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Abstract—The toxicokinetic and toxicodynamic
models (TK-TD) are very well-known for their abil-
ity, at both the individual and the population level,
to accurately describe life cycles such as the growth,
reproduction and survival of sentinel organisms un-
der the influence of an ecological biomarker. Being
dynamics, the consistent inference of life history and
environmental traits parameters that engender them
is sometimes very complex numerically, especially
as these parameters vary from one individual to
another. In this paper, we estimate the parameters
of a survival model TK-TD already applied and
validated by the implementation of the R package
GUTS (the General Unified Threshold Model of

Survival) by another coding applied to another very
recent implementation of Bayesian inference with
the R package deBInfer in order to evaluate the
survival effects of our ecotoxicological biomarker
called Deltamethrin on our Daphnia sample. The
study allowed us to evaluate from a population point
of view especially the threshold concentration not to
be exceeded to observe a survival effect commonly
known NEC (No effect Concentration) and possibly
determine the correlations between different vari-
ables of life history and the environment traits.
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I. INTRODUCTION

Statistical methods for the analysis of survival
data have continued to flourish over the last two
decades [7], [31]. Since then, there have been
many publications that deal with this hot topic
in various fields such as medicine [13], [19],
[34], epidemiology [8], [21], criminology [7], [23],
business reliability research [11], [29], [35], and
the social and behavioral sciences [25], [27], [31],
[36]. They are intensively used in biology partic-
ulary ecotoxicology as in [4], [6], [12], [15], [16],
[24], [32], pharmacology and medical research
globally for example in [5], [26], [33].

The simulation of the temporal evolution of
processes leading to toxic effects on organisms
is the major role of the use of toxicokinetic-
toxicodynamic models (TK-TD models) [17].
There is a diversity of TK-TD models for mod-
eling seemingly simple survival according to the
underlying assumptions (individual tolerance or
stochastic death, speed of toxicodynamic dam-
age recovery, threshold distribution). The General
Unified Threshold Model for Survival (GUTS) is
the more general survival TK-TD model from
which a wide range of existing models can be
inferred as special cases [17]. It has special cases
of very appropriate model that can be adjusted
to the survival data. As a result, it is actively
contributing to increasing its application in eco-
toxicology research as well as in the assessment
of environmental risks related to chemicals.

However, it is known that in toxicokinetics
and pharmacokinetics the evolution of xenobiotics
(toxic or therapeutic) in a living organism is qual-
itative and quantitative. By means of a realistic
description (ie anatomical, physiological and bio-
chemical) of the absorption processes (inhalation,
skin contact, ingestion or intravenous injection),
distribution, metabolism and excretion (ADME
process), the mechanistic models , which will
result, allow the understanding and the simulation
of this evolution of the dose of a substance in the
various organs and fluids of the body [9]. The
action of the organism on the substance defines
the toxicokinetics (TK) whereas the opposite effect

translates the toxicodynamics (TD). The equations
that govern them are differential equations.

To answer why some individuals survive after
exposure of chemicals while others die, Ashauer
and al., 2015 [2] established the General Unified
Threshold Model of Survival (GUTS), a mathe-
matical relationship. In GUTS, there is two as-
sumptions: the threshold of tolerance is individ-
ually distributed and that its overcoming causes
sudden death among the individuals of a popu-
lation and the existence of a certain threshold,
above which death occurs stochastically, which
all people share. As a result, GUTS appeared
to be a promising development in the analysis
of traditional survival curves and dose-response
models.

Recently, Roman Ashauer and al., 2017 [3]
treated the paradigm ”dose is poison”. They illus-
trated that it is not only the dose that makes the
poison but also the sequence of exposure taking
into account the toxicokinetic recovery assump-
tions (the lack of effect that once a chemical
is removed from organism) and toxicodynamic
recovery (the neglect of the other homeostasis
recovery process may be rapid or slow depending
on the chemical). To do this, they tested four toxic
substances acting on different targets (diazinon,
propiconazole, 4,6-dinitro-o-cresol, 4-nitrobenzyl
chloride) on the freshwater crustacean Gammarus
pulex.

In this study, special consideration is given to
the application of Bayesian inference to the eval-
uation of the effects of Deltamethrin (a pesticide)
on a toxicokinetic and toxicodynamic (TK-TD)
survival model. Bayesian inference can be a very
sophisticated tool for survival data analysis. It is
well known for its ability to process data of any
sample size, especially small samples as opposed
to conventional methods.

Many statistical methods are currently too com-
plex to be fitted using classical statistical methods,
but they can be fitted using Bayesian computa-
tional methods [14], [23], [28]. However, it may be
reassuring that, in many cases, Bayesian inference
gives answers that numerically closely match those
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obtained by classical methods.
In this article, it is mainly to use, from another

angle, a new approach to very recent Bayesian
implementation [30] allowing the inference of pa-
rameters of the model TK-TD GUTS applicable to
the adjustment of our survival data collected at the
Interdisciplinary Laboratory of Continental Envi-
ronments (LIEC). It is a very rigorous methodol-
ogy insofar as it makes it possible to detect the
different relations that can exist between the ob-
servable quantities of the unobservable quantities,
the states and the parameters of the model. Simple
to implement, it requires a differential equation
TK-TD or DEBtox model, experimental data for
the calculation of the likelihood on these data and
a prior distribution assumption. A Markov Chain
Monte Carlo procedure (MCMC) describes these
inputs to estimate the posterior distributions of
the parameters and any derived error variables,
including model trajectories. This approach is
designed with a MCMC diagnosis of inference,
the visualization of posterior distributions of the
parameters and trajectories of the model used.
This manuscript assesses the long-term survival
effects of a toxic substance (a pesticide) called
Deltamethrin via the use of the highly reputable
GUTS model for assessing the survival of living
organisms under stressors such as toxic or pharma-
ceuticals. The plan adopted for the organization of
this article is as follows: in the second section (II),
we explain the experimental protocol established
in the laboratory and present the model TK-TD
GUTS used to translate our experimental protocol.
In the third section (III), we discuss the results of
the Bayesian analysis. We end in section (IV) with
a conclusion and discussion.

II. MATERIALS AND METHODS

A. Organism test

One of the three most widely used biological
models for the ecotoxicological risk assessment of
toxic substances, Daphnia is a major invertebrate
of freshwater aquatic ecosystems. The experiments
were conducted with clone A of Daphnia magna
Straus 1820 (identified by Professor Calow, Uni-

versity of Sheffield, United Kingdom). They are
more than 40 years old at LIEC (University of
Lorraine, France) [38]. Parthenogenetic cultures
were carried out in 1L aquaria with LCV medium:
a mixture (20/80) of LefevreCzarda (LC) medium
and French mineral water called Volvic (V). This
medium is supplemented with i) Ca and Mg in
order to obtain a total hardness of 250 mg.L−1

and a Ca/Mg molar ratio of 4/1, and ii) a mix-
ture of vitamins (0.1 mL.L−1) containing thiamine
HCl (750 mg.L−1), vitamin B12 (10 mg.L−1) and
biotin (7.5 mg.L−1). Parthenogenetic cultures of
daphnids were maintained under a temperature of
20◦C, a photoperiod of 16− 8 h lightdark and
at a density of 40 organism per liter of culture
medium. The Daphnia medium was renewed at
least three times weekly and daphnids were fed
with a mixture of three algal species (5×106 Pseu-
dokirchneriella subcapitata, 2.5 × 106 Desmod-
esmus subspicatus, and 2.5× 106 Chlorella vul-
garis/Daphnia/day). These algae were also contin-
uously cultivated in the laboratory using a nutrient
LC medium.

B. Test chemical

Intensely used in agriculture, Deltamethrin is
a class II pyrethroid insecticide that is harmful
to freshwater ecosystems, especially the clado-
ceran Daphnia magna (Straus 1820) [37], [38].
The Deltamethrin (C22H19Br2NO3) used in the
experiments is the technical active substance of the
formulation DECIS EC25 (25 g.L1) commercial-
ized by Bayer (Germany). Stock solutions were
prepared by dissolving the toxicant in acetone
immediately prior to each experiment.

C. Data sample

The experimental protocol was carried out dur-
ing 21 days of observation. Without the control,
five different doses of Deltamethrin (9, 20, 40, 80
and 160 ng.L-1, respectively) were administered
to Daphnia magna, with a replicate of 10 for each
dose submitted. The survivor count has allowed us
to summarize our data sample in the table I.
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TABLE I
CHRONIC TEST SUMMARY TABLE (21 DAYS) OF

DELTAMETHRIN EFFECTS SURVIVAL.

Time (day) mean ± standard deviation (SD)
of the survivors number during 21 days

Control 10±0
9 ng.L−1 9.667±0.913

20 ng.L−1 9.619±0.921
40 ng.L−1 9.429±1.121
80 ng.L−1 9.333±1.238
160 ng.L−1 8±1.761

D. Model Used

GUTS is part of mathematical modeling to
quantify the temporal evolution of the survival of
an organism population, statistically speaking. It is
highly reputed for its ability to assess a population
survival effects due to a chemical stressor presence
(toxicity in other words) responsible for the indi-
viduals mortality in this population. Indeed, the
toxicokinetic model criterion is explained by the
fact that the ingested chemicals will affect a target
site within the body before exerting a toxic effect
thus causing damage over time. All TK-TD models
including a damage state use either the assumption
of individual tolerance or SD hypothesis (ie the
existence of a single threshold not to be exceeded
for all individuals). The modeling assumptions
are not the same, it is obviously clear that the
results and interpretations that will follow will
differ thereafter. Let us not forget that the term
”hazard” and specific terms of parametrization of
the different models (such as killing rate, recovery
rate constant or elimination rate constant) will be
misinterpreted in both cases [17]. But GUTS was
designed to overcome these confusions because
playing a unifying role that merges different con-
cepts of existing models. GUTS is a synthesis of
all these models by mixing the aforementioned hy-
potheses. More complete documentation of GUTS
formulation hypotheses can be found in [17]. For
all these reasons, we take the GUTS model to
adopt it to our survival data study. As in [1], the
GUTS model considered is as follows: (1).

Ḋ(t) = ke

(
C(t)−D(t)

)
, (1)

Where C(t) represent the toxic dose subjected
linearly causing the time course of damage D(t).
The dominant rate constant denoted ke (in days−1

units) models the slowest process inducing the
recovery of the exposed organism. In fact, the
more slow the recovery in the individual, the
more vulnerable he is to the damage. Note that
in the body, there are systematically compensation
mechanisms and damage repair. The assumption
made in this GUTS model is that damage noted
D(t) (′′damage′′) is considered to be the same
for all individuals while knowing that once we
exceed a certain threshold. The death considered
at individual level as a stochastic event will occur
and whose probability increases linearly with the
damage. At the population level, this threshold
is assumed to vary stochastically over the whole
population. The hazard rate hz(t) (days−1) for
individual with threshold z or NEC (No-Effect
Concentration) in equation (2) below represents
the ”instantaneous probability to die” at individual
level. The NEC define the concentration threshold
not to be exceeded in the body, an amount that
we would like to estimate on average. Once it is
reached, it affects the health of the living organism.

hz(t) = kk max
(

0,D(t)−NEC
)
+hb, (2)

where the proportionality constant kk (in
ng.L−1.days−1 units) is well known called
killing rate and hb (in days−1 units) is the
background mortality rate, that is, the control
mortality rate, which is assumed to be constant
over time [days−1]. The equation (3) expresses
the probability S(t) that an individual of the
population considered will survive until time t
conditionally at the threshold z or NEC.

Ṡz(t) =−hz(t)Sz(t), (3)

Additional information on GUTS model modeling
assumptions can be found on [1], [2], [3], [17].

E. Statistical method

In contrast to visual estimation methods, which
are often considered biased and not robust,
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TABLE II
SURVIVAL MODEL PARAMETERS INFERENCE.

Parameter Symbol Units Prior distribution Initial value
Elimination rate ke days−1 G (1;1) 1 0.001
Killing rate kk ng.L−1.days−1 G (1; 1

4 )
1 0.015

Threshold for effects NEC ng.L−1 G (6;1) 1 1.5
Background hazard rate hb days−1 B(0.1;0.15) 2 0.001
Control correction ec1 [−] L N (0;1) 3 0.005
9 ng.L−1 correction ec2 [−] L N (0;1) 3 0.005
20 ng.L−1 correction ec3 [−] L N (0;1) 3 0.005
40 ng.L−1 correction ec4 [−] L N (0;1) 3 0.005
80 ng.L−1 correction ec5 [−] L N (0;1) 3 0.005
160 ng.L−1 correction ec6 [−] L N (0;1) 3 0.005

Bayesian statistics using kinetic data have been
very successful over the last two decades [9]. For
all these reasons, we use in this paper the Bayesian
approach often considered from a practical point of
view as a descriptive statistical analysis technique
among the others [22]. In Bayesian statistics, any
unknown entity is considered as a random variable,
in particular parameters of the model used. An
assumption of a prior distribution, assigned to each
parameter to be estimated, is necessary before the
experimental data analysis. Via the famous Bayes
theorem, these prior information will be updated
with the experimental data in order to retrieve
posterior information. Only the Bayesian approach
allows to integrate the knowledge that one has of
a system by taking advantage of the experimental
information [22]. It is a conjunction of the infor-
mation provided by the probabilistic model by a
prior distribution and experimental data. The R
package used for our model parameters inferring
is deBInfer [30]. We use the R package deSolve
[20], [39] as underlined in [30] for the resolution
of the implemented TK-TD model. To extrapolate
likelihood on our experimental data, we use the
Poisson log-likelihood function as defined in the
equation (4). The log-likelihood of the data given
the parameters, underlying model, and initial con-
ditions is then a sum over the n observations at

1The Gamma distribution
2The Beta distribution
3The Log-normal distribution

each time point in t ′:

L (Y |θ) =
n

∑
t

Nt logλ −nλ (4)

Here we use small corrections (eci)i=1,··· ,6 that
are needed because of the differential equations
solutions can equal zero, whereas the parameter
lambda of the poison likelihood must be strictly
positive. We infer them later as suggested in [18],
[20]. We set 20,000 iterations for the MCMC pro-
cedure, cnt = 500 worth only 1231.06 seconds of
execution with an Intel (R) Core (TM) i3-2350M
CPU processor running at 2.30 GHz. The prior
distributions assumptions as well as the parameters
measures units are presented in the table II.

III. RESULTS AND DISCUSSION

The inference results are presented in tables
III and IV. They were obtained using the major
functions ode() of the R package deSolve [20]
and de_mcmc() of the R package deBInfer [30].
Tables III and IV respectively give the empirical
mean and standard deviation for each variable,
plus standard error of the mean and the quantiles
for each variable.

The threshold concentration above which there
are effects on the survival of our test species
(Daphnia magna) commonly called NEC is es-
timated cap 6.042± 2.418 ng.L−1. It is similar
to that estimated in one of our studies on the
risk assessment of Deltamethrin on growth and
reproduction treated separately [10]. This result is
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TABLE III
EMPIRICAL MEAN AND STANDARD DEVIATION FOR EACH VARIABLE, PLUS STANDARD ERROR OF THE MEAN.

Mean SD Naive SE Time-series SE
ke 0.428169 0.738795 5.224e-03 0.0827944
kk 0.003064 0.010340 7.311e-05 0.0013127

NEC 6.041585 2.418373 1.710e-02 0.1636959
hb 0.002097 0.003396 2.401e-05 0.0001835
ec1 0.723883 0.459832 3.252e-03 0.0303711
ec2 0.593472 0.379989 2.687e-03 0.0211085
ec3 0.662622 0.431101 3.048e-03 0.0245585
ec4 0.699403 0.430309 3.043e-03 0.0244237
ec5 0.938278 0.556387 3.934e-03 0.0313650
ec6 0.808771 0.581670 4.113e-03 0.0385683

TABLE IV
QUANTILES FOR EACH VARIABLE.

2.5% 25% 50% 75% 97.5%
ke 7.848e-04 1.588e-02 9.558e-02 0.542053 2.66691
kk 1.352e-04 2.854e-04 5.183e-04 0.001508 0.02582

NEC 2.150e+00 4.184e+00 5.729e+00 7.690363 10.81920
hb 6.774e-18 1.279e-07 9.653e-05 0.003075 0.01194
ec1 1.023e-01 3.698e-01 6.445e-01 0.997039 1.83111
ec2 9.134e-02 3.152e-01 5.145e-01 0.791141 1.52596
ec3 1.150e-01 3.398e-01 5.604e-01 0.883916 1.73556
ec4 1.089e-01 3.752e-01 6.185e-01 0.936333 1.74968
ec5 1.666e-01 5.078e-01 8.321e-01 1.252371 2.27439
ec6 1.106e-01 3.811e-01 6.464e-01 1.111107 2.26996

very consistent in that death stops any evolution
process. While the recovery process under the
toxic effect is estimated to be around 0.43±0.74.
The dominant rate constant is not so negligible
as that in contrast to the killing rate and the
control mortality rate constants whose respective
values are close to 0.003±0.01 and 0.002±0.03.
These different estimated values would translate
faithfully our experimental realities as shown in
the data table I. With 10 replicates for each
Deltamethrin dose, few deaths were observed
in this experimental protocol. The GUTS model
again reflects the reality of the facts in this study.
The density plots for the various inferred param-
eters can be read in figure 1. In this image, some
chain trajectories are reasonable and consistent
over time in that their posterior distributions are
unimodal, sometimes resembling that of a normal
distribution. We can cite for example the parame-
ters NEC and the small corrections eci=1,··· ,6. Their
prior distributions were those of a log-normal

distribution. Unlike the distributions of the ke, kk
and hb unimodal parameters, but suspect because
they include a large number of outliers. This
aberration would confirm the inference complexity
of these types of studies. Let’s not forget that
these are constant rate. The study results are very
consistent overall. The figure 2 perfectly shows a
lack of detected correlation between parameters.
The highest correlation value is 0.36 between kk
and NEC, the two most important parameters in
GUTS [17].

For proof purposes, we remove a burnin period
of 1500 samples and examine parameter correla-
tions in the figure 2 and overlap between prior
and posterior densities. The figure 2 reflects the
correlation lack between the different parameters
of our dynamics evaluating Daphnia survival in the
presence of our Deltamethrin stressor.

From the posterior, we simulate 500 trajectories
of our TK-TD model while calculating at 95%HDI
(Highest Posterior Density Intervals) for the de-
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Fig. 1. MCMC chains plotting & summarizing

Fig. 2. Parameter correlations plotting
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Fig. 3. Median survival fitting with 95% HDI where the black lines represent the solution trajectories of the survival dynamics
and the red points reflect the experimental data.

terministic part of the model. HDI sets (intervals)
contain all values of the parameter θ such that the
posterior density fθ |y is larger than some constant
cα , where cα ensures that the coverage probability
will be 1−α . For each exposure concentration,
figure 3 shows in the same graph, the experimental
data and the model output describing the dynamics
of alive Daphnia magna number during the 21
days of experience. It confirms that the inference
procedure actually retrieves the model to our data.
In addition, the fitted curves are obtained with
small estimation errors, see figure 3. Post hoc
trajectories adjust very well our observational data
for different pesticide doses.

IV. CONCLUSION

This paper is very instructive in that it adapts
the GUTS model to our survival data collected
at LIEC through a more recent implementation
of Bayesian inference (the R library deBInfer).
Thus we ignored the use of GUTS (R package
GUTS) implementation. With this new R library,
it is easy to encode any toxicico-kinetic and
toxicodynamic dynamics (TK-TD) then infer the
parameters that compose it. Once differential en-

coding is complete, the R package deBInfer has a
function named de_mcmc() where is integrated
that of ode() function of the R package deSolve
specially designed for system differential solving
such that ordinary, partial or delay differential
equations. These last facilitate access to a lot of
users types whether they are specialists in the field
or not. Most of the life phenomena are modeled
using Ordinary Differential Equations (EDO), Par-
tial Differential Equations (PDE), or the Delay-
Differential Equations (DDE). As a result, this R
package deBInfer facilitates the transition from
determinism to stochastic. As part of our study,
it allowed us to consistently address our survival
analysis with the GUTS TK-TD model use. It
really facilitated the manipulation and inference
of the parameters of a mechanistic model to de-
scribe the bioaccumulation kinetics and dynamics
of survival effects in a contaminated environment
of the pesticide Deltamethrin.
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