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Abstract—We develop a stochastic model for an
intracellular active transport problem. Our aims are
to calculate the probability that a molecular motor
reaches a hidden target, to study what influences
this probability and to calculate the time required
for the molecular motor to hit the target (Mean
First Passage Time). We study different biologically
relevant scenarios, which include the possibility of
multiple hidden targets (which breed competition)
and the presence of obstacles. The purpose of
including obstacles is to illustrate actual disruptions
of the intracellular transport (which can result,
for example, in several neurological disorders [11]).
From a mathematical point of view, the intracellular
active transport is modelled by two independent
continuous-time, discrete space Markov chains: one
for the dynamics of the molecular motor in the
space intervals and one for the domain of target.
The process is time homogeneous and independent
of the position of the molecular motor.

Keywords-intermittent search; intracellular active
transport; Markov process

I. INTRODUCTION

The numerous applications of intermittent
search problems give way to complex mathe-
matical models. From the behavior of foraging
animals ([17], [19], [20]), to search and rescue
operations ([12]) to active cell transport ([3], [4],
[5], [6], [7], [8], [9], [15]), the stochastic nature
of some processes fit perfectly in the framework
of intermittent search strategies.

This study is related to intracellular transport,
which is the directed movement of substances
within a cell. Microtubules (microscopic hollow
tubes) and microfilaments constitute a part of a
cell’s cytoskeleton. These represent the roads in
intracellular transport.

An important element in vesicle transport is
motor proteins. These proteins bind to vesicles
and organelles and move them along the mi-
crotubule or microfilament network. The motor
proteins which move vesicles along microtubules
are called kinesins and dyneins, and those which
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Fig. 1. Schematic presentation of the model system with one target domain.

move vesicles along microfilaments belong to the
myosin family.

Issues with intracellular transport can have se-
rious consequences. They have been linked to
neurological disorders such as Alzheimers disease
([11], [21]).

In the field of molecular biology, such models
were designed to describe active transport of re-
active chemicals in cells ([15]), promoter protein
searching for a specific target site on DNA ([7],
[9]), transport of mRNA ([8]).

Depending on the context of the activity which
is being modeled, one can consider a one dimen-
sional case, which means that the movement only
occurs from left to right or vice-versa ([4]), or
a higher dimensional case (two dimensional or
three dimensional), where the movement is less
restricted ([5]).

The intermittent motions that occur at the mi-
croscopic level of reaction kinetics within bio-
logical cells are modelled in a one-dimensional
framework. Previous models were based on the
assumptions that the search begins from a random
point within a specified interval and that the target
is reached upon entering the target interval ([3],
[6], [15]). Also, many of the studies regarding
intermittent search problems in microbiology con-
sider bidirectional transport and the condition that
the target can be reached from a specified type of
movement - ballistic (anterograde, with constant
velocity) or during a diffusive phase ([8], [16], [2],
[13], [10], [18]).

Unlike the previous studies, in our research,
the unidirectional active transport is modelled by
two independent continuous-time, discrete space
Markov chains: one for the dynamics of the molec-
ular motor in the space intervals (outside the target

domain) and one for the domain of target. The
novelty of our study consists of considering two
types of motions inside and outside the target
domain: a brownian motion (from which the target
can be reached) and a state of active motor-driven
transport along microtubules or microfilaments.
We also consider an imperfect detection of the
target, the scenario of multiple targets (competi-
tivity) and the presence of obstacles. A stochastic
algorithm was also developed.

For each scenario we calculate the probability
that a molecular motor reaches the target and cal-
culate the time required for the molecular motor to
hit the target (Mean First Passage Time - MFPT).

II. INTRACELLULAR TRANSPORT PROBLEM −
ONE TARGET DOMAIN

A. General framework for one target domain

Consider a single motor-driven particle moving
along a one-dimensional path of length L (uni-
directional or anterograde movement). A ”hidden
target” is located at a fixed (known) location on the
path. The term ”hidden” means that the molecular
motor may detect the target only when it enters
into the target domain which lies fully within the
interval I = [0, L], i.e., there is some positive
constant ε > 0 for which (a− ε, a+ ε) ⊂ I .

The mathematical framework for our stochastic
model is based on the following general assump-
tions:
A1. For the molecular motor we consider two

movement regimes, denoted by:
• ”u” - uniform one-dimensional move-

ment with velocity v > 0;
• ”b” - one-dimensional Brownian motion

(modeled as Continuous Time Random
Walk).
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A2. The particle motion is subjected to random
decision moments which, independent from
the time points, could change between the
movement regimes;

A3. The detection of the target (the searcher is
”absorbed” by the target) can be done only
from Brownian motion, in the interval (a −
ε, a+ε) ⊂ I , and may take place with a given
probability p (we consider an ”imperfect de-
tection” there is always a possibility that the
target remains undetected);

A4. The first movement regime (at time t0 = 0)
is the uniform one;

A5. There is a finite time of observation [0, T ] (the
particle is absorbed by the target, leaves the
path though the right point or the observation
time elapses).

B. Choosing and changing the movement regime

We consider a homogeneous finite Markov
chain 1 with the state space S = {u, b, d}, where
u and b represent the movement regimes of the
molecular motor and d is the absorbing state (the
target is reached, the searcher remains in state d
with probability one); We shall denote the cardinal
of the set S by card(S) ;

For the time interval [0, T ], we consider a di-
vision 0 = t0 < t1 < ... < tn = T (the points
t1, ..., tn−1 and the number n of the division points
are random, see below the connection with the
holding time). At t1, ..., tn−1 the particle proba-
bilistically ”decides” (independent from the time
points) if it remains in the previous movement
regime or if it changes to the other regime (except
from state d). If the state d is not reached by
tn = T , we shall consider that the detection of
the target failed.

The n -step trajectory of the Markov chain is
s0, s1, ..., sn−1, where sk ∈ S is the state for the
time interval (tk, tk+1], k = 1, n− 1.

The state holding time is denoted by T (k) =
tk+1− tk, for k = 1, n− 1 (a random exponential

1For details regarding the theory of Markov chains, rela-
tions between the probability matrix, rate transition matrix
and holding times, see for example [14]

variable with parameter λ). The value of the pa-
rameter is connected to the values of the diagonal
elements of the rate transition matrix Q (known):

Q = (qij)i,j=1,card(S) ,

with qii = −
card(S)∑
j=1
i 6=j

qij , with λ ≥ |qii|, for any

i ∈ 1, card(S) .
The transition probability matrix is:

P = (pij)i,j=1,card(S)

and the connection between the transition proba-
bilities, the parameter λ and the transition rates is:

pij =
qij
λ
, i, j = 1, card(S), i 6= j

pii =
qii + λ

λ
, i, j = 1, card(S)

(1)

C. The movement of the molecular motor

The molecular motor will move with sk regime
on the interval (tk, tk+1], and we have two possi-
bilities:

First, if sk = u, the space position (the net
displacement) of the ”searcher” is a continuous
function of time and it is obtained by integrating
the velocity function, as a function of time:

x(tk+1) = x(tk) +

tk+1∫
tk

v dt (2)

Alternatively, if sk = b, the time interval
(tk, tk+1] is divided into a sequence of times
τ0, τ1, ..., τm (with τ0 = tk and τm = tk+1); then,
for any fixed τi, i = 1,m, the space position (the
net displacement) of the ”searcher” is given by:

x(τi) = x(τi−1) +
√
τi − τi−1yi, (3)

where yi are values of a standard normal (Gaus-
sian) random variable, Y ∈ N(0, 1).
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D. The general stochastic algorithm for one target
domain

For the stochastic algorithm, we consider the
necessary input parameters: L, T , a, ε, δτ , p, λ
and the rate transition matrix Q = (qij)i,j=1,2. In
what follows, we briefly outline the steps of the
algorithm.

Step 0: We construct the transition probability
matrix P = (pij)i,j=1,2, according to (1), for a
fixed value of λ.

Step 1: The particle enters the path and is mov-
ing in the space interval I1 = [0, a−ε]. According
to the general assumption A4., at t0 = 0 we have
s0 = u and x(0) = 0 (the space position of the
molecular motor). The holding time in states0 = u
is generated using the Integral Inversion Theorem2

([1]):

T (0) = − 1

λ
ln(µ),

where µ is a value of the random variable U ∈
Unif(0, 1).

During this time, the particle is moving uni-
formly with the constant speed v along the path.
After this time elapses, the new state is chosen
(u with the probability p11 or b with probability
p12; a Monte-Carlo discrete sequence is used). The
position of the particle after its exits from the state
u is calculated according to (2).

Step 2: While x(tk) ≤ a − ε, with k > 0:
leftmargin=*
• Randomly select the new state, using the cor-

responding row of the probability transition
matrix P ;

• Generate the sojourn time in the current

state,T (0) = − 1

λ
ln(µ);

• If the new state is u, see Step 1;
• If the new state is b, generate a value y from a

standard normal (Gaussian) random variable,
Y ∈ N(0, 1) ; Generate a sequence of equal
step times τ0, τ1, ..., τm (within the sojourn
time T (k)), with τ0 = tk and τm = tk+1;

2In [1] is called by the author Quantile function Theo-
rem and is also known simply as the Inversion Method or
”Smirnov Transform”.

during each time step δτ = τi+1 − τi, i =
1,m, the particle is moving in one dimension,
according to (3);

• Update the new position of the particle and
the time.

Step 3: The particle is moving in the target
domain, interval I2 = (a− ε, a+ ε) ⊂ [0, L]. The
first state in this interval is corresponding to the
last ”new” state from Step 2. in order to include
the new possible state d (the absorbing state), we
construct the new transition probability matrix:

P ∗ =

 p∗11 p∗12 0
p∗21 p∗22 p∗23
0 0 1

 .

The values of the new transition probabilities
can be completely different from the values in
Step 1 or can be different just in the second row
(p21 = p∗21 and p22 = p∗22+p

∗
23, for example); The

detection of the target may take place with a given
probability p = p∗23; As long as a − ε < x(tk) <
a+ ε, with k > 0: leftmargin=*
• If the state d is not reached, see Step 2 (with

the matrix P ∗ instead of P );
• If the state d is reached, the algorithm stops

and the time and position of the particle are
recorded;

• If the time elapsed, the algorithm stops and
the fact that the target was not reached is
recorded.

Step 4: The particle is moving in the space
interval I3 = [a+ε, L]. If the state d is not reached
in Step 3 and the time has not elapsed, the motion
of the molecular motor is simulated as in Step 2.
leftmargin=*
• If the molecular motor re-enters the target

interval from state b, go to Step 3;
• The algorithm stops when the particle reaches

the end of the path, L, or the time has elapsed;
the fact that the target was not reached is
recorded.

Remark. The algorithm can be easily adapted for
the case of different holding times for the states u
and b (in the sequence where the holding time is
generated, two different values, λ1 and λ2 should
be used).
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Fig. 2. Schematic presentation of the model system with two targets domain.

E. General settings for the simulations

Depending on the domain of interest, an inter-
mittent search strategy has its own natural mech-
anism. The use of the algorithm in biology, for
example, requires some conditions to be met.

Thus, the net displacement of the particle in
the state u always exceeds the maximum net
displacement of the particle during the Brownian
motion state b:

x(tk+1)− x(tk) ≥ max (x(τk+1)− x(τk))

Also, the length of the target domain has to be
proportional to the maximum net displacement of
the particle during the Brownian motion state. For
our simulations, we consider:

2ε ' 10−3max (x(τk+1)− x(τk))

To ensure the adaptability and flexibility of
the algorithm, space and time are measured in
arbitrary units;

III. INTRACELLULAR TRANSPORT PROBLEM −
TWO TARGET DOMAINS (COMPETITIVITY)

We shall consider the same general framework
as in the ”one target domain” case, but with two
”hidden targets”, located at two fixed but unknown
locations on the path, denoted by a and b. The
target domains are (a − ε1, a + ε1) ⊂ I and
(b − ε2, b + ε2) ⊂ I , for some positive constants
ε1, ε2 > 0 and the ”competitivity” is modelled
within the overlapping target interval I4. If the
molecular motor is in any of the non-overlapping
target domains I2 or I3, it can be absorbed with
two different given probabilities p1 and p2 (we
consider an ”imperfect detection”).

The general assumptions A1. − A5. are valid
and the state spaces and the transition probability
matrices for the Markov chains are different for
each interval.

For intervals I1 and I5, the state space is S =
{u, b} and the transition probability matrix is

P1 =

(
p11 p12
p21 p22

)
.

For intervals I2 and I3, the state spaces are
S = {u, b, d1} or S = {u, b, d2} and the transition
probability matrix is

P2 =

 p11 p12 0
p∗21 p∗22 p∗23
0 0 1

 .

In this case we left the values for the transition
probabilities unchanged from state u (the first
row). We consider the same regime of absorption
for both targets (the probability of absorption is
p1 = p2 = p∗23). If there is some relevant bio-
logical reason for considering different absorption
rates, p1 6= p2, we should consider two different
transition probability matrices of type P2.

For interval I4, the state space is S =
{u, b, d1, d2} and the transition probability matrix
is

P3 =


p11 p12 0 0
p∗∗21 p∗∗22 p∗∗23 p∗∗24
0 0 1 0
0 0 0 1

 .

In this case, the absorption probabilities are
p1 = p∗∗23 and p2 = p∗∗24. These probabilities can
be considered equal or different, depending on the
biological model.

Biomath 7 (2018), 1812047, http://dx.doi.org/10.11145/j.biomath.2018.12.047 Page 5 of 9

http://dx.doi.org/10.11145/j.biomath.2018.12.047


Raluca Purnichescu-Purtan, Irina Badralexi, A stochastic model for intracellular active transport

Fig. 3. Schematic presentation of the model system with one target domain and one obstacle.

IV. INTRACELLULAR TRANSPORT PROBLEM −
ONE TARGET DOMAIN IN THE PRESENCE OF ONE

OBSTACLE

We shall consider the general framework of the
”one target domain” case, including an ”obstacle”
particle, with a fixed but unknown location on
the path, denoted c, with an obstacle interval
(c − ε2, c + ε2) ⊂ I , for some positive constant
ε2 > 0. We shall assume that the obstacle domain
is located on the path before the target domain
(a − ε1, a + ε1) ⊂ I (or after the target domain,
according to a biologically relevant scenario).

We consider that the molecular motor can hit the
obstacle only from Brownian motion and the result
of ”collision” may result in retrograde uniform
movement (or other biologically relevant move-
ment could be considered); The general assump-
tions A2.−A5. are valid. A1. should be modified
as follows:
A1∗. For the molecular motor we consider three
movement regimes, denoted by:

• ”u1” - uniform one-dimensional movement
with velocity v1 > 0 (anterograde);

• ”b” - one-dimensional Brownian motion;
• ”u2” - uniform one-dimensional movement

with velocity −v2 < 0 (retrograde);

For intervals I1, I3 and I5, the state space is
S = {u1, b} and the transition probability matrix
is:

P1 =

(
p11 p12
p21 p22

)
.

For interval I2, the state space is S = {u1, b, u2}
and the transition probability matrix is:

P2 =

 p11 p12 0
p∗21 p∗22 p∗23
p31 p32 0

 .

In this case, we left the values for the transition
probabilities from state u1 unchanged and we con-
sider that from the retrograde uniform movement,
the molecular motor can reach only the states u1
or b.

For interval I4, the state space is S = {u1, b, d}
and the transition probability matrix is:

P3 =

 p11 p12 0
p∗∗21 p∗∗22 p∗∗23
0 0 1

 .

V. NUMERICAL SIMULATIONS

Numerical simulations were conducted only in
the case of one target domain and that of two
target domains. Simulations for the movement of
the molecular motor in the presence of obstacles,
complete with interpretations and discussions in
relevant biological situations, will be addressed in
future work.

A. One target domain

For the numerical simulations, we considered
the input data: v = 1, L = 10, T = 50, λ = 7,
δτ = 0.001, p = 0.5714,

P1 =

(
0.2857 0.7143
0.1429 0.8571

)

P2 =

 0.2857 0.7143 0
0.1429 0.2857 0.5714

0 0 1


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Target domain(a− ε, a+ ε) ⊂ [0, 10]
(0.9975,1.0025) (1.4975,1.5025) (1.9975,2.0025) · · · (8.9975,9.0025)

Hitting prob-
ability

0.723 0.697 0.717 · · · 0.708

MFPT 1.4778 2.2873 2.8245 · · · 14.8667

TABLE I
The hitting probability and the MFPT depending on the position of the target domain.

Velocity for the uniform movement
v = 1 v = 0.75 v = 0.5 v = 0.25 v = 0.1 v = 0.05

Hitting proba-
bility

0.185 0.195 0.222 0.239 0.251 0.257

MFPT 14.506 16.245 18.717 22.062 24.981 25.673

TABLE II
THE HITTING PROBABILITY AND THE MFPT DEPENDING ON THE POSITION OF THE VELOCITY OF THE UNIFORM

MOVEMENT.

We are first interested in the variation of the
hitting probability and the MFPT due to the dif-
ferent location of the target domain. We choose
the first position of a (center of the target domain)
at a = 1 and ”move it” with 0.5 units until the
position a = 9. For every situation, ε = 0.0025
and N = 10000 runs.

We notice that there are no significant variations
of the hitting probability due to a different location
of the target, as long as the other parameters
are fixed. However, the MFPT increases (linearly)
with the distance from 0 to the target domain. (see
Table 1)

Next, we focus on the variation of the hitting
probability and the MFPT due to the different
velocities of the uniform movement.

Because the position of the target domain has
no influence on the hitting probability, we choose
the target domain (a− ε, a+ ε) = (2.995, 3).

As expected, both the hitting probability and
the MFPT increase as the velocity of the uniform
movement decreases (see Table 2).

B. Competitive targets

For the numerical simulations, we considered
the input data: v = 1; L = 8; λ = 7, δτ = 0.001,
ε1 = 0.1, ε2 = 0.12, N = 10000 runs. We

positioned target a at the space point 6.1 and target
b at 6.18.

For the intervals [0,6) and (6.3,8], the computed
transition probability matrix is:

P1 =

(
0.2857 0.7143
0.1429 0.8571

)
.

For the target domains (6,6.2) and (6.06,6.3),
the computed transition probability matrices are:

P2 = P3 =

 0.2857 0.7143 0
0.2857 0.1429 0.5714

0 0 1

 ,

therefore, the absorbtion probabilities are equal,
p1 = p2 = 0.5714.

For the ”competitive” domain (6.06,6.2), the
computed transition probability matrix is:

P4 =


0.2857 0.7143 0 0
0.2857 0.1429 0.2857 0.2857

0 0 1 0
0 0 0 1

 .

We focused on comparing the hitting probabili-
ties and the MFPT for the two targets, taking into
account our simulation settings.

We observe that, for equal absorbtion probabil-
ities, the location of the target is important (target
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Target a Target b
Hitting probability 0.405 0.335

MFPT 24.935 25.162

TABLE III
The hitting probability and the MFPT in a two target

domain.

a - which is closer to the starting point - has a
greater hitting probability than target b - which
is further from the starting point). Likewise, our
simulations show that the MFPT is related to the
location of the target. (see Table 3)

Remark. In both scenarios, regardless of the other
input data, if the ratio between the probability
of entering in the state b and the probability
of entering in the state u (at a time point) is
less or equal to one (in the transition probability
matrices), then the probability of hitting the target
is close to 0 (the search is inefficient).

VI. CONCLUSION AND FUTURE WORK

We develop and analyze a stochastic model of
directed intermittent search for a hidden target on
a one-dimensional path within the framework of
continuous time, discrete state Markov chain. In
order to gain flexibility and adaptability to differ-
ent relevant biological situations, we modelled the
stochastic movement of the molecular motor in the
target domain with a different Markov chain and
we have also considered the possibility of different
holding times for the Markov processes involved.

In the Markov chain approach, we chose to
define the transition probabilities using the tran-
sition rates and the holding times. This can be
of great interest from a modelling point of view:
one can compare the dynamics of the process
under two different hypothesis: first, considering
that the holding times in the distinct states are
different (exponential random variables with dif-
ferent parameters λ) and second, using the same
exponential distribution for all holding times (with
a single parameter λ).

The novelty of our work consists of the frame-
work formulated for three realistic situations for

a molecular motor to reach its target. This target
lies in a target domain (once the particle reaches
this domain, it is ”absorbed” by the target with a
known probability).

The first of the situations describes the move-
ment of the molecular motor in search of a single
target. For the second one, we considered one
molecular motor particle which can be absorbed
by two different targets (which are seen in com-
petition). The third one introduces the search of
one target in the presence of one obstacle (in this
case, only the theoretical approach is presented;
a more detailed study will be conducted in future
work).

For our framework, we considered two main
types of movement: a uniform movement with
constant velocity and a brownian motion. In the
case of an obstacle, one more movement is in-
troduced: a retrograde uniform movement with
constant velocity.

We developed a highly adaptable and flexible
algorithm for the study of all three situations of
intermittent search introduced. The main output
of the algorithm is the hitting probability and the
MFPT.

The proposed algorithm allows for imperfect
detection of the target in its domain, which can
be easily converted in a unit probability - perfect
detection - according to different biologically rel-
evant assumptions.

In the case of competitive targets, multiple sce-
narios can be configured through the modification
of the ratio between the probabilities of absorption,
the imperfect detection or the distinct holding
times. This flexibility can lead to determining
the parameters which significantly influence the
hitting probability and the MFPT.

There are many interesting connections to be
made between the input parameters of the model
and the output, depending on the biological data
available and this will be our purpose in a future
work. We will also give attention to a combination
of multiple obstacles and multiple targets, in a
relevant biological context, based on the stochastic
algorithm presented in this paper.
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