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Abstract—The mechanical bidomain model is a
mathematical description of biological tissue that
focuses on mechanotransduction. The model’s fun-
damental hypothesis is that differences between
the intracellular and extracellular displacements
activate integrins, causing a cascade of biological
effects. This paper presents analytical solutions of
the bidomain equations for an extracellular point
force. The intra- and extracellular spaces are incom-
pressible, isotropic, and coupled. The expressions
for the intra- and extracellular displacements each
contain three terms: a monodomain term that is
identical in the two spaces, and two bidomain terms,
one of which decays exponentially. Near the origin
the intracellular displacement remains finite and
the extracellular displacement diverges. Far from
the origin the monodomain displacement decays in
inverse proportion to the distance, the strain decays
as the distance squared, and the difference between
the intra- and extracellular displacements decays
as the distance cubed. These predictions could be
tested by applying a force to a magnetic nanoparticle
embedded in the extracellular matrix and recording
the mechanotransduction response.
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I. INTRODUCTION

Mechanotransduction is the process by which
biological tissues grow and remodel in response
to mechanical signals. One cause of mechanotrans-
duction might be a cascade of biological responses
triggered by activation of integrin molecules in
the cell membrane [2], [3], [16]. A force acting
on the extracellular matrix is transmitted to the
cytoskeleton via these integrins, thereby coupling
the intra- and extracellular spaces. Much research
on mechanotransduction is qualitative, but to pre-
dict quantitatively how tissue responds to applied
forces we need a mathematical model [12]. Many
studies in mechanobiology analyze individual cells
and molecules, but to describe tissues and organs
we require a macroscopic model that averages
over the cellular and molecular scales. Yet, this
macroscopic model must predict the activation of
integrin molecules.

One mathematical model that describes mechan-
otransduction is the mechanical bidomain model
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Fig. 1. A schematic illustration of the mechanical bidomain model. The green springs represent the intracellular cytoskeleton,
the blue the extracellular matrix, and the red the integrins. The figure illustrates a two-dimensional version of the model, but
this article analyzes a three-dimensional version.

[11], [15]. It predicts displacements of the intra-
and extracellular spaces individually. The differ-
ence between the intra- and extracellular displace-
ments results in a force on the integrins that couple
the two spaces. A schematic illustration of the
model is shown in Figure 1. One of the most im-
portant properties of a mathematical model is how
it responds to a point source. Often complicated
responses can be expressed as a convolution of
the point source response, so knowing how tissue
responds to a point force provides insight into its
general behavior.

In this paper, I derive analytical expressions
describing how the mechanical bidomain model
responds to a point source in the extracellular
space. Experimentally, this could be approximated
by, for instance, applying a magnetic force on a
superparamagnetic nanoparticle [7], [8]. Magnetic
tweezers [5] have been used to exert forces on sin-
gle cells or individual molecules. The technique,
however, could be applied to intact tissue where
a nanoparticle is embedded in the extracellular
matrix. When a force is exerted by the nanopar-
ticle it pulls on the matrix, which stretches the
integrins embedded in the membranes of nearby
cells, triggering mechanotransduction [9].

II. METHODS

I assume the intra- and extracellular spaces are
incompressible and isotropic, and their strains are
small and linear. Incompressibility implies that
the intracellular displacement u and the extracel-
lular displacement w are both divergenceless. I
use spherical coordinates (r, θ, φ) with the force
applied at the origin and acting along the z axis (θ
= 0). By symmetry there are no displacements or
derivatives in the φ direction. In that case u and
the intracellular strain εi are related by [10]

εirr =
∂ur
∂r

, (1)

εiθθ =
1

r

∂uθ
∂θ

+
ur
r
, (2)

εiφφ =
uθ
r

cot θ +
ur
r
, (3)

εirθ =
1

2

(
1

r

∂ur
∂θ

+
∂uθ
∂r

− uθ
r

)
, (4)

with analogous relationships in the extracellular
space. The intracellular stress τi and the intracel-
lular strain are related by

τirr = −p+ 2νεirr, (5)
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τiθθ = −p+ 2νεiθθ, (6)

τiφφ = −p+ 2νεiφφ, (7)

τirθ = 2νεirθ, (8)

where p is the intracellular pressure and ν is the
intracellular shear modulus. Similar stress-strain
relationships exist for the extracellular pressure q
and extracellular shear modulus µ. The equations
of mechanical equilibrium are [10], [15]

− ∂p
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+ 2ν

[
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− 1

r

∂q

∂θ
+ 2µ

[
∂εerθ
∂r

+
1

r

∂εeθθ
∂θ

+
1

r

(
(εeθθ − εeφφ) cot θ + 3εerθ

)]
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= −K (uθ − wθ) , (12)

where K is the integrin spring constant coupling
the two spaces, F is the force applied to the

extracellular space, and δ(r) is the delta function.
I assume that the displacements and pressures go
to zero at large r.

To picture the problem physically, imagine that
in Figure 1 a point in the extracellular matrix (one
of the blue dots) is pulled to the right by an at-
tached nanoparticle. This force would displace the
extracellular matrix (blue springs), which would
stretch the integrins coupling the two spaces (red
springs). The integrins would then pull on the
cytoskeleton, causing the intracellular space to be
displaced.

III. RESULTS

Equations 9-12 were solved using the method
of undetermined coefficients. The solution is
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F
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(16)

p = 0, (17)

q =
F

4π

cos θ

r2
. (18)
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Each expression for the displacement contains a
monodomain term (first term in the brace) that
is the same in the intra- and extracellular spaces,
and two bidomain terms that are different in the
two spaces (one is -ν/µ times the other). The
first bidomain term is proportional to σ2, where
σ =

√
νµ

K(ν+µ) is a length constant characteristic
of the mechanical bidomain model [15]. The ex-
ponential in the second bidomain term decays with
length constant σ.

The displacements (Eqs. 13-16) have interesting
properties as r goes to zero. If you expand the
exponential as a Taylor series, you will find that
the terms in the expression for the intracellular
displacement that are singular at the origin can-
cel and it remains finite there. The extracellular
displacement, however, diverges at the origin as
1/r as expected for a delta function source in the
extracellular space. At large distances (r � σ)
bidomain terms decay more rapidly than mon-
odomain terms.

The fundamental hypothesis of the mechanical
bidomain model is that mechanotransduction de-
pends on the difference u - w [15]. The mon-
odomain terms are the same in the two spaces and
do not contribute to u - w; only the bidomain terms
generate the displacement difference that drives
mechanotransduction,

ur−wr=
F

8πµ
cos θ

{
− 4σ2

r3
+4

[
σ2

r3
+
σ

r2

]
e−

r

σ

}
,
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F
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r3
+2

[
σ2

r3
+
σ

r2
+
1

r

]
e−

r

σ

}
.

For r � σ the exponentials are negligible and the
difference in displacements falls as 1/r3.

Figure 2 shows the extracellular displacement,
w, the intracellular displacement, u, and their
difference, u - w, in the plane corresponding to a
constant angle φ. Near the source, u - w resembles
-w. Far from the source, u - w is small compared
to u and w individually.

Fig. 2. The extarcellular displacement, w, the intracellular
displacement, u, and their difference, u-w. The calculation
assumes ν = µ. The black dot indicates the position of the
point source, corresponding to an applied force F acting to
the right.
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Fig. 3. ur , wr , ur - wr , and εirr as functions of r/σ, for
θ = 0; ur is indicated by short dashes, wr by long dashes, ur

- wr by a solid line, and εirr by dash-dot. All quantities are
normalized so that the intracellular displacement and strain
are equal to one at the origin.

Figure 3 plots the intra- and extracellular dis-
placements and their difference along the direction
of the applied force. It also shows the intracellular
strain, εirr. At large distances, the displacements
fall as 1/r, the strain as 1/r2, and the difference in
the displacements as 1/r3. This result is a testable
prediction. If mechanotransduction depends on the
strain it decays relatively slowly, as 1/r2. If,
however, mechanotransduction depends on u - w
it decays relatively rapidly, as 1/r3.

IV. DISCUSSION

Most biomechanical models treat tissue as a
single phase: a monodomain. These mathematical
models are often valuable tools for predicting
tissue displacements, stresses, and strains [4]. If,
however, mechanotransduction is triggered by ac-
tivation of integrins, and integrins are activated by
differences between the displacements of the intra-
and extracellular spaces, then a bidomain model is
essential for predicting where mechanotransduc-

tion occurs. The activation of integrins could in
principle be determined by measuring the intra-
and extracellular displacements individually, and
then taking their difference. In practice, however,
this difference is very small compared to the
displacements themselves, and a better strategy
would be to measure a mechanotransduction ef-
fect caused by integrin activation, such as tissue
growth, remodeling, or genetic changes associated
with these processes.

The monodomain solution for a point source
is ur = wr = F

8π(ν+µ)
2 cos θ
r and uθ = wθ =

− F
8π(ν+µ)

sin θ
r . This solution is the same as the

expression for the velocity caused by a point force
in an incompressible fluid at low Reynolds number
[10], sometimes referred to as a Stokeslet. When
σ is small the Stokeslet approximates the displace-
ments in the intra- and extracellular spaces, but it
provides no information about where mechano-
transduction occurs because it contributes nothing
to u - w. The monodomain term can be represented
in Fig. 3 as a line that matches the u and w curves
at large radii, and is extrapolated back linearly at
smaller radii.

A key parameter in the model is the length con-
stant σ, which depends on the bidomain constant
K coupling the intra- and extracellular spaces. In
monolayers of stem cells, σ is about 150 microns
[1], which is larger than a cell and much larger
than a nanoparticle, implying that a macroscopic
model should be valid.

The mechanical bidomain model has many sim-
ilarities to the electrical bidomain model [6] used
to describe pacing and defibrillation of the heart.
My analysis of the mechanical bidomain model’s
response to a point force is analogous to the calcu-
lation of the transmembrane potential produced by
a point current using the electrical bidomain model
[13]. In the electrical model, unequal anisotropy
ratios for the intra- and extracellular conductivities
plays a crucial role in determining the transmem-
brane potential distribution. Similar effects might
arise in the mechanical model if it were made
anisotropic.

What experiment can test the predictions of this
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model? One suggestion is to grow a large cluster
of epithelial cells, with a magnetic particle at its
center. Alternatively, tissue engineering techniques
could be used to grow cells in an extracellular
substrate containing a magnetic particle. Then, a
force could be applied to the particle, and the
mechanotransduction response could be imaged by
monitoring a second messenger activated by the
integrins, or the turning on of a gene associated
with cell growth.

The bidomain model has several limitations. It
assumes a linear relationship between displace-
ment and strain, which is only appropriate for
small strains [10]. In my solution, the extracel-
lular displacement and strain diverge at the origin,
so the small strain assumption is violated there.
However, the delta function is an approximation
that breaks down on a distance scale similar to
the radius of the magnetic nanoparticle used to
exert the force. As long as the strains are small
at this scale, the linear approximation should be
valid. I assume the stress-strain relationships are
linear, whereas in tissue these relationships can
be nonlinear [4]. If the strains are small enough,
however, a linear approximation should suffice. I
assume that the tissue is isotropic, but tissues such
as muscle are anisotropic and the model needs to
be extended to account for anisotropy. I assume
both the intra- and extracellular spaces are in-
compressible. Because both spaces contain mostly
water, the incompressible assumption should be
accurate [14]. My model is for steady-state. If
the applied force varies with time, the solution
might be invalid over short times because of the
propagation of sound waves, or over long times
because of viscoelasticity or tissue growth and
remodeling. Finally, and fundamentally, I assume
that mechanotransduction depends on the differ-
ence in the displacements, u - w. If it depends
on other factors, such as the intracellular stress or
strain, or some microscopic behavior that is not
included in this macroscopic model, the results
might not describe mechanotransduction correctly.

The model could be extended to avoid some
of my limiting assumptions, but in that case an

analytical solution might not exist. Analytical so-
lutions can provide insight into the model behavior
and are valuable even when the model is only an
approximation. Moreover, analytical solutions are
useful for testing limiting cases of complex mod-
els and for evaluating the accuracy of numerical
methods.

V. CONCLUSION

The mechanical bidomain model makes testable
predictions about where mechanotransduction oc-
curs. In particular, the model predicts that the
distribution of mechanotransduction in response
to a point source in the extracellular space falls
off with distance more rapidly if mechanotrans-
duction is driven by the difference in the intra-
and extracellular displacements, and less rapidly
if mechanotransduction is driven by intra- or ex-
tracellular strain. This prediction could be tested
by measuring how the tissue responds to a force
applied using a magnetic nanoparticle embedded
in the extracellular space.
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