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Abstract—The brain’s cerebral cortex is folded into
many gyri (hills) and sulci (valleys). Little is known
about how the cortex folds or why the folds are located
where they are. We have developed a spatio-temporal
mathematical model of cortical folding to address this
question. Our model utilizes a Turing reaction-diffusion
system on an exponentially growing prolate spheroidal
domain. This domain approximates the shape of the lateral
ventricle (LV) during cortical development. The Interme-
diate Progenitor Model (IPM) of cortical folding states
that regional patterning of self-amplication of intermediate
progenitor cells (IPCs) in the subventricular zone of the LV
corresponds with the formation of cortical folding. As self-
amplication of IPCs is genetically controlled via chemical
gradients, a Turing system is a logical choice to create
a mathematical representation of the IPM. A growing
domain model of cortical folding may be more realistic
than previous static domain models of cortical folding
since it incorporates the growth that naturally occurs as
the brain develops. By comparing patterns generated by
our growing prolate spheroid Turing system with those
generated by a static prolate spheroid Turing system,
we show that the addition of growth causes a significant
change in system behavior; the system produces transient
patterns instead of converging to one final pattern. Our
model illustrates the importance of including growth in a
model of cortical folding and can be utilized to explain
certain human diseases of cortical folding.

Keywords-cortical folding; morphology; neurobiology;
Turing system

I. I NTRODUCTION

The cerebral cortex of the brain is folded into an
intricate pattern of gyri (hills) and sulci (valleys). The

pattern of cerebral cortical folds varies from species
to species as well as between individuals of the same
species. Current biological models that attempt to explain
the underlying processes of cortical folding conflict with
one another; some emphasize the role of physical tension
created by axonal connections within the cortex, while
others highlight the importance of genetic chemical
factors that influence cortical cells and their precursors.
Furthermore, it is extremely difficult to perform neu-
roscience experiments to investigate cortical folding in
living humans. Because of this biological debate and lack
of experimental data, we have created a spatio-temporal
mathematical model of cortical folding patterns in the
brain. Our model employs a Turing reaction-diffusion
system on an exponentially growing prolate spheroidal
domain. Turing systems have been used to mathemat-
ically model pattern formation in many different areas
of biological development, such as zebra stripes, giraffe
spots, and alligator tooth formation [13], [15].

Previous biomathematical models of cortical folding
employed Turing systems on a static domain [26], failing
to capture the growth of the organism that naturally
occurs as development progresses. Our model employs
a growing domain, allowing us to create a more bio-
logically realistic model of cortical folding by incor-
porating developmental growth. Numerical simulations
demonstrate that the inclusion of domain growth in
a Turing system causes a fundamental change in the
pattern-generating behavior of the system, causing it to
generate transiently evolving patterns rather than one
convergent pattern. Incorporating domain growth into a
Turing system model of cortical folding also allows one
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to model certain diseases of cortical folding.

II. B IOLOGICAL BACKGROUND

The ventricular system of the brain consists of four
ventricles: the two lateral ventricles (LVs), the third
ventricle, and the fourth ventricle [25]. The ventricular
zone (VZ) lines the lateral wall of the LVs and contains
special proliferative cells that play a role in cortical
development [17]. Continuing outward from the inside
of a LV, one passes from the VZ to the subventricular
zone (SVZ), another area containing proliferative cells
implicated in cortical development [17]. According to the
Intermediate Progenitor Model (IPM) of cortical folding
[12], intermediate progenitor cells (IPCs) in the SVZ
undergo self-amplifying cell division with the number
of rounds of cell division varying regionally throughout
the SVZ. IPCs then divide into neurons which populate
the upper layers of the cortex. Areas of high IPC self-
amplification lead to cortical areas highly populated with
neurons, forming gyri, while areas of low IPC self-
amplfication lead to cortical areas with fewer neurons,
forming sulci. IPCs and hence cortical folding are regu-
lated via a genetic chemical gradient; namely,Pax6and
Wnt have been shown to affect the number of IPCs and
proper cortical development in mice [22].

Another important role of the SVZ in brain develop-
ment is the production of a structure called the germinal
matrix (GM), which is also located along the lateral
wall of the LVs [1], [11]. The GM contains precursors
of neurons and glial cells and has been observed to
grow exponentially from 11 to 23 weeks gestational age
(GA) [1], [11]. The period of GM exponential growth
overlaps with a period of development during which
cortical folding occurs in humans, as primary cortical
folds in humans emerge from 10 weeks GA to 30 weeks
GA [9].

III. T URING SYSTEMS

Turing reaction-diffusion systems are activator-
inhibitor systems originally created to model chemical
gradient concentrations on the developing embryo [28].
Let u (X, t) andv (X, t) represent the concentrations at
time t ≥ 0 of an activator morphogen and an inhibitor
morphogen which are interacting on a static domain
parametrized by position vectorX. Then the canonical
Turing system is

∂u

∂t
= du∇2u + f(u, v),

∂v

∂t
= dv∇2v + g(u, v),

 (1)

where 0 < du < dv are the respective diffusion
coefficients ofu andv andf, g are the reaction kinetics.
If System (1) possesses a spatially uniform steady state
(u0, v0) which is linearly stable in the absence of dif-
fusion but is driven unstable by noise when diffusion
is present, then System (1) is capable of generating
spatially inhomogeneous patterns. These two properties
must be satisfied in order for System (1) to exhibit Turing
systems’ characteristic pattern-generating behavior [15],
[28]. We refer to these properties as Turing criteria.

Since we wish to include developmental growth as a
part of our model of cortical folding, a growing domain
must be incorporated into System (1). To accomplish
this, let St ⊂ R3 be a two-dimensional regular growing
surface with position vectorX = X (ζ, η, t), where
ζ, η parametrizeSt in space andt ≥ 0. Let u (X, t)
and v (X, t) be the concentrations of two chemical
substances onSt with diffusion coefficientsDu andDv,
respectively. If we defineD = Du/Dv, h1 = |Xζ | , h2 =
|Xη|, then System (1) becomes

ut = D∆su− ∂t (ln (h1h2))u + ωf (u, v) ,

vt = ∆sv − ∂t (ln (h1h2)) v + ωg (u, v) ,

 (2)

whereω > 0 is the domain scale parameter and

∆sφ =
1

h1h2

[(
h2

h1
φζ

)
ζ

+
(

h1

h2
φη

)
η

]
(3)

is the Laplace-Beltrami operator onSt (with φ =
u, φ = v) [21]. Notice that the incorporation of domain
growth into a Turing system results in a third term in
each reaction-diffusion equation:−∂t (ln (h1h2))φ (for
φ = u, φ = v). This new term represents dilution of the
u, v concentrations due to the growth of the domain [21].

System (2) can construct a Turing system on any
regular growing surface, but since the growing domain
of interest for our model is an exponentially prolate
spheroid, we shall incorporate prolate spheroidal coor-
dinates into the system. A prolate spheroid is the result
of rotating an ellipse about its major axis and can be
defined by the prolate spheroidal coordinate system [8],

x = f
2

√
(1− η2) (ξ2 − 1) cos 2πζ,

y = f
2

√
(1− η2) (ξ2 − 1) sin 2πζ,

z = f
2ηξ,

whereξ > 1 controls domain shape via eccentricity,η =
cos θ ∈ [−1, 1] with polar angleθ, ζ = φ

2π ∈ [0, 1) with
azimuthal angleφ, andf is the interfocal distance. We
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define the position vectorX on an exponentially growing
prolate spheroid as

X(ζ, η, t) = ρ(t)


f0

2

√
(ξ2 − 1)(1− η2) cos 2πζ

f0

2

√
(ξ2 − 1)(1− η2) sin 2πζ

f0

2 ξη

 ,

(4)
wheref0 is the interfocal distance att = 0 andρ (t) =
eRt is the growth function with growth rateR > 0.
Using Equation (4), the Laplace-Beltrami operator given
in Equation (3) becomes

∆s =
1

π2ρ2f2
0 (1− η2) (ξ2 − 1)

φζζ

+
4

(
1− η2

)
ρ2f2

0 (ξ2 − η2)
φηη −

4η
(
2ξ2 − η2 − 1

)
ρ2f2

0 (ξ2 − η2)2
φη,

and the dilution term reduces to

−∂t (ln (h1h2))φ = −2
ρ̇

ρ
φ = −2Rφ.

Overall, System (2) on an exponentially growing prolate
spheroidal domain becomes

ut = D∆su− 2Ru + ωf(u, v),

vt = ∆sv − 2Rv + ωg(u, v),

}
(5)

whereu = u(ζ, η, t) andv = v(ζ, η, t).

IV. T URING CONDITIONS

Next, we derive mathematical conditions whose satis-
faction ensures that System (5) satisfies the two Turing
criteria and thus can generate patterns. These mathe-
matical conditions are called Turing conditions and are
derived using linear stability analysis in the method of
[10].

A. Turing Criterion: Linear Stability

To begin, we rewrite System (5) as

ut = D
ρ2 ∆†u− 2Ru + ωf(u, v),

vt = 1
ρ2 ∆†v − 2Rv + ωg(u, v),

}
(6)

where∆† = ρ2∆s. Let (u0, v0) be a spatially uniform
steady state of System (5) which remains a steady state
in both the presence and absence of diffusion; in other
words,

0 = −2Ru0 + ωf(u0, v0),

0 = −2Rv0 + ωg(u0, v0).

If w(t) =
(

u(t)− u0

v(t)− v0

)
=

(
εu

εv

)
is defined to be

a perturbation from(u0, v0), then System (6) can be
rewritten as

wt =
(

ut

vt

)
=

(−2R(u0 + εu) + ωf(u0 + εu, v0 + εv)

−2R(v0 + εv) + ωg(u0 + εu, v0 + εv)

)
.

Performing a Taylor expansion ofut, vt around(u0, v0)
allows us to write

ut ≈ −2Rεu + ω [εufu(u0, v0) + εvfv(u0, v0)] ,

vt ≈ −2Rεv + ω [εugu(u0, v0) + εvgv(u0, v0)] ,

from which it follows that

wt = −2Rw + ωAw, (7)

whereA =
(

fu fv

gu gv

)
(u0,v0)

.

Next, consider solutions to Equation (7) with form
w (t) = ceλt. In order to achieve linear stability of
(u0, v0) , it must follow thatw → 0 as t → ∞. Hence,
λ must satisfyRe (λ) < 0. Substitutingw (t) = ceλt

into Equation (7) and simplifying yields the eigenvalue
equation

λc = Ãc,

where

Ã = ωA− 2RI.

Solving for the characteristic polynomial inλ and using
the quadratic formula implies thatRe (λ) < 0 when

trÃ = ω(fu + gv)− 4R < 0 and

det Ã = ω2(fugv − fvgu)− 2Rω(fu + gv) + 4R2 > 0.

These two inequalities constitute the first two Turing
conditions for System (5).

B. Turing Criterion: Diffusion-Driven Instability

Linearizing System (6) about(u0, v0) gives

wt = DM∆†w − 2Rw + ωAw, (8)

whereDM =
1
ρ2

(
D 0

0 1

)
. Consider solutions to Equa-

tion (8) with form

w(X, t) =
∑

k

cke
λtYk (X) , (9)
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where Yk are prolate sheroidal harmonics. SinceYk

satisfy ∆†Yk = −k2Yk, substituting Equation (9) into
Equation (8) and simplifying gives∑

k

ck

(
λYk + DMk2Yk + 2RYk − ωAYk

)
= 0.

For nontrivial solutionsw it must be thatck 6= 0. It then
follows that

λYk =
(
−DMk2 − 2RI + ωA

)
Yk,

which is another eigenvalue equation. Nontrivialw occur
when det

(
Ã−DMk2 − λI

)
= 0, and evaluating this

determinant yields

λ2 + λ

[
k2

ρ2
(1 + D)− trÃ

]
+ h

(
k2

)
= 0, (10)

where

h
(
k2

)
=

D

ρ4

(
k2

)2 + det Ã

+
k2

ρ2
[2R (1 + D)− ω (fu + Dgv)] .

Recalling thatw (X, t) =
∑

k cke
λtYk (X) , it follows

that diffusion-driven instability of(u0, v0) occurs when
Re (λ) > 0. Solving Equation (10) forλ tells us that
Re (λ) > 0 when

2R (1 + D)− ω (fu + Dgv) < 0 and

R2

[
4 − (1 + D)2

D

]
+ ω2 (fugv − fvgu)

+ Rω

[
1
D

(1 + D) (fu + Dgv)− 2 (fu + gv)
]

<
ω2

4D
(fu + Dgv)

2 .

These two inequalities constitute the final two Turing
conditions for System (5).

V. THE MODEL

Our mathematical model of cortical folding utilizes
System (5), a Turing reaction-diffusion system on an
exponentially growing prolate spheroidal domain. We
select an exponentially growing prolate spheroidal do-
main to represent the LV and use the surface of the
domain to represent the SVZ. Patterns generated by the
model’s Turing system represent regions of activation
and nonactivation for self-amplification of IPCs in the
SVZ; this regional self-amplification of IPCs then leads
to cortical folds as described by the IPM.

Since Turing systems were originally created to model
chemical morphogen concentration gradient patterns,

they are useful for modeling developmental phenomena
involving patterns of genetic chemical gradients. As
mentioned in Section II, evidence suggests that genes
regulate cortical folding via a chemical gradient, making
a Turing system a reasonable choice for a mathematical
model of cortical folding.

Recall that the GM grows exponentially over a period
of development during which cortical folds are formed.
Since the GM is produced by the SVZ and the SVZ is
the site of self-amplification of IPCs (a key factor in the
IPM), an exponentially growing domain is a reasonable
choice for our model.

Neurogenesis in humans occurs approximately during
embryonic days 43 to 120 [23]. Early in neurogenesis,
the cerebral hemispheres are prolate spheroidal in shape,
with the LVs accounting for almost all of the cerebral
hemispheres’ volume [26]. Thus, the LVs at this time of
development are also prolate spheroidal in shape, making
a prolate spheroidal domain a reasonable choice for our
model.

To fully define our model’s Turing system given in
System (5), we must select reaction kinetics functions
f(u, v), g(u, v). We select nondimensional Barrio-Varea-
Maini (BVM) kinetics [4],

f(u, v) = u + av − Cuv − uv2,

g(u, v) = bv + hu + Cuv + uv2,

so that System (5) becomes

ut = D∆su− 2Ru + ω(u + av − Cuv − uv2),

vt = ∆sv − 2Rv + ω(bv + hu + Cuv + uv2).

}
(11)

BVM kinetics are phenomenological and are not mod-
eled after any particular physical or chemical mecha-
nism. Since the underlying mechanism of cortical folding
is not fully understood, BVM kinetics are an appropriate
choice for our model.

A. Numerical Results

To observe the patterns produced by System (11), we
performed numerical simulations using a forward time,
central space finite difference scheme [14]. Kinetics
parameters were selected from the literature and were
as follows:

D = 0.516, a = 1.112, b = −1.01, C = 0.

Initial conditions consisted of random valuesφ ∈
[−0.5, 0.5] along the domain’s equator; other points on
the domain were initialized as zero. The random initial
values were seeded due to Turing systems’ intrinsic high
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Fig. 1. Transient patterns generated by System (11) withR = 0.009,
ω = 150.

Fig. 2. Transient patterns generated by System (11) withR = 0.045,
ω = 150.

sensitivity to initial conditions [29]. Initial interfocal
distance was chosen to bef0 = 2 and domain shape was
fixed by fixing ξ at ξ = 1.3141, giving a domain with
initial surface area4π, identical to that of the unit sphere.
Simulations were varied only by altering the growth rate
parameterR and the domain scale parameterω.

System (11) generated transient patterns that con-
stantly evolve from one pattern to another as elapsed
time t progresses (See Figures 1–3). As these tran-
sient patterns evolve, the number of stripes or spots
in the pattern increases with increasingt. The pattern-

Fig. 3. Transient patterns generated by System (11) withR = 0.045,
ω = 60.

generating behavior of our growing domain system
sharply contrasts with that of a static domain Turing
system, which eventually converges to one final pattern.
It is therefore clear that the addition of growth to a
Turing system causes a major change in the system’s
pattern-generating behavior. Increasing the value ofR or
ω causes System (11) to generate a more complex pattern
(more stripes or spots) at a givent (compare Figure 1
with Figure 2 and compare Figure 2 with Figure 3).
Increasing these parameters also increased the frequency
of transient pattern change; that is, the system evolved
from pattern to pattern more quickly.

B. Application to Diseases of Cortical Folding

1) Polymicrogyria: Polymicrogyria (PMG) is a dis-
ease of cortical folding in which the cortex is excessively
folded into many small folds [2]. Common symptoms of
PMG include mental retardation, epilepsy, and develop-
mental delay [2]. Several different forms of PMG are
associated with enlarged LVs, such as megalencephaly
PMG with polydactyly and hydrocephalus (MPPH) [7],
[20], unilateral PMG [19], and bilateral frontoparietal
PMG (BFPP) [6], [27]. Our model can encapsulate the
enlargement of LVs by increasing the growth rateR,
leading to a larger prolate spheroid (and hence LV) at
any t > 0. Increasing the growth rateR leads to smaller
and more numerous stripes in the pattern produced by
System (11) (see Figure 2). By interpreting the stripes
as locations and sizes of cortical folds (as described in
Section V), this change in size and number of stripes
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represents an increased number of small cortical folds,
agreeing with the characteristic brain abnormalities of
PMG.

2) Norman-Roberts Syndrome:Norman-Roberts Syn-
drome (NRS) is a rare, potentially fatal congenital dis-
ease affecting brain development [16], [18], [24]. The
genetic basis and pathophysiology of NRS are not fully
known. Symptoms of NRS include reduced head growth
rate, microcephaly, type I lissencephaly (too few cortical
folds), epilepsy, and mental retardation [3], [5], [16],
[24]. Since NRS is associated with microcephaly, it is
reasonable to assume that the smaller-than-normal NRS
brain also has smaller-than-normal LVs. We thus model
NRS by decreasingR so that the domain representing
the LV is smaller at anyt > 0. DecreasingR leads to
larger and less numerous stripes in the pattern generated
by System (11) (see Figure 1). By once again interpreting
the stripes as cortical folds, this change in size and
number of stripes represents a decrease in the number
of cortical folds, reproducing the distinguishing brain
anomalies of NRS.

VI. CONCLUSION

We have shown that it is important to consider growth
when constructing a biomathematical model of cortical
folding, as adding growth to our Turing system model of
cortical folding not only makes it more biologically real-
istic but also significantly changes the system’s pattern-
generating behavior. Furthermore, by appropriately alter-
ing the domain growth rate, a growing domain Turing
system model of cortical folding can model certain
diseases of cortical folding.
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