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Abstract—In this paper we propose a nonlinear
reaction-diffusion system describing the interaction
between toxin-producing phytoplankton and fish
population. We analyze the effect of self- and
cross-diffusion on the dynamics of the system. The
existence, uniqueness and uniform boundedness of
solutions are established in the positive octant. The
system is analyzed for various interesting dynamical
behaviors which include boundedness, persistence,
local stability, global stability around each equilibria
based on some conditions on self- and cross-diffusion
coefficients. The analytical findings are verified by
numerical simulation.
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I. INTRODUCTION

The economic importance of fishing, the interest
of fishermen in maximizing yields from natural
stands and the need for responsible authorities to
ensure the safeguarding of stocks through mea-
sures are powerful reasons for prioritizing re-
search on dynamics of populations exploited in

fisheries. Phytoplankton comprises most of the
primary energy sources in aquatic food webs, and
it accounts for a large proportion of the world’s
fixed production. Phytoplankton is consumed by
zooplankton, which provides food for fish and
other aquatic animals. In fact, the phytoplankton
can also render very useful services by producing
a huge amount of oxygen for other animals af-
ter absorbing carbon dioxide from environments.
Thus, plankton forms the basis of all aquatic food
chains and it has an essential role in the study of
marine ecology [18], [19]. Pollution of freshwater
and marine systems by anthropogenic sources has
become a concern over the last decades. Research
into bloom dynamics is widespread with a special
emphasis on harmful algal blooms. In the past
two decades, there have been major increases in
harmful plankton blooms in aquatic ecosystems
[6], [25]. Studies have shown that there are at least
eight different modes and mechanisms that allow
harmful phytoplankton species to cause mortality,
physiological impairment, or other negative in situ
effects [11], [24]. It is well known that the toxin-

Copyright: c© 2019 Ouedraogo et al. This article is distributed under the terms of the Creative Commons Attribution License
(CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and
source are credited.
Citation: Hamidou Ouedraogo, Wendkouni Ouedraogo, Boureima Sangaré, Mathematical analysis of
toxin-phytoplankton-fish model with self-diffusion and cross-diffusion, Biomath 8 (2019), 1911237,
http://dx.doi.org/10.11145/j.biomath.2019.11.237 Page 1 of 13

http://www.biomathforum.org/biomath/index.php/biomath
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.11145/j.biomath.2019.11.237


H. Ouedraogo, W. Ouedraogo, B. Sangaré, Mathematical analysis of toxin-phytoplankton-fish model ...

producing phytoplankton has important impacts on
the growth of the fish and thus, studies of marine
plankton are ubiquitous and significant [19], [22],
[1], [2].

Recently, the attention has been focused on the
role of the toxic space in explaining the hetero-
geneity and the distribution of the toxin-producing
phytoplankton species and the influence of the
spatial structure on their abundance [14], [19],
[3], [4]. However, the very question of the in-
teractions between toxin-producing phytoplankton
and fish depending on space is far from being
fully elucidated. Some have recognized the role
of toxin-producing phytoplankton in reducing the
grazing pressure of some aquatic species [8], [12],
[5]. In [7], a two-species model comprise a toxin-
producing phytoplankton and zooplankton popula-
tion was studied. They concluded that the toxin-
producing phytoplankton makes a stabilizing con-
tribution to aquatic systems. In [12], the dynamical
behaviors of toxin-producing phytoplankton and
fish were investigated, where the phytoplankton
was divided into two groups, susceptible and in-
fected phytoplankton. In [28], it is considered the
complex patterns in a predator prey model to an-
alyze the diffusion-driven instability and stability,
as well as cross-diffusion of the predator, under the
influence of prey in the spatial model. Their results
indicate the influence of cross-diffusion of the
predator-prey populations. Thus, we can consider
the effects of more complex cross-diffusion in
marine ecosystems in the fish and phytoplankton
dynamics. These works have studied the influence
of diffusion on toxin plankton system and obtained
some good results [22], [14], [12], [19], [8].

However, the influence of cross-diffusion on
the toxin phytoplankton and fish ecosystem was
seldom considered. In ecology, cross-diffusion im-
plies counter-transport and it means that the prey
exercised a self-defense mechanism to protect
against attack by a predator, different from the self-
diffusion and the values of cross-diffusion may be
positive or negative. But, positive cross-diffusion
indicates that one species tends to move in the
direction with a lower concentration of another

species, whereas negative cross-diffusion denotes
that the population tends to move in the direction
with a higher concentration of another species
[14], [25], [21]. In order to study the influence
of cross-diffusion in the toxic plankton ecosystem,
we propose in this paper, a toxin-phytoplankton-
fish system with self- and cross-diffusion. Cross-
diffusion expresses the population fluxes of one
species due to the presence of the other species.
The model considered consists of two interactive
components phytoplankton P, herbivores F and is
of the reaction-diffusion type which describes the
dynamics of the phytoplankton-fish system in the
sense of the work of [28], [9], [19], [10], [21].

The paper is organized as follows. We proceed
by the mathematical modeling of the dynamics of
the fish and phytoplankton system in Section 2.
As far as Section 3 is concerned, we will only
establish mathematical results with self-diffusion
and cross-diffusion such as the existence of solu-
tion, stability of equilibria, persistence related to
the constructed model. Section 4 will be devoted
to numerical experiments to illustrate the mathe-
matical results. Finally, Section 5 is used for the
conclusion and perspectives.

II. MATHEMATICAL MODEL

In this section, we propose a model to describe
the dynamics of the fish-phytoplankton system in
the presence of toxin. We will take into account
two fundamental ecological aspects, namely self-
diffusion and cross-diffusion in the modeling. In
order to reach the final model, we will begin
to establish a series of models. We begin the
model formulation by a general model describing
the dynamics of predator and prey, based on the
equations with ordinary derivatives and then we
transform this model into a model of reaction-
diffusion type while remaining in the logic of the
work of F. Courchamp [9], [11], [12]. We then
proceed by the choice of the functions involved
in the general model to obtain the model of the
fish-phytoplankton system.
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A. Formulation of original model

Let P be the density of the prey and F be the
density of the predator. The general model at any
time t > 0, is written as follows:


dP
dt

= φ1(P)−g2(P,F)F

dF
dt

= g3(P,F)F−g4(P,F)F

(1)

where

• φ1,g2,g3 and g4 are positive and C ∞ func-
tions,

• φ1(P) is the growth function of the prey
population,

• g2(P,F) is the function that measures the
amount of prey consumed by a predator per
time unit,

• g3(P,F) is the conversion efficiency of in-
gested prey into new predators,

• g4(P,F) is the mortality of the predator.

We continue our modeling by fixing the expres-
sions of the functions intervening in system (1) in
order to obtain the particular system (2), [28], [9],
[19], [13]. Hence, we fix by:

• P, the phytoplankton density and F , the fish
density,

• φ1(P) = rp − r1 − mext
1 − r2P, the intrinsic

growth rate of the phytoplankton,

• g2(P,F) =
α0P

P+ γ
, the amount of phytoplank-

ton consumed by a fish per time unit,

• g3(P,F) =
α1P

P+ γ
, the conversion efficiency

of ingested phytoplankton into new fishes,

• g4(P,F) = ν1+mext +ν2F +
θpP

P+ γ
, the mor-

tality of the fish.

Then, the biological schematic of the overall
model is presented in Figure 1. According to
Figure 1, for any time t > 0, the dynamics of
the phytoplankton (prey)-fish (predator) system is

Fish Phytoplankton

ν1 +mext +ν2 +θp r1 +mext
1 + r2 +α0

Figure 1. Typical ecological situation presented by toxin-
producing phytoplankton-fish food-chain model

governed by the following ODE system:

dP
dt

= rpP− r1P−mext
1 P− r2P2−

α0PF
P+ γ

= f(P,F), P(0) = P0 ≥ 0

dF
dt

=
α1PF
P+ γ

−ν1F−mextF−ν2F2−
θpPF
P+ γ

= g(P,F), F(0) = F0 ≥ 0

(2)

where,

•
PF

P+ γ
is Holling type II response function,

• rp− r1−mext
1 is the intrinsic growth rate of

the phytoplankton,
• rp and r1 denote respectively, the growth rates

of phytoplankton and the natural mortality
rate of phytoplankton,

• r2 and mext
1 denote respectively, the mortality

due to competition between individuals of the
species P and the external mortality of the
phytoplankton,

• α0 and γ are respectively, the predation rate of
fish and half-saturation constant for a Holling
type II functional response,

• α1 and ν1 are respectively, the biomass con-
sumption rate by fish during its growth and
fish’s natural mortality rate,

• mext and ν2 are respectively, the external
mortality rate of fish and the mortality rate
of the fish intra-species competition,
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• θp is the rate of toxin released by the phyto-
plankton population,

• rp > r1 +mext
1 (basic assumption).

B. A spatially structured model

Considering the relationship between the diffu-
sion of species and the fact on the existence of
diffusion in population, system (1) is developed
into a spatial system with diffusion.

Let consider Ω ⊂ Rn (n ≥ 2), where the two
species evolve. In order to take into account the
self-diffusion and the cross-diffusion, we consider
the following diffusion terms for x ∈Ω:
• δ0(x) is the self-diffusion terms of the prey

population,
• δ1(x) is the cross-diffusion terms of the

predator population,
• δ2(x) is the cross-diffusion terms of the prey

population,
• δ3(x) is the self-diffusion terms of the preda-

tor population.
Based on the work established in [18], the reaction
diffusion model associated with model (1) can be
modeled for x ∈Ω, t > 0 as follows:

∂tP−div(δ0(x)∇P)−div(δ1(x)∇F) =
φ1(P)−g2(P,F)F ,

∂tF−div(δ2(x)∇F)−div(δ3(x)∇P) =
g3(P,F)F−g4(P,F)F .

(3)

We consider the zero-flux boundary condition of
the two species.

δi(x)∇Q(x, t) ·ν(x) = 0, i = 0,1,2,3,

x ∈ ∂ Ω, t > 0, Q = P, F

where ν is the unit vector normal to ∂ Ω on Ω and
the initial positive and bounded conditions

Q(x,0) = Q0(x) > 0, Q = P,F , x ∈Ω.

We make the following assumptions:
(Ha) : all demographic parameters of the system

(2) are positive constants,
(Hb) : the diffusion coefficients of the system (3)

are independent of the spatial variable.

By considering δ0(x) = δ0, δ1(x) = δ1, δ2(x) =
δ2, δ3(x) = δ3, according to (Hb) and by taking
into account (Ha), the model obtained previously
becomes:

∂P
∂ t

= rpP− r1P−mext
1 P− r2P2

−α0FP
P+ γ

+ δ0∆P+ δ1∆F ,

∂F
∂ t

=
α1PF
P+ γ

−ν1F−mextF−ν2F2

−
θpPF
P+ γ

+ δ2∆P+ δ3∆F .

(4)

III. MAIN THEORETICAL RESULTS

In the framework of the mathematical study, we
reduce our parameters in the following way: r =
r1 +mext

1 and ν = ν1 +mext .

A. Partial results for the ODE system

Then, we obtain the following system
dP
dt

= rpP−rP−r2P2−α0FP
P+γ

= f (P,F),

dF
dt

=
α1PF
P+γ

−νF−ν2F2−
θpPF
P+γ

=g(P,F).

(5)

Proposition III.1. [16], [17], [26] If P(0)≥ 0 and
F(0) ≥ 0, then system (5) has a unique solution
defined on the interval [0,∞). The set {P≥ 0, F ≥
0} is positively invariant.

Proposition III.2. [19], [20], [27] The following
equilibrium points exist for system (5).
(i) The trivial equilibrium point is E0 = (0,0).

This equilibrium is always unstable.
(ii) The trivial state of the fish is

E1 =

(
rp− r

r2
,0
)

. This equilibrium

is locally asymptotically stable if

ν >
(α1−θp)(rp− r)

r2γ + rp− r
.

Proof: Let us consider the following system
rpP− rP− r2P2− α0FP

P+ γ
= 0,

α1PF
P+ γ

−νF−ν2F2−
θpPF
P+ γ

= 0.

(6)
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System (6) has two semipositive equilibrium
points E = (P∗,F∗): E0 = (0,0) and E1 =(

rp− r
r2

,0
)

.

(i) P = 0⇒ F = 0, then we obtain the equilib-
rium E0,

(ii) F = 0⇒ P =
rp− r

r2
and we have the equi-

librium E1,
We consider now the Jacobian matrix at the point
(P,F) defined by:

J(P,F) =
rp−r−2r2P− α0γF

(P+γ)2 − α0P
γ+P

−
(α1−θp)γF
(γ+P)2 −ν−2ν2F+

(α1−θp)P
γ+P


(i) It is sufficient to note that det(J(E0)) =
−ν(rp− r) to conclude.

(ii) Similarly, the eigenvalues of J(E1) are r− rp

and −ν +
(α1−α0)(rp− r)

r2γ + rp− r
. So we get the

result when ν >
(α1−θp)(rp− r)

r2γ + rp− r
. �

We consider κ =
rp− r− r2γ

2r2
and we define the

following functions for the rest of our study

l(P) = −
(

r2

α0

)(
P2−2κP− (2κ + γ)γ

)
,

h(P) =
(α1−θp)P
ν2(γ +P)

− ν

ν2
.

(7)

Proposition III.3. [19], [20], [26] The interior
equilibrium point E∗ = (P∗,F∗) of system (5) ex-
ists and is locally asymptotically stable if P∗ > κ .

Proof: Indeed, the Jacobian matrix J(P,F) of
system (5) at E∗ is

J(E∗)=


P∗
[

rp−r−r2P∗

γ +P∗
−r2

]
− α0P∗

γ+P∗

−
(α1−θp)γF∗

(γ+P∗)2 −ν2F∗

 .

We have

tr(J(E∗))=P∗
[

rp− r− r2P∗

γ +P∗
−r2

]
−ν2F∗

and

det(J(E∗)) = P∗
[

rp− r− r2P∗

γ +P∗
−r2

]
ν2F∗+

(α1−θp)γF∗

(γ +P∗)2
α0P∗

γ +P∗

So, if P∗ > κ , we have tr(J(E∗)) < 0 and
det(J(E∗)) > 0. Hence, the equilibrium
E∗ = (P∗,F∗) is always locally asymptotically
stable. �

Now, we make the following hypotheses:
(H1) : κ > 0
(H2) : 2κ+γ < 4α0

[
2κν2(α1−θp)−ν(2κ+

2γ)
]

(H3) : κ < 0 and γ < 2κ(α1−θp−ν)/ν ,
(H4) : there exists at least sκ ∈ (0,2κ) such
that l(sκ) < h(sκ) but l(κ) > h(κ)

Lemma III.1. [6], [15]
(a) Let the hypotheses (H1) and (H2) hold, there

exits one positive equilibrium point E ∗1 =
(P∗1 ,F∗1 ) in system (2) with P∗1 < κ .

(b) Let the hypothesis (H3) holds, there exists one
positive equilibrium point E ∗2 = (P∗2 ,F∗2 ) in
the system (2) with P∗2 > κ .

(c) Suppose that the hypotheses (H1) and (H4)
are satisfied. Then there exist three positive
equilibria E ∗3 = (P∗3 ,F∗3 ), E ∗4 = (P∗4 ,F∗4 ) and
E ∗5 = (P∗5 ,F∗5 ) in system (2) with P∗3 < P∗4 < κ

and P∗5 > κ .

B. Analysis of the reaction-diffusion system

Here we aim to study the stability of system (4)
equilibria.
(Hc) : The self-diffusion is stronger than cross-
diffusion.

Lemma III.2. [6], [15] Suppose that hypothesis
(H3) holds. If δ0 = δ1 = δ2 = δ3 = 0, then the
equilibrium point E ∗2 is always locally asymptoti-
cally stable.
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Theorem III.1. [6], [15], [16] Suppose that hy-
pothesis (H3) holds. If δ0 6=0, δ1>0, δ2<0 and
δ3 6=0, then the equilibrium point E ∗2 is uniformly
asymptotically stable.

We make the following additional assumptions:

(H5) : r2(γ +P∗)γ > α0F∗.

(H6) : −δ1
P∗

P2 − δ2
α0(γ +P∗)F∗

(α1−θp)γF2 −

4δ0δ3
α0(γ +P∗)F∗

(α1−θp)γF2
P∗

P2 < 0

(H7) : For P∗ =
A+B

4r2
, then l(P∗)−h(P∗)>

0, with A = (rp− r− r2γ−α1 +θp +ν),
B =

√
(rp− r− r2γ−α1 +θp +ν)2 + 8r2νγ

Theorem III.2. [6], [15], [16], [26], [27] Sup-
pose that the hypotheses (H3)− (H5) and (H6)
hold. If δ0 6= 0, δ1 6= 0, δ2 6= 0, and δ3 6= 0,
then the positive equilibrium point E ∗2 is globally
asymptotically stable.

Proof: From [13], [14], [15] we choose the fol-
lowing functions:

φ (P,F)=
∫ P∗

P

η−P∗

η
dη+

α0(γ+P∗)
(α1−θp)γ

∫ F∗

F

η−F∗

η
dη

and

Φ(P,F) =
∫∫
Ω

dφ (P,F)dΩ. (8)

We will show that φ and Φ are Lyapunov functions
under certain conditions.
In fact, we have

dφ

dt
=

P−P∗

P
dP
dt

+
α0(γ+P∗)
(α1−θp)γ

F−F∗

F
dF
dt

= I1+I2

From system (2), we obtain

I1=(P−P∗)
(

rp− r− r2P− α0F
γ +P

)
,

I2=
α0(γ+P∗)
(α1−θp)γ

(F−F∗)
(
(α1−θp)P

γ+P
−ν−ν2F

)
.

Using the fact that (P∗,F∗) is an equilibrium point

and (H5), we have

I1 = −
(

r2−
α0F∗

(γ +P∗)(γ +P)

)
(P−P∗)2 < 0,

I2 = −
α0ν2(γ +P∗)
(α1−θp)γ

(F−F∗)2 < 0.

(9)

Therefore,
dφ

dt
< 0.

We will now show that
dΦ
dt

< 0. Indeed, we have

dΦ
dt

=
∫∫
Ω

dφ

dt
dΩ+ I3, (10)

where

I3=
∫∫
Ω

(
(δ0∆P+δ1∆F)

∂φ

∂P
+(δ2∆P+δ3∆F)

∂φ

∂F

)
dΩ.

Using Green’s first identity in the plane, we obtain

I3=−δ0

∫∫
Ω

∂ 2φ

∂P2 |∇P |2dΩ−δ3

∫∫
Ω

∂ 2φ

∂F2 |∇F |2dΩ

−δ2

∫∫
Ω

∂ 2φ

dF2 ∇P∇FdΩ−δ1

∫∫
Ω

∂ 2φ

dP2 ∇P∇FdΩ.

So, we have

I3 = −δ0

∫∫
Ω

P∗

P2 | ∇P |2 dΩ

−δ3

∫∫
Ω

α0(γ +P∗)F∗

(α1−θp)γF2 | ∇F |2 dΩ

−δ2

∫∫
Ω

α0(γ +P∗)F∗

(α1−θp)γF2 ∇P∇FdΩ

−δ1

∫∫
Ω

P∗

P2 ∇P∇FdΩ.

In particular, increasing δ0, δ3 to sufficiently large

values and if (H6) is satisfied, then
dφ

dt
< 0 and

dΦ
dt

< 0. �

Theorem III.3. [24], [25], [18] Suppose that
hypotheses (H3) and (H5) hold. If δ0 = δ1 =
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δ2 = δ3 = 0, then the equilibrium E ∗1 , is globally
asymptotically stable when

r2 >
α0F∗

(γ +P∗)γ
.

The following system is the linearized form of
system (4) corresponding to the equilibrium point
E ∗1 :

∂

∂ t

P

F

=

a11 a12

a21 a22

P

F

+

δ0 δ1

δ2 δ3




∂ 2P
∂x2

∂ 2F
∂x2

,

(11)
where P = P∗1 +u, F = F∗1 +v and (u,v) are small
perturbations. Here, we consider the diffusive ma-
trix

M =

δ0 δ1

δ2 δ3

 ,

and the Jacobian matrix at the equilibrium point
E ∗1 ,

J(E ∗1 ) =

a11 a12

a21 a22

 .

We have det(M) = δ0δ3 − δ1δ2, det(J(E ∗1 )) =

a11a22−a21a12 and tr(J(E ∗1 )) =
C

γ +P∗1
, where

C=νγ+(rp−r−r2γ−α1+θp+ν)P∗1−2r2P∗21 .

(H8) : 4det(M)det(J(E ∗1 ))<

(a11δ3+a22δ0−δ1a21−δ2a12)
2.

Theorem III.4. Suppose that the hypotheses
(H1), (H2), (H7) and (H8) hold. Then, the crite-
rion for the Turing instability of system (4) is
satisfied.

Proof: If ρ is the wave number of the solution,
then the solution of equality (11) into a Fourier
series is P

F

= ∑
ρ

C1
ρ

C2
ρ

eλρ t+iρx.

According to the equalities (11) we obtain:

λρ

C1
ρ

C2
ρ

=

a11−ρ2δ0 a12−ρ2δ1

a21−ρ2δ2 a22−ρ2δ3

C1
ρ

C2
ρ

 .

The characteristic equation is

λ 2
ρ − [a11 + a22−ρ2(δ0 + δ3)]λρ + det(J(E ∗1 ))−

ρ2ω +ρ4det(M) = 0,

where

ω = a11δ3 + a22δ0−δ1a21−δ2a12.

The system reaches Turing instability [6], [20],
[22], [21] if at least one of the following conditions
is satisfied:

(i) a11 + a22−ρ2(δ0 + δ3) > 0
(ii) det(J(E ∗1 )) − ρ2(a11δ3 + a22δ0 − δ1a21 −

δ2a12)+ρ4(δ0δ3−δ1δ2) < 0

However, it is obvious that a11 + a22− ρ2(δ0 +
δ3) < 0. Consequently, (ii) is a necessary condi-
tion for the system to be unstable.
We consider the following function

Ψ(ρ2) = det(J(E ∗1 ))−ρ2(a11δ3 + a22δ0−δ1a21
−δ2a12)+ρ4(δ0δ3−δ1δ2)

If we let ρ2
min be the corresponding value of ρ2 for

the minimum value of Ψ(ρ2), then

ρ
2
min =

ω

2det(M)
> 0.

So, we have

Ψ(ρ2
min) = det(J(E ∗1 ))−

ω2

4det(M)
.

If we let Ψ(ρ2
min)< 0, the sufficient condition for

the system to be unstable reduces to

ω
2 > 4det(M)det(J(E ∗1 )).

�
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IV. NUMERICAL RESULTS

In this section, we present a series of numerical
simulations of model (4). The main objective is
to understand between self-diffusion and cross-
diffusion, which one have the main factors influ-
encing the stability of the system. We will vary
some values of the cross-diffusion coefficients δ0,
δ1, δ2 and δ3, in accordance with the mathematical
study, to look at the impact on population diffu-
sion.

In the remainder of our numerical simulations,
we will consider P0 = 50.000, F0 = 40.000 as
initial densities. The simulation domain is Ω =
[0,50]× [0,50] [19], [23], [24]. The parameters
used are given in the following Table I.

A. Pattern formation

Here, we will illustrate the mathematical pre-
dictions, by numerical simulations, concerning the
behavior of the dynamics under the hypotheses
(H3) − (H5) − (H6). The qualitative results of
different pattern formations due to the variation
of t, are shown. We consider the value of toxin
released θp = 0.07. These numerical results show
that for every strictly positive initial condition,
under the assumptions (H3)− (H5)− (H6), the
positive equilibrium is always globally asymptoti-
cally stable. Figure 2 shows the spatial structures
formation for the two species described in (4).
These numerical results confirm the mathematical
results for the existence of positive equilibrium
given in Theorem III.1. In this case, we will
talk about the subsistence phenomenon of the fish
population.

B. Dynamic behavior without the cross-diffusion

We continue our numerical analysis by consid-
ering the behavior of the dynamics without cross-
diffusion of the two species. Thus, for this simula-
tion we consider θp = 0.07 and δ1 = δ2 = 0. Figure
3 shows the behavior of dynamics as a function
of time. These results show the stability of the
dynamics in the absence of cross-diffusion which
is in accordance with biological observations [22],
[17].

Remark IV.1. From a biological point of view,
these results (Figures (2)− (3)) show that there
are coexistences between the two populations in
the aquatic environment.

C. Analysis of cross-diffusion effect in the dynam-
ics

We are interested in studying the behavior of
dynamics under the effect of cross-diffusion. To
do this, we will set the values δ0 = 0.3, δ3 = 0.4,
and vary the values of δ1 and δ2. Figure 4 shows
the evolution of the spatial distribution of fish
and phytoplankton for a fixed time with different
values of δ1. We observe that for system (4) the
random initial distribution leads to the formation
of irregular patterns. Thus, the model shows the
formation of more complex structures and the tran-
sition to the chaotic dynamics of system (4). The
complexity of pattern formation is induced by the
effect of cross-diffusion. These results indicate that
the effect of cross-diffusion on pattern formation
is remarkable. That is illustrated in Theorem III.2.

D. Analysis of the dynamics behavior with toxin
effect

We continue our numerical study in this sub-
section to look at the dynamics behavior of the
system by considering different values of the toxin
parameter. Here, we consider that δ0 = 0.3,δ1 =
0.1, δ2 = −0.2 and δ3 = 0.4. Figure 5 shows
the behavior of the two populations. In the case
of Figure 5(a1,a2) and Figure 5(b1,b2), as a
biological interpretation we can say that if the
toxin is released below this value, the impact is
not significant on the fish population. In fact, the
effect does not disrupt the survival of other species.
Figure 5(c1,c2) shows the spatial distributions
of the two populations. A less dense distribution
of fish population than previously is observed.
This explains the considerable decrease of these
species due to the increase in the number of toxic
phytoplankton. There is a strong distribution of the
phytoplankton population. Since, the distribution
is high, this explains the release of the toxin in
large quantities by this population. This period
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Table I
PARAMETERS VALUES USED FOR THE NUMERICAL SIMULATION.

Parameters Descriptions Values References
γ half-saturation constant 0.205 [24]
r1 natural mortality rate of phytoplankton 0.1 [19]
r2 mortality of the phytoplankton due to competition 0.382 [19]
rp growth rate of the phytoplankton 1.6 [28]
mext external mortality rate of the fish 0.4 [28]
µ1 natural mortality rate of the fish 0.05 [19]
µ2 mortality rate of the fish intra-species competition 0.013 [24]
α0 predation rate of the fish on the phytoplankton 0.21 [28]
α1 rate of biomass consumption by fish can reach 0.4 [19]
mext

1 natural mortality rate of the phytoplankton 0.1 [19]

Figure 2. Pattern formation of two dimensional space: fish [first line] and phytoplankton [second line] population density
of the model system (4). The diffusion coefficient values are δ0 = 0.3,δ1 = 0.1 δ2 = −0.2 δ3 = 0.4. Spatial patterns are
obtained at different times: for plot t = 10(a1;a2); t = 40(b1;b2); t = 200(c1;c2).
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Figure 3. Dynamic behavior of two dimensional space: fish [first line] and phytoplankton [second line] population density
of the model system (4). The diffusion coefficient values are δ0 = 0.3, δ3 = 0.4. Spatial distribution are obtained at different
time levels: for plot t = 1000(a1;a2); t = 1800(b1;b2); t = 2800(c1;c2).

corresponds to the phytoplankton bloom. This nu-
merical results confirm the mathematical results
for the existence of positive equilibrium and its
stability according to the values of θp. In this case,
we will talk about the subsistence phenomenon of
the fish population.

V. CONCLUSION

In this paper, we are interested in the construc-
tion of a reaction-diffusion model to describe the
dynamics of fish and toxin-phytoplankton popu-
lations by taking into account the self-and cross-

diffusion. The model formulation derived from an
ODE system by considering an isotropic distri-
bution as in [18], [19], [20]. It should be noted
that we consider a diffusion independently of the
spatial variable in the construction of the reaction-
diffusion model.

The mathematical results allowed us to estab-
lish the existence conditions of equilibrium which
depend on some conditions on the self-and cross-
diffusion. We conclude that the spatial distribution
of phytoplankton is relatively uniform and stable
under some conditions if we only consider the self-
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Figure 4. Dynamic behavior of two dimensional space: fish [first line] and phytoplankton [second line] population density of
the model system (4). The diffusion coefficient values are δ0 = 0.3; δ2 = −0.2, δ3 = 0.4. Spatial distribution are obtained
at different values δ1: for plot δ1 = 19(a1;a2); δ1 = 26(b1;b2); δ1 = 34(c1;c2).

diffusion. When the influence of cross-diffusion is
considered, the distribution of phytoplankton will
change significantly. Our results demonstrate that
the cross-diffusion can greatly affect the dynamic
behavior of the plankton system. In theoretical
proof of the system stability, we considered posi-
tive, negative or zero cross-diffusion and we found
that the conditions for the systems instability have
been caused by cross-diffusion.

A series of numerical simulations has been done
and this allows us to confirm our mathematical
results concerning the formation of stable spa-
tial pattern. The numerical results have yielded

interesting results on the effect of the toxin on
the dynamics. We have shown that the Cross-
diffusion can induce fixed patterns that may be
useful in understanding the dynamics of toxic
phytoplankton proliferation. This is why we are
led to conclude that the release of the toxin un-
der certain conditions, in the aquatic environment
contributes to the regulation of the system. The
above findings indicating that the strength of toxic
substances released by the phytoplankton reduce
the prevalence of chaos. The conclusion of such an
observation is that toxic substances released by the
phytoplankton population may act as bio-control
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Figure 5. Dynamic behavior of two dimensional space: fish [first line] and phytoplankton [second line] population density
of the model system (4). The diffusion coefficient values are δ0 = 0.3, δ3 = 0.4. Spatial distribution are obtained at different
values of θp: for plot θp = 0.35(a1;a2);θp = 0.512(b1;b2);θp = 0.82(c1;c2);θp = 0.96(d1;d2)

by changing the state of chaos to order.
As aquatic systems are very much complex,

it is not easy to conclude that order in aquatic
systems is obvious. The role of the phytoplankton
population in aquatic systems is still in a stage
of infancy. The development of this topic needs
special attention from experimental as well mathe-
matical ecologists. We believe that our results may
give some insight in this direction.

In order to go further in our study, we intend to
consider, the animal component of plankton in the
model.
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