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Abstract—We discuss dynamics of spatially distributed
interacting populations. The following two cases are dis-
cussed: (I.) migration waves for the case or negligible
random fluctuations of the populations densities and
(II.) probability distributions of the spatially averaged
populations densities for the case of significant random
fluctuations of these densities. For each of the cases we
obtain in general a system of differential equations that
is treated analytically (when possible) or numerically. The
obtained results are discussed from the point of view of
population dynamics.
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I. I NTRODUCTION

In many cases the dynamics of interacting popula-
tions is studied on the basis of models consisting of
equations that contain only time dependence of the
population densities [1]-[4]. These models are very
useful for understanding the complex dynamics of the
interacting populations but they neglect two important
aspects of this dynamics: (I.) the possible influence of
spatial characteristics of the environment; and (II.) the
possible fluctuations of the population densities caused
by different factors. Below we shall investigate two

kinds of population dynamics models that account for
each of these effects. First of all we shall discuss the
dynamics of spatially distributed populations and this
will be a continuation of our previous work [5], [6]. Then
we shall show that by appropriate averaging the spatial
model can be reduced to model in which the population
densities depend only on the time. This model is valid
not only for the cases of small values of the densities
of the populations and because of this we shall discuss
the influence of random fluctuations of the population
densities for arbitrary values of the densities. The result
of the action of these fluctuations is that instead of
equations for the trajectories of the populations in the
phase space of the population densities we shall write
and solve equations for the probability density functions
of the densities of the interacting populations.

II. M ODEL EQUATIONS

A. Spatially distributed populations

Let us consider an two-dimensional areaS where
N competing populations are present. The density of
each population isρi(x, y, t) = ∆Ni

∆S , where∆Ni is the
number of the individuals of thei-th population that are
present in the small area∆S at the momentt. Now let a
movement of population members through the borders of
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the area∆S be possible and let~ji(x, y, t) be the current
of this movement. Then(~ji · ~n)δl is the net number of
members fromi-th population, crossing a small border
line δl with normal vectorn. Let the density changes
(other then these caused by the border crossings) be
summarized by the functionCi(ρ1, ρ2, . . . , ρN , x, y, t).
Then the change of the density of members of thei-
th population in the studied area is described by the
equation

∂ρi

∂t
+ div~ji = Ci. (1)

Below we shall discuss the case where~ji has the form
of linear multicomponent diffusion. In this case

~ji = −
N∑

k=1

Dik(ρi, ρk, x, y, t)∇ρk, (2)

whereDik is the diffusion coefficient. Eq. (2) accounts
for the possibility that the spatial motion of the pop-
ulation members happens not only as consequence of
gradient of density of the own population but also as
consequence of gradients of the densities of the other
populations. We shall not specify the kind of the function
Ci as we shall consider the general case of relative small
populations densities that allow us to writeCi as Taylor
series expansion around the zero values of all population
densities as follows

Ci(ρ1, ρ2, . . . , ρN ) =
∞∑

n1=0

∞∑
n2=0

. . .

∞∑
nN=0

α(i)
n1,n2,...,nN

ρn1
1 ρ

n2
2 . . . ρnN

N , (3)

where the constant coefficientsα(i)
n1,n2,...,nN are as follows

α(i)
n1,n2,...,nN

=
1

n1!n2! . . . nN !
×

∂Cn1+n2+...+nN

i

∂ρn1
1 ∂ρ

n2
2 . . . ∂ρnN

N

|ρ1=ρ2=...=ρN=0 . (4)

We shall discuss the one-dimensional case and in addi-
tion we shall assume that the diffusion coefficientsDik

are constants. Then the substitution of Eqs. (2) and (3)
in (1) leads to the following system of nonlinear PDEs
for the studiedN interacting populations:

∂ρi

∂t
−

N∑
k=1

Dik
∂2ρk

∂x2
=

∞∑
n1=0

∞∑
n2=0

. . .
∞∑

nN=0

α(i)
n1,n2,...,nN

ρn1
1 ρ

n2
2 . . . ρnN

N . (5)

For the case of 1 population the system (5) is reduced
to the equation

∂ρ

∂t
−D

∂2ρ

∂x2
=

∞∑
n1=0

αn1ρ
n1 . (6)

B. Spatially Averaged Equations

Below we shall apply spatial averaging to the system
of equations (5) similar to the averaging used in the
optimum theory of turbulence [7] - [8]. In the general
two-dimensional case let a quantityq(x, y, t) be defined
in an large two-dimensional plane areaS with acreage
| S |. Then by definition the spatial average ofq is

q(t) =
1
| S |

∫ ∫
S
dx dy q(x, y, t). (7)

Thenq(x, y, t) can be separated in spatial averaged part
q and the rest quantityQ(x, y, t):

q(x, y, t) = q(t) +Q(x, y, t). (8)

Let | S | be large enough so that the plane average of
any product of the rest quantities vanish:Qi = QiQj =
QiQjQk = . . . = 0. In addition we shall assume that∫ ∫

S dx dy∇2Q has finite and small value such that
∇2Q = 1

|S|
∫ ∫

S dx dy∇2Q → 0. The application of
the averaging to Eq. (1) in presence of the assumptions
given by Eqs. (2), (3) and (4) (note that in this case
we have two spatial dimensions) leads to the system of
ODEs as follows (i = 1, 2, . . . , N ):

dρi

dt
=

∞∑
n1=0

∞∑
n2=0

. . .
∞∑

nN=0

α(i)
n1,n2,...,nN

ρn1
1 ρ

n2
2 . . . ρnN

N .

(9)
We note that Eq. (9) follows directly from Eq. (5) in
the spatially homogeneous case. For the case of one
population the equation becomes

dρ

dt
=

∞∑
n1=0

αn1ρ
n1 . (10)

We note that the equations of the kind of Eqs.(9) and (10)
are often used as model equations in population dynam-
ics not only for small values of population densities but
also for large values of these densities, i.e., for largeρi.

III. T RAVELING WAVES

Let us discuss the simplest case of one population
described by Eq. (6). First we introduce the traveling-
wave coordinateξ = x−vt wherev is the velocity of the
wave. In addition we shall assume that the polynomial
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non-linearity in Eq.(6) is up to orderL. We rescale the
coefficients in Eq.(6) as follows:

D† = −D/v; α†n1
= αn1/v. (11)

Then Eq.(6) becomes:

dρ

dξ
+D†d

2ρ

dξ2
+

L∑
n1=0

α†n1
ρn1 = 0. (12)

Below we shall obtain exact solution of Eq. (12) by
application of the modified method of simplest equation
for obtaining exact solutions of nonlinear PDEs.

A. Application of the Modified Method of Simplest Equa-
tion to Eq. (12)

The method of simplest equation [9]-[11] is based on
the fact that after application of appropriate ansatz some
NPDEs can be reduced to ODEs of the kind

P
(
R(ξ),

dR

dξ
,
d2R

dξ2
, . . .

)
= 0, (13)

and for some equations of the kind (13) particular
solutions can be obtained which are finite series

R(ξ) =
P∑

i=1

ai[φ(ξ)]i, (14)

constructed by solutionφ(ξ) of more simple equation
referred to as simplest equation. The simplest equation
can be the equation of Bernoulli, equation of Riccati,
etc. The substitution of Eq. (14) in Eq. (13) leads to the
polynomial equation

P = σ0 + σ1φ+ σ2φ
2 + . . .+ σrφ

r = 0, (15)

where the coefficientsσi, i = 0, 1, . . . , r depend on the
parameters of the equation and on the parameters of the
solutions. Equating all these coefficients to0, i.e., by
setting

σi = 0, i = 1, 2, . . . , r, (16)

one obtains a system of nonlinear algebraic equations.
Each solution of this system leads to a solution of kind
(14) of Eq. (13).

In order to ensure non-trivial solution by the above
method we have to ensure thatσr contains at least two
terms. To do this we have to balance the highest powers
of φ that are obtained from the different terms of the
solved equation of kind (13). As a result of this we obtain
an additional equation between some of the parameters
of the equation and the solution. This equation is called
balance equation [12]-[15].

Let us now apply the methodology to Eq.(12). Let us
search a solution as finite series

ρ(ξ) =
P∑

i=0

ai[φ(ξ)]i, (17)

whereφ(ξ) is a solution of the Riccati equation

dφ

dξ
= aφ2 + bφ+ c, (18)

i.e.,

φ(ξ) = − b

2a
− θ

2a
tanh

[
θ(ξ + ξ0)

2

]
. (19)

The substitution of Eq.(17) in Eq.(12) and the balance
of the largest powers ofφ that arise from the different
terms of Eq.(12) lead to the balance equation

P (L− 1) = 2. (20)

Thus we have the possibilities:P = L = 2 or P = 1;
L = 3. Below we discuss the first possibility, namely
P = L = 2. In such a way we shall obtain exact
traveling-wave solution of the equation

∂ρ

∂t
−D

∂2ρ

∂x2
= α0 + α1ρ+ α2ρ

2, (21)

which will be of the kind

ρ(ξ) = a0 − a1

{
b

2a
+

θ

2a
tanh

[
θ(ξ + ξ0)

2

]}
+

a2

{
b

2a
+

θ

2a
tanh

[
θ(ξ + ξ0)

2

]}2

. (22)

The parameters of the solutions are determined by the
following system of kind (16)

6D†a2a
2 + α†2a

2
2 = 0,

aD†(a1a+ 5a2b) + a2a+ α†2a1a2 = 0,

D†[3a1ab+ 4a2(2ac+ b2)] + a1a+

2a2b+ α†1a2 + α†2(2a0a2 + a2
1) = 0,

D†[a1(2ac+ b2) + 6a2bc] + α†1a1+

2α†2a0a1 + a1b+ 2a2c = 0,

α†0 + α†1a0 + α†2a
2
0 + a1c+D†(a1bc+ 2a2c

2) = 0.

(23)

Now we have 2 possibilities:α†0 6= 0 and α†0 = 0
(which is more close to the classical population dynamics
models that usually do not possess terms independent on
the population density).
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1) Caseα†0 6= 0: For this case the solution of the
system (23) is as follows:

α†0 =
625α†1

2
D†2 − 36

2500α†2D†2
,

a0 = −75D†2b2 + 30D†b− 3 + 25α†1D
†

50α†2D†
,

a1 = −3[(25D†2b2 − 1)(5D†b+ 1)]

250α†2cD†
,

a2 = −3(25D†2b2 − 1)

5000α†2c2D†3
,

a =
25D†2b2 − 1

100cD†2
. (24)

2) Caseα†0 = 0: For this case the solution of the
system (23) is as follows:

D† =
6

25α†1
,

a0 = −36b2 + 60bα†1 + 25α†1
2

100α†1α
†
2

,

a1 = −(36b2 − 25α†1
2
)(6b+ 5α†1)

600cα†1α
†
2

,

a2 = −(36b2 − 25α†1
2
)2

14400cα†1α
†
2

,

a =
36b2 − 25α†1

2

144c
. (25)

The obtained solutions describe kink waves that can be
considered as traveling waves of change of the value of
the population density of the studied population. Appro-
priate values of the boundary conditions atξ = ±∞ can
ensure thatρ(ξ) is non-negative everywhere.

We note that the parameters of the solved Eq. (21)
(after the rescallings (11)) areD† andα†0,1,2. The first
relationship from (24) connects these 4 parameters. Then
Eq.(22) is exact solution of Eq. (21) only when the
mentioned above 4 parameters are bounded by the cor-
responding relationship. This means that only 3 of these
4 parameters are free.

IV. STATISTICAL DISTRIBUTIONS AND EXIT TIME

Eqs. (9) and (10) are typical equations for description
of dynamics of dynamical systems. The general case of
such equations is

dxi

dt
= Xi(x1, x2, . . . , xN ); i = 1, 2, . . . , N. (26)

For such kind of systems there exists a theory that allows
us to characterize some system properties in the case
when the system is under the action of random pertur-
bations. Pontryagin, Andronov and Vitt [16] developed
such theory for random impulses that occur after every
interval of time τ and each impulse causes the phase
point of the dynamical system described by Eqs. (26)
to jump through a distancea along a random direction.
Let us first consider the case of single population and
one spatial dimension. For the case whena tends to0
together withτ in such a way that the ratioa/τ tends
to finite limit b it is possible to obtain an equation for
the probability density functionf(x, t) as follows:

∂f

∂t
+

∂

∂x

[
X(x)f

]
=
b

2
∂2f

∂x2
. (27)

For the general case ofN populations the equation for
the probability density function becomes

∂f

∂t
+

N∑
i=1

∂

∂xi

[
Xi(x1, x2, . . . , xN )f

]
=

1
2

N∑
i=1

N∑
j=1

bij
∂2f

∂xi∂xj
, (28)

where bij are again coefficients that characterize the
random impulses.

Another kind of problem that can be solved by this
approach is to calculate the mathematical expectation of
the exit time. Let us again first discuss the case of one
population and one spatial dimension. We have a phase
point that is inside the interval[ε1, ε2] (ε1 < ε2) and
the system is under the influence of the same random
perturbations as described above. The exit time is the
time for which the phase point that was inside the above
interval at t = 0 will leave this interval throughε1
or throughε2. If we denote asF (x) the mathematical
expectation for the exit time thenF (x) is a solution of
the equation [16]

b

2
d2F

dx2
+X(x)

dF

dx
+ 1 = 0, (29)

with boundary conditionsF (ε1) = F (ε2) = 0. For the
case of many populations the zero boundary conditions
are on the entire border of the multidimensional phase
space area that has to be exited and the equation for the
probability density function of the exit time is

1
2

N∑
i=1

N∑
j=1

bij
∂2F

∂xi∂xj
+

N∑
i=1

X(x1, x2, . . . , xN )
∂F

∂xi
+1 = 0.

(30)
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Fig. 1. Several profiles off(ρ) from Eq.(33) (in the figuresρ is
denoted asρ). Figure (a):b = 2; α0 = α2 = α3 = 0; α1 = −0.3.
In this case the model equation has a single fixed pointρ = 0 and at
this fixed point the maximum of the probability density function is
centered. Figure (b):α0 = α2 = 0; α1 = 0.3; α3 = −0.05; b = 3.
Here the fixed points are 3. The two maxima of the p.d.f. distribution
are centered around the two stable fixed points and the minimum is
centered on the unstable fixed pointρ = 0. Figure (c):α0 = 0.05;
α1 = 0.3; α2 = 0.01; α3 = −0.05; b = 3. Here the fixed points are
3 again but one of the two stable fixed points is more preferred which
can be seen from the larger peak of p.d.f. function at that point.

Let us now apply this theory to Eqs. (9) and (10).
For the case of single population let us be interested in
the case when after a long time the probability density
function f becomes stationary and depends only on the
spatial coordinatex. In this caseX(x) =

∑L
n1=0 αn1ρ

ni .

0 2 4 6 8 10

ρ

0

5

10

15

20

F
q

Fig. 2. Exit time expectations forq = 0 (which means extinction of
the population) calculated on the basis of Eq.(36).ρ on the horizontal
axis is equal toρ from Eq.(36). For all curvesb = 2. Solid line:
α0 = 0.01; α1 = −0.1; α2 = α3 = 0. Dashed line:α0 = 0.01;
α1 = −0.2; α2 = α3 = 0. Dot-dashed line:α0 = 0.1; α1 =
−0.2; α2 = 0; α3 = −0.1; Dotted line: α1 = 0.01; α1 = 0.2;
α3 = 0.1; α3 = −0.1. As we see the negative values ofα1,3 make
extinction be expected sooner whereas the positive values of the other
two parameters can delay the extinction.

The integration of Eq.(27) leads to

f(ρ)
L∑

n1=0

αn1ρ
n1 =

b

2
df

dρ
+ C1, (31)

whereC1 is a constant of integration. This constant is
equal to0 if following condition is fulfilled

1
f(0)

df

dρ
|ρ=0=

2α0

b
(32)

With C1 = 0 we can continue the integration of Eq.(7)
and the result is

f(ρ) =
C

b
exp

2
b

L∑
n1=0

αn1

ρn1+1

n1 + 1

 , (33)

where the constant of integrationC is determined by the
normalization condition∫ ∞

−∞
dρ f(ρ) = 1. (34)

Eq. (32) in combination with Eq. (33) mean that∑L
n1=0 αn1 = 0. In additionf(ρ) must tend to0 when

ρ → ±∞. The dominant term at large values ofρ is
αLρ

L. ThenαL must be negative (to ensuref → 0 at
large positive values ofρ andL must be odd (to ensure
f → 0 at large negative values ofρ). Several examples
of f(ρ) are shown in Fig.1.

Let us now calculate the exit time expectation on the
basis of Eq.(29). We calculate the distribution for exit
from the initial positionρ to a positionq < ρ. One
integration of Eq.(29) leads to the equation

dF

dρ
= exp(−ψ(ρ))

(
C1 +

∫ ∞

ρ
dξ

2
b

exp(ψ(ξ))
)
. (35)
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The solution is searched in presence of two requirements:
1) F (ρ = q) = 0 ,
2) F (ρ, q) increases in the slowest possible manner

as ρ → ∞ (i.e. dF
dρ from Eq. (35) is as small as

possible).
The second requirement leads toC1 = 0, and the
integration of Eq.(35) leads to the result

Fq(ρ) =
∫ ρ

q
dξ exp

(
− 2
b

L∑
n1=0

αn1

ξn1+1

n1 + 1

)
×

[
2
b

∫ ∞

ξ
dη exp

(
2
b

L∑
n1=0

αn1

ηn1+1

n1 + 1

)]
. (36)

Fig. 2 shows the dependence of the exit time expectation
on the population density and coefficients of the model
equation for the caseL = 3. The theory can be easily
applied for the case of system of many interacting popu-
lations but even in the simplest one-dimensional case the
integral from Eq.(36) must be calculated numerically.

V. CONCLUSION

In this paper we have discussed two aspects of pop-
ulation dynamics. First we have presented a model of
the space-time dynamics of the system of interacting
population in 2 spatial dimensions. For the most simple
case of one spatial dimension and for one population
we have obtained exact traveling-wave solution of the
model nonlinear PDE by means of the recently developed
modified method of simplest equation for obtaining
exact and approximate solutions of nonlinear PDEs.
The obtained exact solution describes the spreading of
changes of the population density in the space. The
generalization of this theory to the case of many pop-
ulations is straightforward and describes the spreading
of coupled waves of changes of densities of the studied
populations. This research will be reported elsewhere.
The second discussed aspect of the population dynamics
was connected to the influence of the random fluctuations
on the population densities. The presence of fluctuations
leads to description in terms of probability density
functions for the population densities. The discussed
general theory is illustrated again for the simplest pos-
sible case of one population in two aspects: calculation
of probability density functions and calculation of the
expected extinction time. The minima and maxima of the
obtained probability density functions are exactly at the
fixed points of the corresponding non-perturbed model
system of differential equations. The expected extinction
time strongly depends on the coefficients of the model
equations. Because of the lack of space we do not discuss

the case of more than one population here. This case will
be reported elsewhere.
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