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Abstract—In this paper we consider a four-
dimensional bioreactor model, describing an anaer-
obic wastewater treatment with methane produc-
tion. Different control strategies for stabilizing the
dynamics are presented and discussed. A general
and practice-oriented bounded open-loop control is
proposed, aimed to steer the model solutions towards
an a priori given set in the phase plane.
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I. INTRODUCTION

Anaerobic digestion (AD) is a biological pro-
cess in which organic degradable material is con-
verted into biogas by microorganisms [7], [8].
Recently, AD has been evaluated as one of the
most promising processes for waste recovery, en-
vironmental protection and bioenergy production.

The biogas is a mixture of gases composed of
methane, carbon dioxide, nitrogen, oxygen, hydro-
gen sulphide and traces of other gases. The biogas
is classified as a renewable energy, which can
be used in gas engines to produce electricity and
heat energies. Storing biogas prevents greenhouse
gas emissions from entering the atmosphere. Some
estimates from 1997 [23] report that recovery
of organic wastes and industrial effluents could
reduce 20% of the global warming effect on the
planet.

At laboratory or industrial scales, the AD pro-
cess occurs inside an anaerobic digester (reactor),
where degradation of organic material holds by
plenty of anaerobic microorganisms. The growth
of the microorganisms (bacteria, yeasts, etc.) pro-
ceeds by consumption of appropriate nutrients
(substrates) involving carbon, nitrogen, oxygen,
etc., under favorable conditions (temperature, pH,
etc.). The mass of the living organisms (or cells)
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is called biomass. The number, behavior and in-
teraction of the included organisms pose a chal-
lenge to the specialist in the field and have been
extensively investigated in the literature. The re-
actor configuration and environmental conditions
(retention time, temperature, feedstock, stirring,
etc.) influence the dynamics and composition of
the different groups of bacteria responsible for the
organic material degradation [7]. According to the
user objectives and the nature of the biodegradable
waste (solid wastes or released in wastewater),
different technologies can be used. We mention
below some commonly cited reactors in the liter-
ature [7], [8].

Batch reactor is a reactor without inflow nor
outflow. The digester is filled with the biodegrad-
able materials and left until the substrate has been
degraded. Then the digester is emptied and a new
cycle can start again.

Fed-bach reactor (also called semi-continuous
or fed/sequencing batch reactor) is a reactor with-
out outflow. The process is cyclic, the digester
is filled gradually according to the progress of
the reaction in order to ensure optimal growth
conditions. At the end of the digestion phase,
decantation allows to separate the liquid phase and
suspended biomass.

Continuous bioreactor: the tank is continuously
fed at a constant rate and the digestat (the material
that remains after the AD process) is evacuated
by a mechanical action. Depending on the contact
between the substrate and biomass or the feeding
mode, the continuous bioreactors fall into several
categories. Among them we mention the contin-
uously stirred tank reactor, where the outflow is
equal to the rate of inflow and a continuous mixing
ensures the medium homogeneity.

Independently of the chosen reactor type, a key
parameter in biogas plants is the dilution rate. It is
proportional to the speed of the input mechanisms
which feeds the reactor with substrate. To avoid
wash out of bacteria, the dilution rate is always
constrained, i. e. u ∈ [umin, umax] with umin > 0
(cf. [8]).

The AD process follows several phases:

Hydrolysis is the step where polymers (macro-
molecules) are hydrolysed to monomers (simple
organic matter); the speed of degradation depends
on the substrate type (glucide, proteins, lipids,
cellulose, etc.).

Acidogenesis, where monomers are degraded to
Volatile Fatty Acids (VFA) and alcohol.

Acetogenesis, performed by acitogenic bacte-
ria which transform the VFA into acetic acid,
hydrogen (H2) and carbon dioxide (CO2). The
responsible bacteria for this step produce H2 and
can be inhibited by an excess of H2 concentration
in the digester, that’s why they live fixed to the
methanogenic bacteria which consume the hydro-
gen.

Methanogenesis, where methanogenic bacteria
reduce the specific substrate into methane.

A good management and control of the AD pro-
cess can be achieved via validated mathematical
models—an area, which is extensively studied in
recent years. The proposed models are specific
to a couple of criteria such as the waste nature
and its composition, the used technology, collected
data and its quality, the possible experiments and
changes in the operating conditions. In general, a
dynamical model accounts for the time evolution
of substartes and biomasses, and is based on
ordinary differential equations representing mass
balance within the process.

The mathematical modeling of AD processes
has a long history. In 1968, Andrews [5] mod-
elled the methanogenic fermentation by only the
final step methanogenesis. In 1973, Graef and
Andrews [24] included the acidogenesis step in
the description of fermentation. Later on, other re-
searchers, Hill and Barth (1977, [28]), Boone and
Bryant (1980, [12]), Eastman and Ferguson (1981,
[20]) added a hydrolysis step to their description,
and modelled a three-step process. The interested
reader is referred to [32] for more details about
other models.

Over time the models were extended depending
on the different substrates (wastewater, sludge,
etc.). In 2002, a group of experts in the AD pro-
cesses (IWA Task Group for Mathematical Mod-
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elling of Anaerobic Digestion Processes) devel-
oped a standard model for the AD process, called
ADM1 (Anaerobic Digestion Model No 1) [9]. In
order to make the ADM1 a standard platform for
AD simulation, it has been decided to generalize
the composition of waste, so it is measured by an
unified unit Chemical Oxygen Demand (COD) and
the process is supposed to occur in a continuously
stirred tank reactor. ADM1 is described by 32
ordinary differential equations and its parameters
are collected from different applications. Many
modifications, adaptations and variations of the
ADM1 have been done later, cf. [43], [44], [47],
[48] and the references therein.

The ADM1 and its variations are complex mod-
els suitable for process knowledge and simulation,
but not appropriate for process control and soft-
ware sensors design, because they require a plenty
of input parameters which are difficult to obtain.

To overcome the ADM1 complexity, simpler
models based on mass balance equations [8] have
been developed, more suitable to support moni-
toring or control strategies. Such a model (called
AM1), including two reactions (acidogenesis and
methanogenesis) is proposed by Bernard et al [11],
and turns out to approximate efficiently the ADM1
for modeling anaerobic wastewater treatment.

This model will be investigated in the present
paper.

The management and control of the AD process
require a good information about the internal state
of the system. Biological processes are known to
be highly unstable due to the specific behavior of
the system itself or to the presence of disturbances.
Thus, an obvious need for an efficient control and
monitoring of such systems arises. A summary
and review of different sensoring approaches can
be found e. g. in [31], [33], [42], [49]. The ma-
jority of sensors intended to measure the process
key variables often require complex equipment
and careful maintenance, so that the plant costs
may climb quickly, which is not desirable from
industrial standpoint. Therefore, it is crucial to
find a methodology which allows cost-effective
and easily adopted to practice monitoring of AD

plants. Such methodology is the development of
efficient software sensors, also called observers.
The observers are auxiliary dynamical systems
that provide information on the unmeasurable state
variables of the system by using its mathematical
model and its input and output signals (the measur-
able variables of the system), see e. g. [2], [3], [4],
[8], [26], [40]. In biological processes observers
are mainly used in on-line estimations for control
purposes.

In addition to the modeling and observer design,
the AD control in biogas plants is gaining an
increased importance. The main reason is the sig-
nificant growth of bioenergy markets. Moreover,
due to the climate-energy package of the European
Commission, the produced biogas must be rich in
methane to fulfil the environmental standards [51].

Controlling the AD processes is a delicate
problem due to the high complexity and strong
instability of the ecosystem inside the reactor [26].
Several factors are to be handled like e. g. the
highly nonlinear behavior of the system itself, load
disturbances, system uncertainties, constraints on
manipulated and state variables and the limited on-
line measurements information [39]. Moreover, the
AD process involves living organisms which are
very sensitive to the operating conditions and may
be washed out or inhibited due to an accidental
toxic feeding, leading, in the worst case, to a stop
of the digester.

The control design varies with the application
objectives. Usually, in biogas plants, the con-
troller is designed to satisfy one specific cri-
terion, either economical (maximizing methane
production) or ecological (minimizing COD con-
centration of the effluent) or stability (VFA or
dissolved hydrogen) criteria [21], [39]. The con-
troller type depends on many factors such as the
accuracy of the monitoring, knowledge of the
system and availability and complexity of the
considered model. Among the classical controllers
are the proportional-integral (PI) controller, the
proportional integral-differential (PID) controller,
the adaptive PID and the cascade PI controls; all
they have been recognized as a good alternative
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for the regulation of AD plants (cf. [22], [40] and
the references therein). Various advanced control
approaches like expert systems (rule-based and
fuzzy-logic-based systems, neural networks, etc.)
have been recently developed for AD control.

An other type of model-based control designed
for the AD processes, is the linearizing control
[8]. The latter is based on a nonlinear model,
aimed to achieve linear closed-loop dynamics. A
drawback of this method is that it relies of full
knowledge of the system parameters. Later on,
an adaptive linearizing control has been proposed
[35], which ensures global asymptotic stability
of the closed-loop system. When intervals of the
model uncertainties are known a priori, robust
linearizing control based on interval observers
has been proposed in [1], [41] and [45]. Other
recently developed approaches for controlling AD
processes are based on differential geometry [29],
[38]. Sliding mode approaches have been also
used to control anaerobic continuous bioreactors.
Further, the nonlinear adaptive control law, which
is robust with respect to unknown kinetic rates has
been proposed for the global stabilization of AD
processes [35]. Extremum seeking control (ESC) is
another technique to handle dynamic optimization
problems. The goal of ESC is to find the operating
set-point, a priori unknown, such that a perfor-
mance function reaches its extremum value. The
classical extremum seeking approach [36], [37],
[50] is designed in the form of a block diagram
(scheme) that is implemented on the bioreactor
to tune the dilution rate of the open-loop system
towards a set-point, where an optimal value of
the output is achieved. The main limitation in
applying this approach is that the dynamics should
be open-loop stable. Otherwise, a local controller
is necessary to stabilize the system around the
optimal operating point.

Extremum seeking numerical techniques are de-
veloped in recent years to overcome the above
drawbacks. Based on a mathematical model, this
new approach splits the extremum seeking prob-
lem into two steps: global dynamics stabiliza-
tion and application of a numerical optimization

method. In [46] this approach is applied to the
classical two-dimensional model of methane fer-
mentation.

For further information about instrumentation
and control of AD processes we refer the reader
to the excellent review [30].

The present paper is organized as follows.
Section II presents the dynamic model of the
anaerobic wastewater treatment process and gives
an overview of authors’ results on global stabi-
lizability of the model dynamics using different
control strategies. Section III reports on a new re-
sult, concerning a general and practically oriented
stabilization approach by means of an arbitrary
measurable bounded control function.

II. BASIC PROPERTIES AND GLOBAL

STABILIZABILITY OF THE MODEL DYNAMICS

We consider the mass balance model AM1 of
anaerobic wastewater treatment in a continuous
bioreactor, described by the following nonlinear
system of ordinary differential equations (cf. e. g.
[6], [11], [25], [27], [34]):

ds1
dt

= u(si1 − s1)− k1µ1(s1)x1
dx1
dt

= (µ1(s1)− αu)x1

ds2
dt

= u(si2−s2)+k2µ1(s1)x1−k3µ2(s2)x2
dx2
dt

= (µ2(s2)− αu)x2.

(1)

The definition of the state variables s1, s2 and
x1, x2 as well as of the model parameters is
given in Table I. All coefficients are assumed to
be positive. The parameter α ∈ (0, 1) represents
the proportion of bacteria that are affected by
the dilution; α = 0 and α = 1 correspond to
a fed-batch reactor and to a continuously stirred
tank reactor, respectively (cf. [2], [6], [11], [25]).
The input substrate concentrations si1 and si2 are
assumed to be constant. The dilution rate u is
considered as a control (manipulated) input.

The model describes two steps of the AD pro-
cess:
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TABLE I
DEFINITION OF THE MODEL PHASE VARIABLES AND PARAMETERS

s1 concentration of chemical oxygen demand (COD) [g/l]
s2 concentration of volatile fatty acids (VFA) [mmol/l]
x1 concentration of acidogenic bacteria [g/l]
x2 concentration of methanogenic bacteria [g/l]
u dilution rate [day−1]
si1 influent concentration s1 [g/l]
si2 influent concentration s2 [mmol/l]
k1 yield coefficient for COD degradation [g COD/(g x1)]
k2 yield coefficient for VFA production [mmol VFA/(g x1)]
k3 yield coefficient for VFA consumption [mmol VFA/(g x2)]
k4 coefficient [l2/g]
Q methane gas flow rate
m1 maximum acidogenic biomass growth rate [day−1]
m2 maximum methanogenic biomass growth rate [day−1]
ks1 saturation parameter associated with s1 [g COD/l]
ks2 saturation parameter associated with s2 [mmol VFA/l]
kI inhibition constant associated with s2 [(mmol VFA/l)1/2]

(i) acidogenesis, where the organic substrate s1
is degraded into volatile fatty acids (VFA) (s2) by
acidogenic bacteria (x1);

(ii) methanogenesis, where VFA (s2) are
degraded by methanogenic bacteria (x2) into
methane CH4.

The methane solubility is very low, therefore the
methane produced by the second step is not stored
in the liquid phase, thus the output methane flow
rate Q = QCH4

is written in the form

Q = k4µ2(s2)x2. (2)

The model dynamics can be described schemat-
ically by the following biological reaction path-
ways:

Acidogenesis: k1s1
r1(·)−→ x1 + k2s2

Methanogenesis: k3s2
r2(·)−→ x2 + k4Q,

where rj(·), j = 1, 2, are the reaction rates, which
are given by rj(·) = µj(·)xj .

The functions µ1(s1) and µ2(s2) model the spe-
cific growth rates of the microorganisms. Usually,
the model is studied using the following particular
expressions of µ1 and µ2 (cf. [2], [6], [11], [25],

[27])

µ1(s1)=
m1s1
ks1 + s1

(Monod law)

µ2(s2)=
m2s2

ks2 +s2+

(
s2
kI

)2 (Haldane law), (3)

where m1, ks1 , m2, ks2 and kI are positive coef-
ficients (see Table I).

The most crucial problem in investigating AD
models is the formulation of reasonable analytic
expressions for µ1(s1) and µ2(s2). In our theoret-
ical studies on the model (1) we do not assume to
know explicit expressions for µ1 and µ2, we only
impose the following general assumption on the
latter.

Assumption A1. The function µj(sj) is defined
for sj ∈ [0,+∞), µj(0) = 0, µj(sj) > 0 for
sj > 0; µj(sj) is continuously differentiable and
bounded for all sj ∈ [0,+∞), j = 1, 2.

The model (1) exhibits very rich dynamics. Con-
sidering u as a bifurcation parameter, the system
possesses different types of bifurcations of the
equilibrium points, most of them leading to wash-
out of the biomass and thus to process break-down
[10], [14].
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Define

s =
k2
k1
s1 + s2, si =

k2
k1
si1 + si2. (4)

The quantity s is called biological oxygen de-
mand (BOD) and represents the biological equiv-
alent of COD, i. e. the biological equivalent of the
total amount of organic substrate in the digester.
For the practical application it is worth to note
that BOD is online measurable and is used as
a depollution factor in wastewater treatment, see
e. g. [2], [6], [11], [13] and the references therein.

Define the set
Ω0 =

{
(s1, x1, s2, x2) ∈ R4 :

s1 > 0, x1 > 0, s2 > 0, x2 > 0} .
(5)

The basic properties of the model solutions are
summarized in the next lemma, which extends
assertions that are given in [25], [53] and [54].

Lemma 1. Let Assumption A1 be fulfilled. Then
for each point p0 = (s01, x

0
1, s

0
2, x

0
2) ∈ Ω0 the

corresponding solution (s1(t), x1(t), s2(t), x2(t))
of (1) with (s1(0), x1(0), s2(0), x2(0)) = p0 is
defined for each t > 0. Moreover, for each ε > 0
there exists Tε such that for each t > Tε the
following inequalities hold true:

si − ε < s(t) + k3x2(t) <
si

α
+ ε,

si1 − ε < s1(t) + k1x1(t) <
si1
α

+ ε,

s1(t) < si1 and x1(t) ≥ ε.

Below we present some authors’ results related
to global stabilizability of the model dynamics by
means of different control strategies and satisfying
different criteria—the ecological criterion in sub-
sections A and B or the economical criterion in
subsection C.

A. Global stabilizability via input control

Here we investigate the global stabilizability
of the dynamics (1) using the classical approach,
where the dilution rate u is considered as a con-
trol variable. More precisely, we show that for
any admissible value of u there exists a nontriv-
ial (with positive components) equilibrium point,

which is globally asymptotically stable for the
system. Although the manipulated input u is the
most exploited variable for control purposes, to the
authors’ knowledge there is no rigorous proof so
far in the literature for global stabilizability of this
model.

Assume that the control variable u varies in the
interval u ∈ (0, ub), where

ub ≤
1

α
min

{
µ1(s

i
1), µ2(s

i
2)
}
≤ umax.

Let for some ū ∈ (0, ub) the following assump-
tion holds true:
Assumption A2. There exist points s1(ū) = s̄1 ∈(
0, si1

)
and s2(ū) = s̄2 ∈

(
0, si2

)
, such that the

following equalities hold true

ū =
1

α
µ1(s̄1) =

1

α
µ2 (s̄2) .

Assumption A2 is called regulability [25] of the
system: it ensures the existence of a nontrivial
equilibrium of the model (1), corresponding to the
chosen value of the dilution rate u.

Determine the points s̄1 and s̄2 according to
Assumption A2 and compute further

x1(ū) = x̄1 =
si1 − s̄1
αk1

,

x2(ū) = x̄2 =
si2 − s̄2 + αk2x̄1

αk3
.

Then the point

p(ū) = p̄ = (s̄1, x̄1, s̄2, x̄2)

is an equilibrium point of the system (1). In
practical applications, the chosen equilibrium point
is also called an operating or a reference point.

Let s and si be determined according to (4). The
next assumption is

Assumption A3. The following inequalities hold
true:

(i) µj(sj) < µj(s̄j) for sj ∈ (0, s̄j), j =
1, 2;

(ii) µ1(s1) > µ1(s̄1) for s1 ∈ (s̄1, s
i
1);

(iii) µ2(s2) > µ2(s̄2) for s2 ∈ (s̄2, s
i).
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Assumption A3 is technical. It is always fulfilled
when the functions µj(·), j = 1, 2, are monotone
increasing (like the Monod specific growth rate).
If µj(·) is not monotone increasing (like e. g. the
Haldane law) then ū has to be chosen in a proper
way, such that Assumption A3 will be satisfied.

For biological evidence s2 satisfies the inequal-
ity s2 ≤ si2. The requirement s2 < si in As-
sumption A3(iii) is motivated by the fact that si

can be considered as the worst-case upper bound
of the concentration s2 due to imbalance between
acidogenesis and methanogenesis, leading to acid-
ification (x2 = 0) in the bioreactor (cf. [27]).

Let ū ∈ (0, ub) be chosen according to As-
sumptions A2 and A3. Denote by Σ1 the system
obtained from (1) by substituting the control vari-
able u by ū. Then the following Theorem 1 reports
on the global stability of the equilibrium point p̄.

Theorem 1. (cf. [18]) Let the Assumptions A1, A2
and A3 be fulfilled and let p0 = (s01, x

0
1, s

0
2, x

0
2)

be an arbitrary point from the set Ω0. Then the
solution of Σ1 starting from the point p0 converges
asymptotically towards p̄.

A drawback of this control approach is that it
requires exact and full knowledge of the system
states and precise tuning of u to achieve the global
stabilizability. This drawback will be overcome by
applying an output feedback control.

B. Global stabilizability via output feedback con-
trol

This subsection is devoted to global stabilizabil-
ity of the dynamics (1) by means of a feedback
control and in the presence of model uncertainties.
The proposed state feedback is of the form u ≡
κ(s2, x2) = βk4µ2(s2)x2, where β is a properly
chosen positive parameter. The proposed feedback
law is strongly related to the output (2). The
parameter β provides some degrees of freedom
in choosing an admissible reference (equilibrium)
point, usually determined by ecological rules. This
fact is also exploited in designing an extremum
seeking algorithm for maximizing the methane
production in real time (cf. subsection C below).

Consider the dynamical system (1) in the state
space ζ = (s1, x1, s2, x2). Using the definition of
si from (4) we make the following assumption:

Assumption A4. Lower bounds si− and k−4 for
the values of si and k4 respectively, as well as an
upper bound k+3 for the value of k3 are known.

Define the following feedback control law:

κ(ζ) = β k4 µ2(s2) x2 (6)

with

β ∈
(

k+3
si− · k−4

, +∞
)
.

The feedback control law κ(·) can be written in
the form κ(·) = β ·Q(·), where Q is the methane
output (2). For the practical applications it is worth
to note that Q is on-line measurable, so this holds
true for the feedback control κ(·) as well.

Denote by Σ2 the closed-loop system obtained
from (1) by substituting the control variable u by
the feedback κ(ζ) from (6).

Choose some β ∈
(

k+3
si− · k−4

, +∞
)

and let

ξ̄ = si − k3
βk4

;

obviously, ξ̄ belongs to the interval (0, si). The
next assumption is similar to the regulability As-
sumption A2.

Assumption A5. There exists a point s̄1 such that

µ1(s̄1) = µ2

(
ξ̄ − k2

k1
s̄1

)
> 0, s̄1 ∈

(
0, si1

)
.

Find s̄1 according to Assumption A5 and define

s̄2 = ξ̄ − k2
k1
s̄1, x̄1 =

si1 − s̄1
αk1

, x̄2 =
1

αβk4
.

It is straightforward to see that the point

p̄β = (s̄1, x̄1, s̄2, x̄2)

is an equilibrium point of Σ2. We shall show below
that the feedback law (6) stabilizes asymptotically
the closed-loop system towards p̄β (cf. [16]).
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Let Ω0 be defined according to (5). Using the
definitions of s and si from (4), we define the sets

Ω1 = {(s1, x1, s2, x2) :

s1 + k1x1 ≤ si1/α, s+ k3x2 ≤ si/α
}
,

Ω2 =

{(
s1, x1, ξ̄ −

k2
k1
s1, x̄2

)
:

0 < s1 <
k1
k2
ξ̄, x1 > 0

}
,

Ω = Ω0 ∩ Ω1.

Assumption A6. Let the inequality

µ′1(s̄1+θ(s1−s̄1))+
k2
k1
·µ′2
(
s̄2−θ

k2
k1

(s1−s̄1)
)
>0

be satisfied for each s1, belonging to the projection
of the set Ω∩Ω2 on the s1-axis and for each θ ∈
[0, 1].

Assumption A6 is technical. It is always fulfilled
when the functions µj(·), j = 1, 2, are monotone
increasing. If µj(·) is not monotone increasing
then the set-point ξ̄ (or equivalently the value for
β) has to be chosen in a proper way in order to
satisfy Assumption A6.

Theorem 2. (cf. [16]) Let the Assumptions A1,
A4, A5 and A6 be satisfied. Let us fix an ar-

bitrary number β ∈
(

k+3
si− · k−4

,+∞
)

and let

p̄β = (s̄1, x̄1, s̄2, x̄2) be the corresponding equi-
librium point. Then the feedback control law κ(·)
defined by (6) stabilizes asymptotically the control
system Σ2 to the point p̄β for each starting point
ζ0 = (s01, x

0
1, s

0
2, x

0
2) ∈ Ω0.

C. Extremum seeking control

Consider the equation (2) describing the process
output, i. e. the methane production. A model-
based numerical extremum seeking algorithm is
proposed in authors’ publications [14]–[18] to
steer and stabilize the dynamics (1) towards a
steady state, where maximum methane flow rate
Qmax is achieved. For that purpose the function Q
is computed on the set of all equilibrium points,
parameterized with respect to: (i) u in the case
of the input control (Theorem 1), (ii) β in the
case of the output feedback law (Theorem 2).

Denote the so obtained function by Q(q), where
q ∈ (q−, q+) denotes one of u or β, and q− > 0,
q+ > 0 are the corresponding bounds accord-
ing to Theorem 1 or Theorem 2. The function
Q(q) is called input-output static characteristic of
the model. Assume that Q(q), q ∈ (q−, q+), is
strongly unimodal, i. e. there exists a unique point
qmax ∈ (q−, q+) where Q(q) takes a maximum,
Qmax = Q(qmax), the function strictly increases
in the interval (q−, qmax) and strictly decreases in
(qmax, q

+).
Denote by E(q) the equilibrium point parame-

terized on q and let E(qmax) be the steady state
where Qmax is achieved. The goal is to stabilize
in real time the systems Σ1 and Σ2 towards this
(a priori unknown) equilibrium point E(qmax)
and therefore to the maximum methane flow rate
Qmax. This is realized by applying a numerical
model-based extremum seeking algorithm.

The main idea of the algorithm is the following:
a sequence of points q1, q2, . . . , qn, . . . from the
interval (q−, q+) is constructed, each qj being in
the form qj = qj−1 ± hj , hj > 0, and such that
{qj} tends to qmax; Theorems 1 and 2 guaran-
tee that the dynamics is globally asymptotically
stabilizable towards the equilibrium E(qj), j =
1, 2, . . .. Then by computing and comparing the
values Q(q1), Q(q2), . . . , Q(qn), . . ., the desired
equilibrium point E(qmax) and thus Qmax are
achieved.

In the computer implementation the algorithm is
carried out in two stages. In the first stage, “rough”
intervals [q] and [Q] are found which enclose qmax

and Qmax respectively; in the second stage, the
interval [q] is refined using an elimination proce-
dure based on the golden mean value (or Fibonacci
search) strategy. The second stage produces the
final intervals [qmax] = [q−max, q

+
max] and [Qmax]

such that qmax ∈ [qmax], Qmax ∈ [Qmax] and
q+max − q−max ≤ ε, where the tolerance ε > 0 is
specified by the user.

III. OPEN–LOOP CONTROL STABILIZATION

The previous Section II was devoted to global
stabilization of the dynamics (1) towards a previ-
ously chosen equilibrium (operating) point. This
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section proposes a different approach for stabiliz-
ing the model solutions. Instead to an equilibrium
point, the goal here is to steer the model solutions
so that the BOD values s fall onto an interval
[S−, S+], given a priori by ecological rules, and
remain there for all time. This is achieved by
suitably constructed bounded open-loop control.
Assumption A7. Let the functions µj(sj) are
strictly increasing in the intervals (0, sij), j = 1, 2.

Assumption A7 is technical. It is always fulfilled
when the functions µj(sj), j = 1, 2, are presented
by the Monod specific growth rate.

Let s and si be defined according to (4), i. e.

s =
k2
k1
s1 + s2, si =

k2
k1
si1 + si2.

Let us choose an operating (reference) point s∗,

s∗ ∈ (0, si).

Assumption A8 (regulability). There exists a point
s∗1 such that

µ1(s
∗
1) = µ2

(
s∗ − k2

k1
s∗1

)
> 0, s∗1 ∈

(
0, si1

)
.

Find s∗1 according to Assumption A8 and deter-
mine further

s∗2 = s∗ − k2
k1
s∗1, x∗1 =

si1 − s∗1
αk1

,

x∗2 =
si2 − s∗2 + αk2x

∗
1

αk3
=
si − s∗

αk3
.

It is straightforward to see that the point

ζ∗ = (s∗1, x
∗
1, s
∗
2, x
∗
2)

is an equilibrium point of system (1). One can
directly check that the equilibrium points of (1)
satisfy the equalities (cf. the straight line l2 in
Fig. 1)

s1 + αk1x1 = si1, s+ αk3x2 = si.

Denote

u∗ =
1

α
µ1(s

∗
1) =

1

α
µ2(s

∗
2).

Practically, ecological norms prescribe an ad-
missible interval [S−, S+] for the BOD values

s. We choose an arbitrary interval [s−, s+] con-
tained in the interior of [S−, S+], i. e. [s−, s+] ⊂
(S−, S+).

Assumption A9. The positive reals s−1 , s+1 , s−2 ,
s+2 , u− and u+ satisfy the relations

s− =
k2
k1
s−1 + s−2 , s+ =

k2
k1
s+1 + s+2 ,

αu− = µ1(s
−
1 ) = µ2(s

−
2 ),

αu+ = µ1(s
+
1 ) = µ2(s

+
2 ),

0 < s−1 < s∗1 < s+1 < si1,

0 < s−2 < s∗2 < s+2 < si2,

u− < u∗ < u+,

and each point of the interval [u−, u+] is an
admissible value for the dilution rate u.

The imposed boundedness of u in Assumption
A9 is not restrictive. Practically, the dilution rate
is associated with the speed of the feeding pump
of the bioreactor and so, there are always a lower
bound u− and an upper bound u+ for u (see [25]
for more details).

It follows from (4) and Assumption A9 that

0 < s− < s∗ < s+ < si.

Consider the following open-loop system Σ3

ds1
dt

= χ(t)(si1 − s1)− k1 µ1(s1) x1 (7)

dx1
dt

= (µ1(s1)− αχ(t)) x1 (8)

ds2
dt

= χ(t)(si2 − s2)− k2µ1(s1)x1
−k3µ2(s2)x2 (9)

dx2
dt

= (µ2(s2)− αχ(t))x2, (10)

obtained from system (1) after replacing u by
an arbitrary bounded measurable control function
χ(t) such that

χ(t) ∈ [u−, u+] for each t ≥ 0. (11)

Consider first the subsystem (7)–(8), which
equations do not depend on s2 and x2.

Let s11 and s21 be arbitrary real numbers, satisfy-
ing the inequalities 0 < s11 < s−1 < s+1 < s21 < si1.
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Fig. 1. The parallelogram L(s1, s2) = ABCD, A = (s1, x12), B = (s1, x̃12), C = (s2, x22), D = (s2, x̃22); the parallelogram
L(s−, s+) = EFGH , E = (s−, x−2 ), F = (s−, x̃−2 ), G = (s+, x+2 ), H = (s+, x̃+2 ); the lines l1 : s + k3x2 = si,
l2 : s+ αk3x2 = si, l3 : s+ k3x2 = si/α.

Denote by L(s11, s
2
1) the parallelogram deter-

mined by the points (s11, x
1
1), (s11, x̃

1
1), (s21, x

2
1) and

(s21, x̃
2
1), where the reals x11, x̃11, x21 and x̃21 are the

solutions of

s11 + αk1x
1
1 − si1 = 0, s21 + αk1x

2
1 − si1 = 0,

s11 + k1x̃
1
1 = s21 + k1x

2
1, s11 + k1x

1
1 = s21 + k1x̃

2
1.

Analogously, a parallelogram L(s−1 , s
+
1 ) can be

defined. For reader’s convenience we note that
L(s11, s

2
1) and L(s−1 , s

+
1 ) are similar to the paral-

lelograms on Fig. 1 with s1 and x1 instead of s
and x2 respectively.

The following assertion holds true for the open-
loop subsystem (7)–(8).

Theorem 3. (cf. [19]) Let the restriction of As-
sumptions A1, A7, A8 and A9, concerning s1,
x1 and µ1(s1) be fulfilled. Then for each point
ζ01 = (s01, x

0
1) ∈ {(s1, x1) : s1 > 0, x1 >

0} and for each measurable function χ(t) ∈
[u−, u+], t ≥ 0, the corresponding solution
ϕ1(t, ζ

0
1 ) = (s1(t), x1(t)) of (7)–(8) with s1(0) =

s01 and x1(0) = x01 is well defined for all t ∈
[0,+∞) and tends to the parallelogram L(s−1 , s

+
1 )

as t→ +∞.

Below we shall prove a similar result related to
the whole open-loop system (7)–(10).

Let us choose arbitrary real numbers s1 and s2,
satisfying the inequalities

0 < s1 < s− < s+ < s2 < si. (12)

Denote by L(s1, s2) the parallelogram determined
by the points (s1, x12), (s1, x̃12), (s2, x22) and
(s2, x̃22), where the reals x12, x̃12, x22 and x̃22 are
solutions of the equations

s1 + αk3x
1
2 − si = 0,

s2 + αk3x
2
2 − si = 0,

s1 + k3x̃
1
2 = s2 + k3x

2
2,

s1 + k3x
1
2 = s2 + k3x̃

2
2.

(13)

The parallelograms L(s1, s2) and L(s−, s+) are
visualized on Fig. 1.
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Let the set Ω0 be defined according to (5) and
ζ0 = (s01, s

0
2, x

0
1, x

0
2) ∈ Ω0 be an arbitrary point.

Denote by ϕ(t, ζ0) = (s̄1(t), s̄2(t), x̄1(t), x̄2(t)),
t ≥ 0, the corresponding solution of the
open-loop system Σ3 (i. e. of (7)–(10)) with
(s̄1(0), s̄2(0), x̄1(0), x̄2(0)) = ζ0. According to
Lemma 1, ϕ(t, ζ0) is bounded and well defined
for each t ∈ [0,∞).

If we set s̄(t) :=
k2
k1
s̄1(t) + s̄2(t) and s0 =

s(0) =
k2
k1
s̄1(0) + s̄2(0), then one can verify that

(s̄(t), x̄2(t)), t ≥ 0, satisfy the following open-
loop system starting from the point (s0, x02):

ds

dt
= u(si − s)− k3 µ2(s2) x2

dx2
dt

= (µ2(s2)− αu) x2,
(14)

where χ is defined by (11).
With s̃ > 0, x̃2 > 0 and δ > 0 we define

B(s̃, x̃2; δ) :={(s, x2) : |s−s̃| ≤ δ, |x2−x̃2| ≤ δ}.

Proposition 1. Let the Assumptions A1, A7,
A8 and A9 be fulfilled, and χ : [0,+∞) →
[u−, u+] be the measurable function defined by
(11). Then for each point (s̃, x̃2) from the bound-
ary of L(s1, s2) there exists δ > 0 such that if
(s̄(τ), x̄2(τ)) ∈ B(s̃, x̃2; δ) for some sufficiently
large τ ≥ 0, then there exists T > τ so that the
point (s̄(T ), x̄2(T )) belongs to the interior of the
set L(s1, s2) \ L(s−, s+).

Proof: Let us fix an arbitrary point (s̃, x̃2)
from the boundary of L(s1, s2) and let τ0 ≥ 0 be
a sufficiently large positive number so that

s̄1(τ) ∈
(
s−1 − η, s

+
1 + η

)
(15)

for each τ ≥ τ0, where

η :=
k1
3k2

min
{
s− − s1, s2 − s+

}
> 0. (16)

We define

z :=

(
s
x2

)
,

f(z, u, s2) :=

(
−k3µ2(s2)x2 + u(sin − s)

(µ2(s2)− αu)x2

)
.

Let r > 0 be sufficiently small, so that
B(s̃, x̃2; r) ∩ L(s−, s+) = ∅. We set

L = max{‖f ′z(z, u, s2)‖ : z ∈ B(s̃, x̃2; r),

u ∈ [u−, u+], s2 ∈ [ms
2,M

s
2 ]},

where [ms
2,M

s
2 ] is an interval containing the val-

ues of s̄2(t) for t ≥ 0, f ′z(z, u, s2) is the Jacobian
of f with respect to z calculated at the point
(z, u, s2), and ‖ · ‖ is the Euclidean norm.

Let τ be an arbitrary number in (τ0,+∞).
Without loss of generality we may find T0 > τ
such that T0 − τ > 0 is so small that the solution
z̃(·) := (s̃(·), x̃2(·)) of (14), starting from the
point z̃ = (s̃, x̃2)

T at the moment of time τ is
well defined on the interval [τ, T0] and z̃(t) ∈
B(s̃, x̃2; r/2).

Let us choose δ0 > 0 to be sufficiently small,
so that for each point z ∈ B(s̃, x̃2; δ0) the solution
of Σ3, starting from the point z at the moment of
time τ is well defined on [τ, T0] and the following
inequality holds true

3eL(T0−τ)δ0 < r. (17)

Let z be an arbitrary point from B(s̃, x̃2; δ0) and
z(t) be the value at the moment of time t of the
solution of (14) starting from the point z at the
moment of time τ . We set

T1 := sup{t ∈ [τ, T0] : z(t) ∈ B(s̃, x̃2; r)}.

Clearly T1 > τ . Moreover, for each t ∈ (τ, T1] we
have that

‖z(t)−z̃(t)‖ ≤ ‖z+

∫ t

τ
f(z(ξ), χ(ξ), s̄2(ξ))dξ−z̃

−
∫ t

τ
f(z̃(ξ), χ(ξ), s̄2(ξ))dξ‖ ≤ ‖z − z̃‖

+

∫ t

τ
‖f(z(ξ), χ(ξ), s̄2(ξ))−f(z̃(ξ), χ(ξ), s̄2(ξ))‖dξ

≤ ‖z − z̃‖+

∫ t

τ
L‖z(ξ)− z̃(ξ)‖dξ.

Applying the Gronwall inequality we obtain

‖z(t)− z̃(t)‖ ≤ eL(t−τ)‖z − z̃‖ ≤ eL(T0−τ)δ0

<
r

3
for each t ∈ (τ, T1]

(18)
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according to the choice of δ0 from (17), and
hence ‖z(t)‖ ≤ ‖z̃(t)‖ + ‖z(t) − z̃(t)‖. This
means that z(t) ∈ B(s̃, x̃; r/2) + B(0; r/3) =
B(s̃, x̃; 5r/6) ⊂ B(s̃, x̃; r). From this inclusion,
applied for t = T1, we obtain that T1 = T0.

Assume first that (s̃, x̃2) = (s̃(τ), x̃2(τ)) =
(s1, x12), i. e. (s̃, x̃2) coincides with the point A
in Fig. 1.

Without loss of generality, we may think that

δ0 ∈
(

0,
1

2
min{s− − s1, s2 − s+}

)
.

Let us assume that (s̄(τ), x̄2(τ)) ∈ B(s̃, x̃2; δ0).
Using the relations (15) and (16), we obtain that

s̄2(τ) = s̄(τ)− k2
k1
s̄1(τ)

≤ s̃+ δ0 −
k2
k1

(
s−1 −

k1
3k2

(s− − s1)
)

= s1 − k2
k1
s−1 +

s− − s1

3
+ δ0

= s− − (s− − s1)− k2
k1
s−1 +

s− − s1

3
+ δ0

= s− − k2
k1
s−1 − (s− − s1) +

s− − s1

3
+ δ0

= s−2 −
2(s− − s1)

3
+ δ0

< s−2 −
s− − s1

6
< s−2 .

Then for each

T ∈
(
τ,min

{
τ +

s− − s1

12M s
2

, T0

})
(19)

we have that

s̄2(t) = s̄2(τ) +

∫ t

τ

˙̄s2(σ)dσ

< s−2 −
s− − s1

6
+ (T − τ)M s

2

< s−2 −
s− − s1

12

(20)

for each t ∈ (τ, T ] . We set

κ := µ2(s
−
2 )− µ2

(
s−2 −

s− − s1

12

)
> 0.

Then, using (20) and Assumption A9, we obtain
that
d

dt
x̃2(t) = x̃2(t)(µ2(s̄2(t))− αχ(t))

≤ x̃2(t)(µ2(s̄2(t))− µ2(s−2 )) ≤ −κx̃2(t) < 0,

and hence

x̃2(t) < e−κ(t−τ)x̃2(τ) = e−κ(t−τ)x12 < x12 (21)

for each t ∈ (τ, T ]. The equality (s̃(τ), x̃2(τ)) =
(s1, x12) implies s̃(τ) + k3x̃2(τ) − d = 0, where
d := si + (1− α)k3x

1
2. Using the presentation

d

dt
(s̃(t) + k3x̃2(t)− d) =

− χ(t)(s̃(t) + k3x̃2(t)− d)

+ (1− α)k3χ(t)(x̃2(t)− x12),
we obtain that
s̃(t) + k3x̃2(t)− d =

−
∫ t

τ
e
∫ ζ
t
χ(ξ)dξ(1−α)k3χ(ζ)(x12−x̃2(ζ))dζ< 0

(22)
for each t ∈ (τ, T ].

As it was shown above, we have that for each
t ∈ (τ, T ], z̃(t) ∈ B(s̃, x̃; r/2) and B(s̃, x̃2; r/2)∩
L(s−, s+) = ∅. Moreover, the estimate (20) im-
plies that

µ2(s̄2(t)) < µ2(s
−
2 )− κ.

Taking into account this inequality, (21) and (13),
we obtain that
ds̃(t)

dt
= −k3µ2(s̄2(t))x̃2(t) + χ(t)(si − s̃(t))

> −k3(µ2(s−2 )−κ)e−κ(t−τ)x12+u−(si−s1)
> −k3µ2(s−2 )x12 + u−(si − s1) = 0

for each t ∈ (τ, T ]. Then for each T satisfying
(19) the inequality s̃(t) > s1 holds true for each
t ∈ (τ, T ]. So, we obtain that

s̃(t) ∈ (s1, s−) for each t ∈ (τ, T ]. (23)

Also, without loss of generality, we may think
that
L(s1, s2) ∩B(s1, x12; r)

= {(s, x2) : s ≥ s1, s+k3x2 ≤ d} ∩B(s1, x12; r).
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Taking into account (22) and (23), we obtain
from here that the point z̃(T ) = (s̃(T ), x̃2(T ))
belongs to the interior of the set L(s1, s2) \
L(s−, s+). Hence there exists γ > 0 so that
B(s̃(T ), x̃2(T ); γ) is a subset of the interior of
L(s1, s2) \ L(s−, s+).

Next we choose an arbitrary δ from the interval(
0, γe−L(T−τ)

)
and assume that for some τ > τ0

the point (s̄(τ), x̄2(τ)) ∈ B(s̃, x̃2; δ) (note that the
real δ > 0 does not depend on τ and on T , but on
the difference T−τ ). Having fixed δ and τ , we fix
an arbitrary T according to (19). For this choice
of the real T we apply (18) with δ instead of δ0
and obtain that the point (s̄(T ), x̄2(T )) belongs
to B(s̃(T ), x̃2(T ); γ), and hence it belongs to the
interior of the set L(s1, s2) \ L(s−, s+).

The remainder cases concerning the location of
the point (s̃, x̃2) on the boundary of the parallel-
ogram L(s1, s2) can be considered in analogous
way. This completes the proof of Proposition 1.

Corollary 1. Let the Assumptions A1, A7, A8 and
A9 be fulfilled, and χ : [0,+∞)→ [u−, u+] be the
measurable function defined by (11). Then for each
point (s̃, x̃2) from the boundary of L(s1, s2) there
exists δ > 0 such that if (s̄(τ), x̄2(τ) ∈ B(s̃, x̃2; δ)
for some sufficiently large τ ≥ 0, then there exists
T > τ so that (s̃(t), x̃2(t)), t ∈ (τ, T ], belongs
to the interior of the set L(s1, s2) \ L(s−, s+),
where (s̃(t), x̃2(t)) denotes the solution at the
time moment t of (9)–(10) with initial condition
s̃(τ) = s̃ and x̃2(τ) = x̃2.

Theorem 4. Let the Assumptions A1, A7, A8
and A9 be fulfilled. Let ζ0 = (s01, s

0
2, x

0
1, x

0
2) ∈

Ω0 be an arbitrary point and ϕ(t, ζ0) =
(s̄1(t), s̄2(t), x̄1(t), x̄2(t)), t ≥ 0, be the corre-
sponding solution of the open-loop system Σ3

(i. e. of (7)–(10)) with ϕ(0, ζ0) = ζ0, where
the measurable function χ is defined according
to (11). Then (s̄1(t), x̄1(t)) and (s̄(t), x̄2(t)) tend
to the parallelograms L(s−1 , s

+
1 ) and L(s−, s+)

respectively, as t→ +∞.

Proof: Let ζ0 = (s01, s
0
2, x

0
1, x

0
2) ∈ Ω0

be an arbitrarily fixed point and ϕ(t, ζ0) =
(s̄1(t), s̄2(t), x̄1(t), x̄2(t)), t ≥ 0, be the corre-
sponding solution of the open-loop system Σ3.
Theorem 3 implies that (s̄1(t), x̄1(t)) tends to the
parallelogram L(s−1 , s

+
1 ) as t→ +∞.

One can directly check that (s̄(t), x̄2(t)) is a tra-
jectory of (9)–(10) starting from the point (s0, x02),

where s0 :=
k2
k1
s01 + s02.

We consider the following two cases:

Case 1. s(t) + k3x2(t) ≥
si

α
for each t ≥ 0

(cf. Fig. 1).
According to Lemma 1 we have that for each

ε > 0 there exists T1 > 0 such that

si

α
≤ s(t) + k3x2(t) <

si

α
+ ε

for each t ≥ T1. Hence s(t) + k3x2(t)→ si/α as
t→∞.

Let (s(tk), x2(tk))→ (ŝ, x̂2) for some sequence
tk → ∞ as k → ∞. Clearly, ŝ + k3x̂2 = si/α
holds true. Without loss of generality we may think
that

s̄1(tk)→ ŝ1 ≥ s−1 and s̄2(tk)→ ŝ2 ≥ 0

as tk → +∞. Because

s(tk) =
k2
k1
s1(tk) + s2(tk),

we obtain that

ŝ =
k2
k1
ŝ1 + ŝ2 ≥

k2
k1
s−1 > 0.

Then the relations ŝ > 0 and ŝ + k3x̂2 =
si

α
imply

ŝ+αk3x̂2 =
si

α
−(1−α)k3x̂2 >

si

α
−(1−α)

si

α
= si.

Hence there exists δ > 0 such that each point
(s, x2) satisfying the inequalities |s − ŝ| < δ and
|x2− x̂2| < δ satisfies the inequality s+αk3x2 >
si, too. We set

M =

max
{
(|u(si−s)−k3µ2(s2)x2|, |x2(µ2(s2)−αu)|) :

u∈ [u−, u+], |s−ŝ|≤δ, |x2−x̂2|≤δ, s2∈ [0,M s
2 ]}
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and

m=min
{
s+αk3x2−si : |s−ŝ|≤δ, |x2−x̂2|≤δ

}
.

According to the choice of δ > 0, we have that
m > 0. Next we choose the positive reals τ and ε
so small that the following inequalities hold true:

2τM < δ and 2ε < τmu−. (24)

Denote q(t) := s(t) + k3x2(t)−
si

α
and choose tk

so large that

|s(tk)−ŝ| <
δ

2
, |x2(tk)−x̂2| <

δ

2
, 0 < q(tk) < ε.

We set
τ̄ := sup{σ̃ ∈ [0, τ ] : |s(tk + σ)− ŝ| < δ,

|x2(tk + σ)− x̂2| < δ for each σ ∈ [0, σ̃]}.
Clearly τ̄ > 0. Then, using (24) we obtain that for
each σ̃ ∈ [0, τ̄)

|s(tk + σ̃)− ŝ| =
∣∣∣∣s(tk) +

∫ tk+σ̃

tk

ṡ(ξ)dξ − ŝ
∣∣∣∣

≤ |s(tk)− ŝ|+∫ tk+σ̃

tk

|χ(ξ)(si−s(ξ))−k3µ2(s2(ξ))x2(ξ)|dξ

≤ δ

2
+ τM < δ

and

|x(tk+σ̃)−x̂2| =
∣∣∣∣x2(tk)+

∫ tk+σ̃

tk

ẋ2(ξ)dξ−x̂2
∣∣∣∣

≤ |x2(tk)− x̂2|

+

∫ tk+σ̃

tk

|µ2(s2(ξ))x2(ξ)− αχ(ξ)x2(ξ)|dξ

≤ δ

2
+ τM < δ.

These inequalities imply that τ̄ = τ , and then for
each τ̃ ∈ [0, τ ] we have

|s(tk + τ̃)− ŝ| < δ and |x2(tk + τ̃)− x̂2| < δ.

On the other hand we have that

q(tk + τ) = q(tk) +

∫ tk+τ

tk

q̇(ξ)dξ

= s(tk) + k3x2(tk)−
si

α

−
∫ tk+τ

tk

χ(ξ)(s(ξ) + αk3x2(ξ)− si)dξ

< ε−mτu− < −ε.

This contradicts the assumption that q(t) = s(t)+
k3x2(t)− si/α ≥ 0 for each t ≥ 0 and shows that
Case 1 is impossible.

Case 2. s(t) + k3x2(t) ≤ si for each t ≥ 0.
Similarly to the previous case 1, one can easily

show that this case 2 is also impossible.

Since the previous two cases 1 and 2 are im-
possible, there exists t1 > 0 so that

si < s(t1) + k3x2(t1) <
si

α
and 0 < s(t1) < si.

If (s(t1), x2(t1)) ∈ L(s−, s+), we are done. If
(s(t1), x2(t1)) 6∈ L(s−, s+) then there exists a
parallelogram L(s1, s2) determined by (12) and
(13) such that the point (s(t1), x2(t1)) belongs
to the boundary of L(s1, s2), and L(s−, s+) is
contained in the interior of L(s1, s2).

Let L+ be the set of all ω-limit points of the tra-
jectory (s̄(t), x̄2(t)) as t→∞, i. e. (s̄, x̄2) ∈ L+

iff there exists a sequence tk tending to infinity
as k → ∞ and such that (s̄(tk), x̄2(tk)) tends
to (s̄, x̄2) as k → ∞ (cf. [52]). According to
Proposition 1, the set L+ is a nonempty compact
subset of the parallelogram L(s1, s2).

Let us assume the existence of a point (s̄, x̄2) ∈
L+ such that the distance between this point and
the set L(s−, s+) is strictly positive. We denote
by L(s̄1, s̄2) a parallelogram such that the point
(s̄, x̄2) belongs to its boundary and L(s−, s+)
is contained in the interior of L(s̄1, s̄2). Now,
applying Proposition 1 to the point (s̄, x̄2), the
parallelogram L(s̄1, s̄2) and the function χ from
(11), we obtain that there exists a neighbor-
hood B(s̄, x̄2; δ) of the point (s̄, x̄2) such that if
(s̄(τ̄), x̄2(τ̄) ∈ B(s̄, x̄2; δ) for some sufficiently
large τ̄ ≥ 0, then there exists T > τ̄ so that the
point (s̄(T ), x̄2(T )) belongs to the interior of the
set L(s̄1, s̄2) \ L(s−, s+).

Because (s̄, x̄2) is a ω-limit point, there exists
a moment of time τ > τ̄ so that (s̄(τ), x̄2(τ)) ∈
B(s̄, x̄2; δ). According to Proposition 1, there ex-
ists T > τ such that (s̄(T ), x̄2(T )) belongs to the
interior of the set L(s̄1, s̄2) \ L(s−, s+).

Denote by L(ŝ1, ŝ2) a parallelogram containing
the point (s̄(T ), x̄2(T )) on its boundary, contain-
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ing L(s−, s+) in its interior and contained in the
interior of L(s̄1, s̄2). According to Corollary 1,
the solution (s̄(t), x̄2(t)), t ≥ T , will remain in
L(ŝ1, ŝ2). But this is impossible, because (s̄, x̄2)
is a ω-limit point. This contradiction completes the
proof of Theorem 4.

IV. CONCLUSION

We investigate a four-dimensional nonlinear dy-
namic system, which models anaerobic degrada-
tion of soluble organic wastes in a continuous
bioreactor with methane production. The main
result of the paper (Section III) is the construction
of a general and practically oriented approach for
stabilizing the model. The aim is to ensure in
finite time the values of BOD (denoted by s) to
fall onto a given interval [S−, S+], determined
by known ecological norms, and to remain there
for all time. The approach is based on suitably
constructed open-loop control by means of an
arbitrary bounded measurable function. The open-
loop control approach can serve as a valuable tool
for stability investigations using concrete control
functions, in particular in the presence of time
delays. This new technique can also be considered
as a generalization of the previous authors’ results,
presented in Section II, which are related to global
stabilizability of the model dynamics towards an
equilibrium (operating) point using different con-
trol approaches.
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