested in cases with large values of 〈x〉,
we want to investigate its solution for small values
of b. As we are unable to express the value of b in
terms of a from the implicit function in reasonable
way, we have to settle for numerical and graphical
solution for this equation, which is provided in
Figure 7. This verifies our hypothesis that for large
〈x〉 the maximal Fano factor is achieved near the
point where y = 〈x〉.

2) Quality of system size approach: In this
section we investigate whether the linear noise
approximation is consistent with the stochastic
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Fig. 6: Fano factor for large system size.

Fig. 7: Maximum of Fano factor.
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Fig. 8: Fano factor for different system sizes.

results for quasi-steady state:

PN =

N+Y∑
X=N

PX ·
kNb

N !(X−N )!(Y −X +N )!

·

 X∑
i=max{0,X−Y }

kib
(X−i)!(Y −X + i)!i!

−1 (35)

Using this formula we can obtain probability
distribution of free protein and therefore calculate
its Fano factor. But it is not that straightforward.
In order to get the results for big values of N , we
have to rewrite the sum in a way that we get around
the problems of calculating big factorials and
multiplying number close to 0 with an extremely
large number. For this purpose, (9) can be rewritten
as:

PN =

N+Y∑
X=N

PX ·

·

(∑
i

ki−Nb · N !(X−N )!(Y −X +N )!

i!(X−i)!(Y −X +i)!

)−1

.

(36)

Now we can proceed with the calculations:

we use 1, 5, 10 and 100 as the value for Ω and
compare the numerically calculated exact Fano
factor with the LNA expression for Fano factor
(33) for values of y between 0 and 10. In the case
where Ω = 1 we can only use integer values of y,
for Ω = 5 we can use multiples of 0.2 for y, in
other cases we use multiples of 0.1 for y in order
to plot the graphs. We use the same setup for the
different values of 〈x〉, in particular 0.1, 0.5, 1 and
2. Results for scenario with 〈x〉 = 2 is shown in
the Figure 8; results corresponding to other values
of 〈x〉 are analogous. Furthermore, in Table IV we
present the sum of squared residuals in the points
y = 1, . . . , 10. (If y = 0, then F = 1 always, so
we can omit this point.)

We see that the differences between approxima-
tions increase with 〈x〉, which is no surprise as
Fano factor achieves higher values in such cases.

IV. CONCLUSION

We introduced three methods to obtain free
protein distribution of our gene expression model.
In addition to stochastic simulation and numer-
ical simulation of the Master equation, we also
employed singular-perturbation reduction tech-
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Ω 〈x〉 = 0.1 〈x〉 = 0.5 〈x〉 = 1 〈x〉 = 2

1 1.8 · 10−5 2.2 · 10−4 8.0 · 10−4 0.0032
5 5.6 · 10−7 8.9 · 10−6 3.3 · 10−5 1.4 · 10−4

10 1.4 · 10−7 2.2 · 10−6 8.4 · 10−6 3.6 · 10−5

100 1.3 · 10−9 2.2 · 10−8 8.5 · 10−8 3.6 · 10−7

TABLE IV: Sum of squares from LNA.

niques to obtain a quasi-steady-state approxima-
tion, which was helpful in finding a relatively
simple explicit formula for the free protein distri-
bution. Using this formula we were able to observe
its statistical moments for many different input
parameters. Very interesting results were obtained
for the Fano factor, which substantially differed
from Poissonian case. In the second part of the
paper we considered the case of large system size,
using the dissociation constant as the measure of
size. This approach yielded a tractable expression
for the Fano factor of free protein distribution.
Through numerical simulations we showed that
this solution is consistent with results from the
first part of the paper. While we have employed
our methodologies to explore the properties of
a relatively simple model, we expect that the
same approaches can yield valuable insights in
stochastic gene-expression models in particular as
well as problems of mathematical biology more
widely.
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