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Abstract—We discuss dynamics of spatially distributed kinds of population dynamics models that account for
interacting populations. The following two cases are dis- each of these effects. First of all we shall discuss the
cussed: (I.) migration waves for the case or negligible dynamics of spatially distributed populations and this
random fluctuations of the populations densities and i pe a continuation of our previous workl[5],][6]. Then
(Il.) probability distributions of the spatially averaged o snaj show that by appropriate averaging the spatial
populations densities for the case of significant random . . .
fluctuations of these densities. For each of the cases wénOde_I, can be reduced to mode'l In Wh'(,:h the populathn
obtain in general a system of differential equations that densities depend only on the time. This model is V_a_l'd
is treated analytically (when possible) or numerically. The Not only for the cases of small values of the densities
obtained results are discussed from the point of view of of the populations and because of this we shall discuss
population dynamics. the influence of random fluctuations of the population

Keywordsinteracting populations; nonlinear waves; densities fgr arbitrary values of '_[he d(_ensities..The result
method of simplest equation; density fluctuations; prob- Of the action of these fluctuations is that instead of

ability density functions for populations densities equations for the trajectories of the populations in the
phase space of the population densities we shall write
. INTRODUCTION and solve equations for the probability density functions

In many cases the dynamics of interacting populaf the densities of the interacting populations.
tions is studied on the basis of models consisting of
equations that contain only time dependence of the
population densities| [1]-[4]. These models are very- Spatially distributed populations
useful for understanding the complex dynamics of theLet us consider an two-dimensional aréawhere
interacting populations but they neglect two importan¥V competing populations are present. The density of
aspects of this dynamics: (I.) the possible influence efch population ig;(x,y,t) = AA];G‘, where AN; is the
spatial characteristics of the environment; and (ll.) theumber of the individuals of théeth population that are
possible fluctuations of the population densities causpresent in the small are&S at the moment. Now let a
by different factors. Below we shall investigate twanovement of population members through the borders of

[I. M ODEL EQUATIONS
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the areaAS be possible and Ie;fti(x,y,t) be the current For the case of 1 population the systgm (5) is reduced
of this movement. Therj; - 77)dl is the net number of to the equation
members fromi-th population, crossing a small border ) o
line 6/ with normal vectorn. Let the density changes 9 D@ -
(other then these caused by the border crossings) be ot Ox? ni—
summarized by the functiod;(p1, p2,- .., pN, T, Y, t).
Then the change of the density of members of the
th population in the studied area is described by theBelow we shall apply spatial averaging to the system
equation of equations [(5) similar to the averaging used in the
+divj; = C; (1) optimum theory of turbulence [[7] £[8]. In the general
¢ v two-dimensional case let a quantifyz, y, ¢t) be defined
in an large two-dimensional plane ar&awith acreage
| S |. Then by definition the spatial average @fs

Qny pnl . (6)
0

B. Spatially Averaged Equations

Pi

ot

Below we shall discuss the case Wh§{mas the form
of linear multicomponent diffusion. In this case

. N q(t) = 1// dz dy q(z,y,1). (7)
ji ==Y Dir(pi, pio-, y,t)V i, (2) |51 Js

k=1 Theng(z,y,t) can be separated in spatial averaged part
where D;;, is the diffusion coefficient. Eq[[2) accounts; and the rest quantit@)(z, y, ¢):
for the possibility that the spatial motion of the pop-
ulation members happens not only as consequence of q(z,y,t) = q(t) + Q(z,y, t). (8)
gradient of density of the own population but also 35t | S | be large enough so that the plane average of
consequence of gradients of the densities of the ott}ﬁ{y product of the rest quantities vani€l; = 0;Q; —
populations. We shall not specify the kind of the functio 0.0r — ... = 0. In addition we shall ass&mje that
C; as we shall consider the general case of relative sm W ]dac dyv'g'é haé finite and small value such that
populations densities that allow us to wrif& as Taylor V222 — 1 [ [ dx dyV>Q — 0. The application of
serie;_expansion around the zero values of all populatit i, averalé%ng tSo EqL) in presénce of the assumptions
densities as follows given by Egs.[(R),[(3) and [4) (note that in this case
Cilpt, pon- - px) = i i we have two spatial dimensions) leads to the system of

ODEs as follows{=1,2,..., N):

ni =0 No =0

71 N2 T —ni1-="2 “ItN
D A PP PR @ D= S Al P
ny=0 n1=0mn2=0 ny=0
() 9
where the constant coefficient§ ,.,.... .., are as follows We note that Eq.[(9) follows directly from Eq.](5) in
4 1 the spatially homogeneous case. For the case of one
al e = T B population the equation becomes
8Cf1+”2+"'+”N dﬁ 00
1 2 | 1=p2=...=pn=0 - (4) W « 1ﬁn1' (10)
Py Ops? ... 0pRy P L dt nlz::O "

We shall discuss the one-dimen.sion_al case gnd in ad@js note that the equations of the kind of Egs.(9) &nd (10)
tion we shall assume that the _dn‘f_usmn coefficiehls.  5re often used as model equations in population dynam-
are constants. Then the substitution of Eg$. (2) @d 8 not only for small values of population densities but

in (D) leads to the following system of nonlinear PDEg s, for Jarge values of these densities, i.e., for lgige
for the studiedN interacting populations:

N 5 [Il. TRAVELING WAVES
Ipi O _ _ _ _
ot > Di or2 Let us discuss the simplest case of one population
o ~ =1 described by Eq/[{6). First we introduce the traveling-
Z Z Z QSB,nQ,...,nNP?PgQ L (5) Wwave coordlngjre’ = x—wvt wherew is the velocity of the _
n1=0na=0  nn=0 wave. In addition we shall assume that the polynomial
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non-linearity in Eq[(B) is up to ordek. We rescale the Let us now apply the methodology to Eg.12). Let us

coefficients in Eq[(6) as follows: search a solution as finite series
D' = —D/v; of, = ap, /v. (11) P ,
' p(€) =Y ailp(©)]', (17)
Then Eq|(6) becomes: i=0

d 2 L where¢(€) is a solution of the Riccati equation
ch + DTng + Z aLlpnl =0. (12) p
=0 dﬁ = a¢’ +bg +c, (18)
Below we shall obtain exact solution of Eq. [12) by ¢
application of the modified method of simplest equatiojre
for obtaining exact solutions of nonlinear PDEs.
¢ 86) = —5 — gt [ P20 ag)

A. Application of the Modified Method of Simplest Equa-
tion to Eq. [12) The substitution of EJ.(17) in E.(12) and the balance
The method of simplest equatidn [9]-]11] is based o?f the largest powers ap that arise from th_e different

the fact that after application of appropriate ansatz sorifgms of Eq[(IP) lead to the balance equation
NPDEs can be reduced to ODEs of the kind P(L—1)=2. (20)

P<R(£) dR d2R ):o,

’an’ 752’ T (13) Thus we have the possibilitied? = L =2 or P = 1;

) _ L = 3. Below we discuss the first possibility, namely
and for some equations of the kinfl {13) particulab — ;, — 9 |n such a way we shall obtain exact

solutions can be obtained which are finite series traveling-wave solution of the equation
P
R(¢) = ; 14 o) 9?

constructed by solutiom(£) of more simple equation which will be of the kind

referred to as simplest equation. The simplest equation b 0 0

can be the equation of Bernoulli, equation of Riccati,p(¢) = ag — a; { 4+ — tanh {M} } 4
etc. The substitution of Eq (L4) in E. {13) leads to the 20 2a 2

. . 2
polynomial equation as {b + b tanh V(g;r&))} } . (22)

2a  2a
P=og+o1¢0+020>+...+0,¢" =0, (15) _ _
The parameters of the solutions are determined by the

where the coefficients;, i = 0,1,...,r depend on the following system of kind [(T6)
parameters of the equation and on the parameters of the
solutions. Equating all these coefficients Gpi.e., by 6Dt aza® + adad = 0,
setting ‘ aDT(ala + b5agb) + aza + agalag = 0,
0i=0i=12...,m (16) D'[3a1ab + 4as(2ac + b%)] + aja+

one obtains a system of nonlinear algebraic equations. 2a9b + 04@ 4 a;(ga()@ +a2) = 0,
Each solution of this system leads to a solution of kind Das (2ac + b2) + 6azbd] + alay+
(T4) of Eq. [IP). T !

In order to ensure non-trivial solution by the above 2030001 + a1b +2a2c = 0,
method we have to ensure that contains at least two af) + aiao + a£a§ +aic+ DT(a1bc + 2a262) = 0.
terms. To do this we have to balance the highest powers (23)

of ¢ that are obtained from the different terms of the

solved equation of kind (13). As a result of this we obtaiNow we have 2 possibilitiesag # 0 and a(T) =0

an additional equation between some of the parametéshich is more close to the classical population dynamics
of the equation and the solution. This equation is calledodels that usually do not possess terms independent on
balance equatiorn_[12]-[15]. the population density).
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1) CaseoJJ # 0: For this case the solution of theFor such kind of systems there exists a theory that allows

system|[(2B) is as follows: us to characterize some system properties in the case
[2 42 when the system is under the action of random pertur-
ag _ 625a; D" — 367 bations. Pontryagin, Andronov and Viit [16] developed
250004DT2 such theory for random impulses that occur after every
75 D22 +30DTb—3+25aIDT interval of timer and each impulse causes the phase
ag = — S0al Dt ; point of the dynamical system described by Eds] (26)
) 2 to jump through a distance along a random direction.
0 - _3[(25DT b2 —1)(5DTh +1)] Let us first consider the case of single population and
25OaJ£CDT ’ one spatial dimension. For the case whetends to0
2,9 together with7 in such a way that the ratia/7 tends
3(25D1°p% — 1) S ) . :
ag = 3, to finite |Im.IF bitis p033|ble_ to obtain an equation for
50200420 Df the probability density functiorf(z,t) as follows:
25D — 1 2
= Ceeen® @9 o e K@ =353 @D
2) CaseaO = 0: For this case the solution of theFor the general case @f populations the equation for
system|[(2B) is as follows: the probablllty density function becomes
6
Dt = E’ —I—Z |: $1,$2,...,1'N)f]:
3662 + 60ba + 2501 )
" t0afe] 5 2; Zl byt a (28)
o — (366 — 25a] $)(6 + 5al) where b;; are again coefficients that characterize the
60000&0@ ’ random impulses.
9 Another kind of problem that can be solved by this
(360 —25oz1 ) , . .
as = — , approach is to calculate the mathematical expectation of
14400caal the exit time. Let us again first discuss the case of one
3602 — 25042 population and one spatial dimension. We have a phase
¢ = THme (25 point that is inside the intervak;,es] (1 < €2) and

The obtained solutions describe kink waves that can Ebe system IS unccj’er thf) |(rj1flu§nce onhthe same randcr)]m
considered as traveling waves of change of the vaIue'Cbertur ations as described above e exit time is the

the population density of the studied population. Appré'me for which the phase point that was inside the above

priate values of the boundary conditionstat: oo can interval att = 0 will leave this interval throughe;
ensure thap(¢) is non-negative everywhere. or througheg. If we dgnqte asF'(z) th_e mathematlcal

We note that the parameters of the solved Eq] ( pectation for the exit time thefA'(x) is a solution of
(after the rescallmgl)) arB' and ao 12- The first e equation((16]
relationship from[(2}4) connects these 4 parameters. Then bd’F n X(:c)d—F L0 (29)
Eq.(22) is exact solution of Eq[ (1) only when the 2 daz? dx o
mentioned above 4 parameters are bounded by the Ggith boundary conditiong(e;) = F(ez) = 0. For the
responding relationship. This means that only 3 of theggse of many populations the zero boundary conditions
4 parameters are free. are on the entire border of the multidimensional phase
space area that has to be exited and the equation for the

IV. STATISTICAL DISTRIBUTIONS AND EXIT TIME
probability density function of the exit time is
Egs. [(9) and[(7]0) are typical equations for description

N
of dynamics of dynamical systems. The general case b 0*F or
such equations is ;leb“a ;0 +§X T T "J:N)axiJrl =0

dt :Xi(xl,.%'g,...,x]v); i:1,2,...,N. (26)
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Fig. 2. Exit time expectations foy = 0 (which means extinction of
the population) calculated on the basis of Eq.(369n the horizontal
" (b) axis is equal top from Eq.[38). For all curve$ = 2. Solid line:
] ag = 0.01; a3 = —0.1; o = a3 = 0. Dashed line:xag = 0.01;
0151 i a1 = —0.2; as = ag = 0. Dot-dashed lineay = 0.1; a1 =
—0.2; a2 = 0; ag = —0.1; Dotted line: a1 = 0.01; a1 = 0.2;
a3 = 0.1; ag = —0.1. As we see the negative values ®f ;5 make
f o1 - extinction be expected sooner whereas the positive values of the other
two parameters can delay the extinction.

0.2

0.05— -

The integration of E(.(37) leads to

05 (‘7 5 L
p b df
D Pt = —— , 31
f(p)nlzzoa 1P de—i_cl ( )
where C; is a constant of integration. This constant is
© equal to0 if following condition is fulfilled
T i 1 df 20
——— |pm0= — 32
* | FOdp " b (32)
f With C; = 0 we can continue the integration of Eq.(7)
3 i and the result is
B C 2 L pn1+1
o) =Few|g 2 anpmg ) (9

where the constant of integrati@his determined by the

Fig. 1. Several profiles of (p) from Eq.) (in the figure® is normalization condition

o
denoted ag). Figure (a):b = 2; ap = a2 = a3 = 0; an = —0.3. = £(7) —
In this case the model equation has a single fixed poirt0 and at —co dp f(p) L (34)

this fixed point the maximum of the probability density function is . A :
centered. Figure (byo — s — 0: ay — 0.3: a5 — —0.05: b — 3. Eq. (32) in combination with Eq. (33) mean that

L ", .
Here the fixed points are 3. The two maxima of the p.d.f. distributiod_n,, =0 @, = 0. In addition f(p) must tend to0 when
are centered around the two stable fixed points and the minimunpis— 4+o0o. The dominant term at large values pfis

centered on the unstable fixed popit= 0. Figure (c):ao = 0.05; aLﬁL- Thena;, must be negative (to ensufe— 0 at

a1 = 0.3; a2 = 0.01; ag = —0.05; b = 3. Here the fixed points are .
3 again but one of the two stable fixed points is more preferred Whiéﬂrge positive values qﬁ and L must be odd ('[O ensure

can be seen from the larger peak of p.d.f. function at that point. f — 0 at large negative values @f). Several examples
of f(p) are shown in Fig.1.
Let us now calculate the exit time expectation on the

Let us now apply this theory to Eqd:](9) a@aopasis of Eq[(Z9). We calculate the distribution for exit
For the case of single population let us be interestedfi®m the initial positionp to a positiong < 7. One
the case when after a long time the probability densitjtegration of Eq[(29) leads to the equation
function f becomes stationary and depends only on the@F

= = exp(—u(p)(Cr+ [ at Jes(u(e). 39

spatial coordinate:. In this caseX (z) = thzo Qn, P dp
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The solution is searched in presence of two requiremeritse case of more than one population here. This case will

1) F(p=q)=0,
2) F(p,q) increases in the slowest possible manner
asp — oo (ie. 4€ from Eq. ) is as small as
possible).
The second requirement leads @
integration of Eq[(35) leads to the result

be reported elsewhere.

ACKNOWLEDGMENT

This research was partially supported by the Fund
0, and the Of Scientific Researches of Republic of Bulgaria under
contract DO 02-338/22.12.2008 in the scope of which
the averaging applied in section Il B has been developed

"l L
_ P 2 gmtl and used.
Fp) = [dg e (=2 % an i) ¢
7q n1=0 1 REFERENCES
2 [ 2 L 77”1Jrl [1] J. D. Murray, Lectures on Nonlinear Differential Equation
b dn exp b Z Qn, 1 (36) Models in Biology, Oxford, England, Oxford University Press,
3 m—0 1T 1977.

Fig. 2 shows the dependence of the exit time expectatidd
on the population density and coefficients of the model
equation for the casé = 3. The theory can be easily
applied for the case of system of many interacting popu3l
lations but even in the simplest one-dimensional case the
integral from Eq[(3p) must be calculated numerically.
V. CONCLUSION Y

In this paper we have discussed two aspects of pop-
ulation dynamics. First we have presented a model of
the space-time dynamics of the system of interacting
population in 2 spatial dimensions. For the most simple
case of one spatial dimension and for one population
we have obtained exact traveling-wave solution of th
model nonlinear PDE by means of the recently developed
modified method of simplest equation for obtaining
exact and approximate solutions of nonlinear PDE -
The obtained exact solution describes the spreading 01]
changes of the population density in the space. The
generalization of this theory to the case of many pop-
ulations is straightforward and describes the spreadi
of coupled waves of changes of densities of the studied
populations. This research will be reported elsewhere.
The second discussed aspect of the population dynamics
was connected to the influence of the random fluctuationg;
on the population densities. The presence of fluctuations
leads to description in terms of probability density
functions for the population densities. The discuss
general theory is illustrated again for the simplest pos-
sible case of one population in two aspects: calculation
of probability density functions and calculation of théll
expected extinction time. The minima and maxima of the
obtained probability density functions are exactly at the
fixed points of the corresponding non-perturbed mod@r]
system of differential equations. The expected extinction
time strongly depends on the coefficients of the model

Z. |. Dimitrova, N. K. Vitanov, “Influence of Adaptation on the
Nonlinear Dynamics of a System of Competing Populations”,
Phys. Lett. A, vol. 272, pp. 368—-380, 2000.
http://dx.doi.org/10.1016/S0375-9601(00)00455-2

Z. |. Dimitrova, N. K. Vitanov, “Adaptation and its Impact on
the Dynamics of a System of Three Competing Populations”,
Physica A, vol. 300, pp. 91-115, 2001.
http://dx.doi.org/10.1016/S0378-4371(01)00330-2

N. K. Vitanov, Z. I. Dimitrova, H. Kantz, “On the Trap of
Extinction and its Elimination”, Phys. Lett. A, vol. 349, pp.
350-355, 2006.
http://dx.doi.org/10.1016/j.physleta.2005.09.043

N. K. Vitanov, |. P. Jordanov, Z. |. Dimitrova. “On Nonlinear
Dynamics of Interacting Populations: Coupled Kink Waves in a
System of Two Populations”, Commun. Nonlinear Sci. Numer.
Simulat., vol 14, pp. 2379-2388, 2009.
http://dx.doi.org/10.1016/j.cnsns.2008.07.015

N. K. Vitanov, |. P. Jordanov, Z. |. Dimitrova, “On Nonlinear
Population Waves”, Applied Mathematics and Computation,
vol. 215, pp. 2950-2964, 2009.
http://dx.doi.org/10.1016/j.amc.2009.09.041

N. K. Vitanov, “Convective Heat Transport in a Fluid layer of
Infinite Prandtl Number: Upper Bounds for the Case of Rigid
Lower Boundary and Stress-Free Upper Boundary”, Eur. Phys.
J. B, vol. 15, pp. 349-355, 2000.
http://dx.doi.org/10.1007/s100510051136

N. K. Vitanov, “Upper Bounds on the Convective Heat Trans-
port in a Rotating Fluid Layer of Infinite Prandtl Number: Case
of Large Taylor Numbers”, Eur. Phys. J. B, vol. 23, pp. 249—
266, 2001.

http://dx.doi.org/10.1007/s100510170075

N. A. Kudryashov, “Simplest Equation Method to Look for
Exact Solutions of Nonlinear Differential Equations”, Chaos
Solitons & Fractals, vol. 24, pp. 1217-1231, 2005.
http://dx.doi.org/10.1016/}.chaos.2004.09.109

N. A. Kudryashov, “Exact Solitary Waves of the Fisher Equa-
tion”, Phys. Lett. A, vol. 342, pp. 99-106, 2005.
http://dx.doi.org/10.1016/).physleta.2005.05.025

N. A. Kudryashov, N. B. Loguinova, “Extended Simplest Equa-
tion Method for Nonlinear Differential Equations”, Commun.
Nonlinear Sci. Numer. Simulat., vol. 14, pp. 3507-3529, 2009.
http://dx.doi.org/10.1016/j.cnsns.2009.01.023

N. K. Vitanov, Z. I. Dimitrova, H. Kantz, “Modified Method
of Simplest Equation and its Application to Nonlinear PDES”,
Applied Mathematics and Computation vol. 216, pp. 2587—-
2595, 2010.

equations. Because of the lack of space we do not discuss |http://dx.doi.org/10.1016/j.amc.2010.03.102

Biomath 1 (2012), 1209253, http://dx.doi.org/10.11145/j.biomath.2012.09.253

Page 6of


http://dx.doi.org/10.1016/S0375-9601(00)00455-2
http://dx.doi.org/10.1016/S0378-4371(01)00330-2
http://dx.doi.org/10.1016/j.physleta.2005.09.043
http://dx.doi.org/10.1016/j.cnsns.2008.07.015
http://dx.doi.org/10.1016/j.amc.2009.09.041
http://dx.doi.org/10.1007/s100510051136
http://dx.doi.org/10.1007/s100510170075
http://dx.doi.org/10.1016/j.chaos.2004.09.109 
http://dx.doi.org/10.1016/j.physleta.2005.05.025
http://dx.doi.org/10.1016/j.cnsns.2009.01.023
http://dx.doi.org/10.1016/j.amc.2010.03.102
http://dx.doi.org/10.11145/j.biomath.2012.09.253

N. Vitanov et al., On Waves and Distributions in Population Dynamics

[13] N. K. Vitanov, “Modified Method of Simplest Equation: Power-[15] N. K. Vitanov, Z. |. Dimitrova, K. N. Vitanov, “On the Class of
ful Tool for Obtaining Exact and Approximate Traveling-Wave Nonlinear PDEs that can be Treated by the Modified Method
Solutions of Nonlinear PDEs”, Commun. Nonlinear Sci. Numer.  of Simplest Equation. Application to Generalized Degasperis -
Simulat., vol. 16, pp. 1176-1185, 2011. Processi Equation and B-Equation”, Commun. Nonlinear Sci.
http://dx.doi1.org/10.1016/j.cnsns.2010.06.011 Numer. Simulat., vol. 16, pp. 3033-3044, 2011.

“ o . . . http://dx.doi.org/10.1016/j.cnsns.2010.11.013
[14] N. K. Vitanov, “Application of Simplest Equations of BernouII|£l6] L. S. Pontryagin, A. A. Andronov, A. A. Vitt, “On Statistical

and Riccati Kind for Obtaining Exact Traveling Wave Solution Consi ; : ”
. ; . i onsiderations of Dynamical Systems”, JETP vol. 3, pp. 165—
for a Class of PDEs with Polynomial Nonlinearity”, Commun. 180 |1933 l y ! y v PP

Nonlinear Sci. Numer. Simulat., vol. 15, pp. 2050-2060, 2010.
http://dx.doi.org/10.1016/j.cnsns.2009.08.011

Biomath 1 (2012), 1209253, http://dx.doi.org/10.11145/j.biomath.2012.09.253 Page 7 Oﬂj


http://dx.doi.org/10.1016/j.cnsns.2010.06.011
http://dx.doi.org/10.1016/j.cnsns.2009.08.011
http://dx.doi.org/10.1016/j.cnsns.2010.11.013
http://dx.doi.org/10.11145/j.biomath.2012.09.253

	Introduction
	Model Equations
	Spatially distributed populations
	Spatially Averaged Equations

	Traveling Waves
	Application of the Modified Method of Simplest Equation to Eq. (12)
	Case 0†=0
	Case 0†= 0


	Statistical Distributions and Exit Time
	Conclusion
	References

