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Abstract—The brain’s cerebral cortex is folded into pattern of cerebral cortical folds varies from species
many gyri (hills) and sulci (valleys). Little is known to species as well as between individuals of the same
about how the cortex folds or why the folds are located species. Current biological models that attempt to explain
where they are. We have developed a spatio-temporal the ynderlying processes of cortical folding conflict with
mathematical model of cortical folding to address this one another; some emphasize the role of physical tension

guestion. Our model utilizes a Turing reaction-diffusion reated by axonal connections within th rtex. whil
system on an exponentially growing prolate spheroidal created Dy axonal connections € cortex, €

domain. This domain approximates the shape of the lateral Others highlight the importance of genetic chemical
ventricle (LV) during cortical development. The Interme- factors that mf_lugnce cortical cgll_s and their precursors.
diate Progenitor Model (IPM) of cortical folding states Furthermore, it is extremely difficult to perform neu-
that regional patterning of self-amplication of intermediate roscience experiments to investigate cortical folding in
progenitor cells (IPCs) in the subventricular zone of the LV living humans. Because of this biological debate and lack
amplication of IPCs is genetically controlled via chemical ‘\5ihematical model of cortical folding patterns in the
gradients, a Turing system is a logical choice to create ., - model employs a Turing reaction-diffusion
a mathematical representation of the IPM. A growing . . .
system on an exponentially growing prolate spheroidal

domain model of cortical folding may be more realistic } X
than previous static domain models of cortical folding domain. Turing systems have been used to mathemat-

since it incorporates the growth that naturally occurs as ically model pattern formation in many different areas
the brain develops. By comparing patterns generated by of biological development, such as zebra stripes, giraffe
our growing prolate spheroid Turing system with those spots, and alligator tooth formation [13[, [15].
generated by a static prolate spheroid Turing system,  Previous biomathematical models of cortical folding
we shovy that the additiqn of growth causes a significgnt employed Turing systems on a static domain [26], failing
change in system behavior; _the system produces transient, capture the growth of the organism that naturally
pattern_s instead of converging to one flnal pattern._Our occurs as development progresses. Our model employs
model illustrates the importance of including growth in a : . . ’ .
model of cortical folding and can be utilized to explain 2 growmg dqmaln, allowing us.to crea’Fe a mqre bio-
certain human diseases of cortical folding. logically realistic model of cortical folding by incor-
porating developmental growth. Numerical simulations
demonstrate that the inclusion of domain growth in
a Turing system causes a fundamental change in the
pattern-generating behavior of the system, causing it to
generate transiently evolving patterns rather than one
The cerebral cortex of the brain is folded into amonvergent pattern. Incorporating domain growth into a
intricate pattern of gyri (hills) and sulci (valleys). TheTuring system model of cortical folding also allows one

Keywordscortical folding; morphology; neurobiology;
Turing system

I. INTRODUCTION

Citation: G. Toole, M. Hurdal, Growth in a Turing Model of Cortical Folding, Biomath 1 (2012), 1209252, Pagelo
http://dx.doi.org/10.11145/j.biomath.2012.09.252


http://www.biomathforum.org/biomath/index.php/biomath
http://dx.doi.org/10.11145/j.biomath.2012.09.252

G. Toole et al., Growth in a Turing Model of Cortical Folding

to model certain diseases of cortical folding. where 0 < d, < d, are the respective diffusion
coefficients ofu andv and f, g are the reaction kinetics.
If System [[1) possesses a spatially uniform steady state
The ventricular system of the brain consists of fOL{IZuO’UO) which is linearly stable in the absence of dif-
ventricles: the two lateral ventricles (LVs), the thirdysjon but is driven unstable by noise when diffusion
ventricle, and the fourth ventricle [25]. The ventriculajs present, then Systenii] (1) is capable of generating
zone (VZ) lines the lateral wall of the LVs and containgpatially inhomogeneous patterns. These two properties
special proliferative cells that play a role in corticafyst be satisfied in order for Systeih (1) to exhibit Turing
development[[17]. Continuing outward from the insidgystems’ characteristic pattern-generating behavidr [15],
of a LV, one passes from the VZ to the subventriculgpg). we refer to these properties as Turing criteria.
zone (SVZ), another area containing proliferative cells sjnce we wish to include developmental growth as a
implicated in cortical development [17]. According to theyart of our model of cortical folding, a growing domain
Intermediate Progenitor Model (IPM) of cortical foldingyyst pe incorporated into Systef] (1). To accomplish
[12], intermediate progenitor cells (IPCs) in the SV4his |et S, c R? be a two-dimensional regular growing
undergo self-amplifying cell division with the numberyface with position vectoX = X (¢,n,t), where
of rounds of cell division varying regionally throughout ,, harametrizeS, in space and: > 0. Let u (X, t)
the SVZ. IPCs then divide into neurons which populaigng (X, ¢) be the concentrations of two chemical
the upper layers of the cortex. Areas of high IPC selfypstances o8, with diffusion coefficientsD,, and D,,,
amplification lead to cortical areas highly populated withpspectively. If we defind = Dy/Dy, b1 = |X¢|, by =
neurons, forming gyri, while areas of low IPC SeIfTXnL then System[{1) becomes
amplfication lead to cortical areas with fewer neurons,

forming sulci. IPCs and hence cortical folding are regu- w; = DAsu — 0 (In (hih2))u+wf (u, v),
lated via a genetic chemical gradient; nam&lgx6 and (2)
Wnthave been shown to affect the number of IPCs and vt = Asv — ¢ (In (h1h2)) v +wg (u, v),

proper cortical development in mice [22]. , ,
. ) : where is the domain scale parameter and
Another important role of the SVZ in brain develop- w=>0 P

ment is the production of a structure called the germinal 1 ho hy
matrix (GM), which is also located along the lateral Asp = Il <hl¢<> (;12%) 3)
wall of the LVs [1], [11]. The GM contains precursors ¢ K
of neurons and glial cells and has been observeditothe Laplace-Beltrami operator of; (with ¢ =
grow exponentially from 11 to 23 weeks gestational agg ¢ = v) [21]. Notice that the incorporation of domain
(GA) [1, [11]. The period of GM exponential growthgrowth into a Turing system results in a third term in
overlaps with a period of development during whickach reaction-diffusion equatior:d; (In (h1hs)) ¢ (for
cortical folding occurs in humans, as primary corticab = v, ¢ = v). This new term represents dilution of the
folds in humans emerge from 10 weeks GA to 30 weeks v concentrations due to the growth of the domain [21].
GA [9]. System [(R) can construct a Turing system on any
1. TURING SYSTEMS reg_ular growing surface, bu_t since the grO\_/ving domain
) ) o ] of interest for our model is an exponentially prolate
~ Turing reaction-diffusion systems are actvalolzoperniq we shall incorporate prolate spheroidal coor-
inhibitor systems originally created to model chemicgj,5ie5 into the system. A prolate spheroid is the result
gradient concentrations on the developing embryo [Z@f rotating an ellipse about its major axis and can be

Letu (X,?) andv (X, ?) represent the concentrations afiefined by the prolate spheroidal coordinate sysfeém [8],
time ¢ > 0 of an activator morphogen and an inhibitor

II. BlOLOGICAL BACKGROUND

morphogen which are interacting on a static domain T = g\/(1 —n?) (€2 — 1) cos 27¢,
arametrized by position vectd. Then the canonical .
'Fl)'uring system i); P y= 3/ (=) (€ —sin2nc,
9 2= i,
= d,Vu+ f(u,v), . . -
ot (1) where¢ > 1 controls domain shape via eccentricity=
v , cos € [~1,1] with polar angled, ¢ = 2 € [0,1) with
Erie dy Vv + g(u,v), azimuthal anglep, and f is the interfocal distance. We
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define the position vectaX on an exponentially growing | w(t) = (“(t) - U0> _ [ is defined to be
prolate spheroid as \v(t) — vo €v
a perturbation from(ug,v), then System[(6) can be
Lo /(€2 =1)(1 — n?) cos 2m¢ rewritten as

X(¢,n,t) = p(t) %\/(52 —1)(1 —n?)sin2n( |, Wy = <ut>

fo vt

&N (@) B <—2R(u0+eu) + wf(up + €y, vo —I—ev)>
where f; is the interfocal distance at= 0 and p (t) = —2R(vo + €) +wg(uo + €y, v0 +€) )

Rt . . .
e s the g.rowth function with grovvth_rateR > 0.. Performing a Taylor expansion af, v; around (uo, vo)
Using Equation[(4), the Laplace-Beltrami operator givel),.vs us to write

in Equation [(B) becomes

1 ur ~ —2Re, +w [ﬁufu(u07v0) + Eva(UQ,’Uo)] s
As = 7T2p2fg (1 — 772) (62 — 1)¢CC v & —2Rey +w [Eugu(um UO) + 61)911(“07 UO)] 5
2 2 2
A0-m) o n@€—w 1)  from which it follows that
nn n

P2 f3 (€2 — n?) p2f3 (€2 —n2)?

w; = —2Rw + wAw, (7)
and the dilution term reduces to nf
; whered = (7" 7" .
_at (ln (h1h2)> ¢ = _2§¢ = _2R¢ (.gu g’u) (UO,'UO)

. . Next, consider solutions to Equatiop] (7) with form
Overall, System[(2) on an exponentially growing prolatg, (t) = ceM. In order to achieve linear stability of

spheroidal domain becomes (uo, vo) , it must follow thatw — 0 as¢ — oo. Hence,
. . . _ A
uy = DAgu — 2Ru + wf (u, v), )\ must sa_tlsfyRe (M) <_0. _Su_bstltu_tmgw (t) = ce t
(5) into Equation[(¥) and simplifying yields the eigenvalue
vy = Agv — 2Rv + wg(u, v), equation
whereu = u(¢,n,t) andv = v({,n,t). Ac = Ac,
IV. TURING CONDITIONS where

Next, we derive mathematical conditions whose satis- A=wA-2RIL.
faction ensures that Systef (5) satisfies the two Turi%lving for the characteristic polynomial land using
criteria and thus can generate patterns. These mathes quadratic formula implies thate (A) < 0 when
matical conditions are called Turing conditions and are
derived using linear stability analysis in the method of tr4 = w(fu+gy,) —4R <0 and

[10]. det A = W?(fugo — fogu) — 2Rw(fu + gv) +4R% > 0.
A. Turing Criterion: Linear Stability These two inequalities constitute the first two Turing
To begin, we rewrite Systeni](5) as conditions for Systend {5).
up = p%AT“ —2Ru+ wf(u, v), ) B. Turing Criterion: Diffusion-Driven Instability
v = %AT’U — 2Rv 4+ wg(u, v), Linearizing System[(6) about.g, vg) gives

where Ay = p2A,. Let (up,vy) be a spatially uniform w; = Dy Ayw — 2Rw + wAw, (8)

steady state of Systern|(5) which remains a steady state

) . L 1 /D 0 . .

in both the presence and absence of diffusion; in othghere D), = = . Consider solutions to Equa-
P” \0

words, tion (8) with form

0= —2RUO + Wf(u(b UO), W(X, t) _ Z Cke)\tYk (X) 7 (9)

0 = —2Rvg + wg(ugp, vo). A
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where Y, are prolate sheroidal harmonics. Sin¥g, they are useful for modeling developmental phenomena
satisfy A Y, = —k%Y}, substituting Equatior{ [9) into involving patterns of genetic chemical gradients. As
Equation [(8) and simplifying gives mentioned in Sectiof |ll, evidence suggests that genes
regulate cortical folding via a chemical gradient, making
Z ¢k (AY ) + Dyk*Y) 4 2RY ) — wAY}) = 0. a Turing system a reasonable choice for a mathematical
F o _ _ model of cortical folding.
For nontrivial solutionsw it must be that;, # 0. It then Recall that the GM grows exponentially over a period
follows that of development during which cortical folds are formed.
Y, = (—DMk2 — 2RI + wA) Yy, Since_ the GM is pr(?(_juc_ed by the SVZ and the S_VZ is
o _ _ o the site of self-amplification of IPCs (a key factor in the
which is an(zther eigenvalue equation. Nontriwabccur IPM), an exponentially growing domain is a reasonable
whendet (A — l)]\/jk‘2 — M) =0, and evaluating this choice for our model.
determinant yields Neurogenesis in humans occurs approximately during
12 ~ embryonic days 43 to 120 [23]. Early in neurogenesis,
A+ A [2 (1+D) - UA] +h(k*) =0,  (10) the cerebral hemispheres are prolate spheroidal in shape,
P with the LVs accounting for almost all of the cerebral

where hemispheres’ volumé [26]. Thus, the LVs at this time of
h(kQ) _ 24 (k:2)2 +det A development are_also prola_te spheroidal in shape, making
a prolate spheroidal domain a reasonable choice for our
k2 model.

- 2 2R(1+ D) = w (fu+ Dgy)]- To fully define our model's Turing system given in

System [(b), we must select reaction kinetics functions
f(u,v), g(u,v). We select nondimensional Barrio-Varea-
Maini (BVM) kinetics [4],

Recalling thatw (X, ) = >, cxeMY}, (X), it follows
that diffusion-driven instability ofug,vg) occurs when
Re (\) > 0. Solving Equation[(1I0) for\ tells us that

Re (M) > 0 when f(u,v) = u+ av — Cuv — uv?,
2R(1+ D)~ w(fu+ Dgy) <0 and glu,0) = bv+ hu + Cuw + uv?,
1+ D)? so that Systen{{5) becomes
R2 4 — (l)) +w2 (fugv_fvgu) nU
us = DAgu — 2Ru + w(u + av — Cuv — uv?),
1
+ Rw [D(1+D)(fu+ng)_2(fu+gv) vy = Agv — 2Rv + w(bv + hu 4+ Cuv + uv?). a1
11

< iz (fu+ D )2 BVM kinetics are phenomenological and are not mod-

4D " o) eled after any particular physical or chemical mecha-
These two inequalities constitute the final two Turingism. Since the underlying mechanism of cortical folding
conditions for Systen{{5). is not fully understood, BVM kinetics are an appropriate

choice for our model.
V. THE MODEL

Our mathematical model of cortical folding utilize<™ Numerical Results
System [(), a Turing reaction-diffusion system on an To observe the patterns produced by System (11), we
exponentially growing prolate spheroidal domain. Weerformed numerical simulations using a forward time,
select an exponentially growing prolate spheroidal deentral space finite difference scheme |[14]. Kinetics
main to represent the LV and use the surface of tip@rameters were selected from the literature and were
domain to represent the SVZ. Patterns generated by &sefollows:
model’s Tunng_ system represe_qt regions of ac'qvatlon D= 05160 =1.112.b = —1.01,C = 0.
and nonactivation for self-amplification of IPCs in the
SVZ; this regional self-amplification of IPCs then leadkitial conditions consisted of random values <
to cortical folds as described by the IPM. [—0.5,0.5] along the domain’s equator; other points on
Since Turing systems were originally created to mod#ie domain were initialized as zero. The random initial
chemical morphogen concentration gradient patternvslues were seeded due to Turing systems’ intrinsic high
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|

Fig. 1. Transient patterns generated by Sysfer (11) Rith 0.009,  Fig. 3. Transient patterns generated by Sysferm (11) Rita 0.045,
w = 150. w = 60.

t=0 t=1

04 02 generating behavior of our growing domain system

0z 0 sharply contrasts with that of a static domain Turing

. . . 0 system, which eventually converges to one final pattern.
o It is therefore clear that the addition of growth to a

Turing system causes a major change in the system’s
pattern-generating behavior. Increasing the valug ofr

w causes Systerh ([L1) to generate a more complex pattern
(more stripes or spots) at a givén(compare Figur¢]1

03 with Figure[2 and compare Figufd 2 with FigJrg 3).
Increasing these parameters also increased the frequency
of transient pattern change; that is, the system evolved
from pattern to pattern more quickly.

0.1

-0.1
-0.2

l
ﬂ

B. Application to Diseases of Cortical Folding

-0.3

0
y X ¥ X

: o S 5
-1 -1 N

1) Polymicrogyria: Polymicrogyria (PMG) is a dis-
Fig. 2. Transient patterns generated by Sysferh (11) Rith 0.045, ©2S€ 01_‘ cortical folding in whit_:h the cortex is excessively
w = 150. folded into many small folds [2]. Common symptoms of
PMG include mental retardation, epilepsy, and develop-
mental delay([2]. Several different forms of PMG are
sensitivity to initial conditions [[29]. Initial interfocal associated with enlarged LVs, such as megalencephaly
distance was chosen to lfg = 2 and domain shape wasPMG with polydactyly and hydrocephalus (MPPH) [7],
fixed by fixing £ at £ = 1.3141, giving a domain with [20], unilateral PMG [[18], and bilateral frontoparietal
initial surface aredr, identical to that of the unit sphere.PMG (BFPP) [[6], [27]. Our model can encapsulate the
Simulations were varied only by altering the growth ratenlargement of LVs by increasing the growth rate
parameterR and the domain scale parameter leading to a larger prolate spheroid (and hence LV) at
System [(I]l) generated transient patterns that camyt¢ > 0. Increasing the growth rat® leads to smaller
stantly evolve from one pattern to another as elapsadd more numerous stripes in the pattern produced by
time ¢ progresses (See Figurg$[]1-3). As these traBystem [(I]l) (see Figufg 2). By interpreting the stripes
sient patterns evolve, the number of stripes or spas locations and sizes of cortical folds (as described in
in the pattern increases with increasingThe pattern- Section[V), this change in size and number of stripes
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represents an increased number of small cortical foldgg] H. Caksen, O. Tuncer, E. Kirimi, J.P. Fryns, A. Uner, O. Unal,

VI. CONCLUSION 1]

We have shown that it is important to consider growth
when constructing a biomathematical model of corticgil?]
folding, as adding growth to our Turing system model of
cortical folding not only makes it more biologically real-
istic but also significantly changes the system’s pattern-
generating behavior. Furthermore, by appropriately altgrs)
ing the domain growth rate, a growing domain Turing
system model of cortical folding can model certain
diseases of cortical folding.

[14]
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