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Abstract—The paper considers the sigmoid func-
tion defined through the hyper–log–logistic model
introduced by Blumberg. We study the Hausdorff
distance of this sigmoid to the Heaviside function,
which characterises the shape of switching from 0
to 1. Estimates of the Hausdorff distance in terms of
the intrinsic growth rate are derived. We construct a
family of recurrence generated sigmoidal functions
based on the hyper–log–logistic function. Numerical
illustrations are provided.
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I. INTRODUCTION

The logistic function belongs to the important
class of smooth sigmoidal functions arising from
population and cell growth models. The logistic
function was introduced by Pierre François Ver-
hulst [1]–[3], who applied it to human population
dynamics. Verhulst proposed his logistic equation
to describe the mechanism of the self-limiting
growth of a biological population.

A number of models have been proposed to pro-
vide growth curve from 0 to 1 (or to some carrying
capacity) of different shape, e.g. Gompertz [4],
Pearl [5], Von Bertalanffy [6], Richards [7], Nelder
[8], Blumberg [9], Turner and al. [10], Schnute
[11], Tsoularis [12], Tsoularis and Wallace [13].

Analysis of continuous growth models in terms
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of generalized logarithm and exponential functions
can be found in [14]. A very good kinetic interpre-
tation of Log–logistic dose–time response curves
is given in [15] (see also [16]).

In artificial neural networks, [17], the sigmoid
functions are used as activation or transfer function
between two states, usually 0 and 1.

In all of their application, the shape of the sig-
moid functions is essential factor determining the
properties of the underlying biological, chemical
or artificial system. An important characteristic
related to the shape of a sigmoid is how far it
deviates from the Heaviside function, also referred
to as step-function, binary switch, or binary ac-
tivation depending on the context. As shown in
[18]-[19], an appropriate measure of this deviation
is the Hausdorff distance of the sigmoid to the
interval Heaviside function. Some approximation
and modelling aspects are discussed in [20]–[23].
In this paper we discuss the Hausdorff distance
of the hyper–log–logistic sigmoid curve to the
interval Heaviside function.

II. THE BLUMBERG HYPER–LOG–LOGISTIC

MODEL

In 1968 Blumberg [9] introduced a modified
Verhulst logistic equation, the so called hyper–log–
logistic equation:

dN(t)

dt
= kNα(1−N)γ , (1)

where k is the rate constant and α and γ are shape
parameters. The equation (1) is consistent with the
Verhulst logistic model when α = γ = 1.

We will consider the following modification
of the hyper–log–logistic equation (1) (see for
instance [12]:

dN(t)

dt
= kN1− 1

β (1−N)1+
1

β (2)

where β is a shape parameter. For β → ∞ the
equation (2) reduces to the Verhulst equation.

The equation (2), in essence, provides para-
metric interpolation between the logistic equation
(β →∞) and second order kinetics (β = 1).

An explicit form of the solution is derived as
follows.

Let the function N(t) be defined by the follow-
ing nonlinear equation:(

N

1−N

) 1

β

= 1 +
kt

β
. (3)

After differentiation of both sides of Eq. (3), we
have

1

β

(
N

1−N

) 1

β
−1 N ′(1−N) +NN ′

(1−N)2
=
k

β
.

From here it follows that

N ′ = kN1− 1

β (1−N)1+
1

β

and, therefore, the function N(t) satisfies the
hyper–log–logistic differential equation (2).

The equation (3) can be rewritten as:

N(t) = 1− 1

1 +
(

1 + kt
β

)β . (4)

Further, we see that

N(0) =
1

2
. (5)

Since equation (2) satisfies the conditions for lo-
cal existence and uniqueness while N > 0, the
function N(t) given in (4) is a unique solution
of equation (2) satisfying the condition (5). The
function is defined on

[
β
k ,+∞

)
. The definition

can be extended in a unique way on the rest of
the t-axis as zero.

III. PRELIMINARIES

As stated in the Introduction, our main interest
is the Hausdorff distance from the hyper–log–
logistic function in (4) to the interval Heaviside
function. We recall here the relevant definitions.

Definition 1. The interval Heaviside function is
defined as [24]:

h(t) =


0, if t < 0,

[0, 1], if t = 0,

1, if t > 0.

(6)
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Definition 2. [28] The one–sided Hausdorff dis-
tance −→ρ (f, g) between two interval functions f, g
on Ω ⊆ R, is the one–sided Hausdorff distance
between their completed graphs F(f) and F(g)
considered as closed subsets of Ω × R. More
precisely,

−→ρ (f, g) = sup
B∈F(g)

inf
A∈F(f)

||A−B||,

where || · || is a norm in R2.

We recall that completed graph of an interval
function f is the closure of the graph of f as a
subset of Ω×R. If the graph of an interval function
f equals F(f), then the f is called S-continuous.
The Hausdorff distance

ρ(f, g) = max{−→ρ (f, g),−→ρ (g, f)}

defines a metric in the set of all S-continuous
interval functions. The topological and algebric
structure of the space of S-continuous functions
and its subspaces is studied in [24]–[27].

In this paper we apply only the concept of the
one–sided Hausdorff distance.

IV. MAIN RESULTS

Our main interest is characterizing the shape of
N as a switching curve from 0 to 1. To this end,
we use as a characteristic the one–sided Hausdorf
distance from N to h as in [19].

The following theorem gives upper and lower
bounds for −→ρ (N,h).

Theorem 3. The one–sided Hausdorff distance
−→ρ (N,h) from the function N given in (4) to
the Heaviside function h given in (6) satisfies the
following inequalities for k > 0:

dl :=
1

2 + k
< −→ρ (N,h) <

1

1 +
√

1 + k
=: dr.

(7)

Proof: First we consider the interval [0,+∞).
Taking into account the sigmoid shape of the
function N(t) in (4), the one–sided Hausdorff
distance from N to the Heaviside function h on
the interval [0,+∞) is a root of the equation

N(t) = 1− t,

or, equivalently,

F (t) :=

(
1 +

kt

β

)β
+ 1− 1

t
= 0. (8)

Clearly, F is an increasing function of t ∈
[0,+∞). Hence, if (8) has a root, then it is unique.
We use the well-known inequalities

1 + α <
(

1 +
α

x

)x
< eα, (9)

where α ∈ R, x > 1 and α + x > 0. Using the
first inequality in (9) we have

F (t) > 1 + kt+ 1− 1

t
=
kt2 + 2t− 1

t

The positive root of the quadratic in the numerator
is

−1 +
√

1 + k

k
=

1

1 +
√
k + 1

= dr.

Then
F (dr) > 0. (10)

Using the second inequality in (9) we have

F (t) < ekt + 1− 1

t
.

Hence,

F (dl) = F

(
1

k + 2

)
< e

k

k+2 + 1− k − 2

< (k + 1)

(
e1−

2

k+2

k + 1
− 1

)
.

For the derivative of

ϕ(k) =
e1−

2

k+2

k + 1
− 1

we have

ϕ′(k)=e1−
2

k+2
2

(k + 2)2
1

k + 1
− 1

(k + 1)2
e1−

2

k+2

=− k2 + 2

(k + 1)2(k + 2)2
e1−

2

k+2 < 0.

Therefore ϕ is a decreasing function of k. Using
that k > 0 we have

F (dl) < (k + 1)ϕ(k) < (k + 1)ϕ(0) = 0. (11)
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Fig. 1. The model (5) for β = 21, k = 20; H–distance = 0.109948, dl = 0.0454545, dr = 0.179129.

Since F is an increasing function, the inequalities
(10) and (11) imply that (8) has a unique root in
the interval (dl, dr).

Secondly, we consider the interval (−∞, 0].
Similarly to the interval [0,+∞), using the shape
of the sigmoid, the Hausdorff distance from N to
h is a root of the equation

N(−θ) = θ,

or, equivalently,

G(θ) :=

(
1− kθ

β

)β
+ 1− 1

1− θ
= 0. (12)

Clearly, G is a decreasing function of θ ∈
[0,min{βk , 1}]. Hence, if (12) has a root, then it is
unique. Using the first inequality in (9) we have

G(θ) > 2− kθ − 1

1− θ
.

Then

G(dl) = G

(
1

k + 2

)
> 2− k

k + 2
− k + 2

k + 1

=
k

(k + 1)(k + 2)
> 0. (13)

Using the second inequality in (9) we have

G(θ) < e−kθ + 1− 1

1− θ
.

Then

G(dr) = G

(
1

1 +
√

1 + k

)
< e−

k

1+
√

1+k + 1− 1 +
√

1 + k√
1 + k

=
1√

1 + k

(√
1 + ke1−

√
1+k − 1

)
(14)

It is easy to see that the function

φ(k) =
√

1 + ke1−
√
1+k − 1

is decreasing. Indeed,

φ′(k)=
1

2
√

1+k
e1−
√
1+k−

√
1 + k

1

2
√

1+k
e1−
√
1+k

=
1

2
√

1+k
e1−
√
1+k(1−

√
1+k) < 0.

Hence, G(dr) in (14) is also e decreasing function
of k. Using that k > 0 we have

G(dr) <
1√
1

(√
1e1−

√
1 − 1

)
= 0. (15)

Since G is a decreasing function of θ, the inequali-
ties (13) and (15) imply that (12) has a unique root
in the interval (dl, dr).

This completes the proof.

The model (4) for β = 21, k = 20 is visualized
on Fig. 1. From the equations (8) and (12) as
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Fig. 2. The model (5) for β = 61, k = 41; H–distance = 0.0660383, dl = 0.0232558, dr = 0.133677.

Fig. 3. Comparison between function V (t) (dashed) and N(t) (red) at fixed k = 20 and β = 21.

well as the inequalities (7) we have: −→ρ (N,h) =
0.109948, dl = 0.0454545, dr = 0.179129.

The model (4) for β = 61, k = 41 is visualized
on Fig. 2.

The estimates (7) of the one–sided Hausdorff
distance of the Blumberg sigmoidal function to the
Heaviside function, match those obtained for the
Vehulst sigmoidal function. This should not sur-
prise us. We already mentioned that the equation
(2) is consistent with the Verhulst logistic model
when β → +∞. As it is known, the Verhulst
logistic function is of the form

V (t) =
1

1 + e−kt
.

A comparison between function V (t) and N(t) at
fixed k = 20 and β = 21 is shown in Fig. 3.

The Hausdorff distance from the Verhulst func-
tion to the interval Heaviside function by is studied
in detail in [19], [24]. Specifically, in the article
[19], one may find more accurate estimates.

The hyper–log–logistic function can be used to
recurrently generate a family of sigmoidal func-
tion:

Ni+1(t) = 1− 1

1+
(

1+ k
β

(
t− 1

2 +Ni(t)
))β , (16)

i = 0, 1, 2, . . . ,

with

Ni+1(α) =
1

2
, i = 0, 1, 2, . . . , (17)

where N0(t) = N(t) – the function given in
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Fig. 4. The recurrence generated sigmoidal hyper–log–logistic functions: N0(t) (red); d0 = 0.21821, N1(t) (green);
d1 = 0.134208, N2(t) (dashed); d2 = 0.095564 and N3(t) (thick); d3 = 0.0749788.

(4). We refer to this family shortly as recurrence
generated sigmoidal hyper–log–logistic functions.

The recurrence generated sigmoidal hyper–log–
logistic functions: N0(t), N1(t), N2(t) and N3(t)
for k = 4 and β = 21 are visualized on Fig. 4. This
type of family of functions can find application in
the field of debugging and test theory [39]–[40].
Further, the results can be of interest to specialists
working in the field of constructive approximation
by superposition of sigmoidal functions [29]–[38].

V. CONCLUSIONS

In the areas of population dynamics, chemical
kinetics or neural networks it is important to study
the shape of the involved sigmoidal curve, since
it relates to the fundamental properties of the
respective system. In order to study the shape
usually the curve is divided into lag phase, growth
phase and saturation phase, [41]. These are defined
in different ways in the literature, but in essence
in the lag phase and in the saturation phase there
is little or no growth, while most of the growth
occurs in the growth phase. Hence the latter one
is also called exponential phase. In [19] the Haus-
dorff distance to the interval Heaviside function is
considered as a rigorously defined characteristic of

the shape. One may consider that the points, where
the value of the one–sided Hausdorff distance is
attained, are precisely the points dividing the curve
into the three mentioned segments. Then, the time-
length of the growth phase is exactly twice the
value of this distance.

In this paper we study the properties of the
hyper-log-logistic curve produced by the Blum-
berg model through the one–sided Hausdorff dis-
tance of this curve to the interval Heaviside func-
tion. Lower and upper estimates of this distance
are derived in terms of the intrinsic growth param-
eter and some possible applications are discussed.
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