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Abstract—The cumulative distribution function
(cdf) of the discrete two–parameter bathtub hazard
distribution has important role in the fields of
population dynamics, reliability analysis and life
testing experiments. Also of interest to the specialists
is the task of approximating the Heaviside function
by new (cdf) in Hausdorff sense. We define new
activation function and family of new recurrence
generated functions and study the ”saturation” by
these families. In this paper we analyze some in-
trinsic properties of the new Topp–Leone–G–Family
with baseline ”deterministic–type” (cdf) – (NTLG–
DT). Some numerical examples with real data from
Biostatistics, Population dynamics and Signal the-
ory, illustrating our results are given. It is shown
that the study of the two characteristics - ”confiden-
tial curves” and ”super saturation” is a must when
choosing the right model. Some related problems
are discussed, as an example to the Approximation
Theory.

Keywords-two–parameter bathtub hazard dis-

tribution; ”saturation” by: new activation func-
tion and family of new recurrence generated
functions; Topp–Leone–G–Family with baseline
”deterministic–type” (cdf) – (NTLG–DT); Heavi-
side function; Hausdorff distance; upper and lower
bounds

I. INTRODUCTION AND PRELIMINARIES

Definition 1. Define the following deterministic
(cdf) based on two–parameter bathtub hazard dis-
tribution [2]:

Mβ(t) = 1− qet
β−1, (1)

where 0 < q < 1; β > 0, t > 0.

Definition 2. The shifted Heaviside step function
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is defined by

ht0(t) =


0, if t < t0,

[0, 1], if t = t0,

1, if t > t0

(2)

Definition 3. [3] The Hausdorff distance (the H–
distance) ρ(f, g) between two interval functions
f, g on Ω ⊆ R, is the distance between their
completed graphs F (f) and F (g) considered as
closed subsets of Ω× R. More precisely,

ρ(f, g) = max{ sup
A∈F (f)

inf
B∈F (g)

||A−B||,

sup
B∈F (g)

inf
A∈F (f)

||A−B||},

wherein ||.|| is any norm in R2, e. g. the maximum
norm ||(t, x)|| = max{|t|, |x|}; hence the distance
between the points A = (tA, xA), B = (tB, xB)
in R2 is ||A−B|| = max(|tA − tB|, |xA − xB|).

Definition 4. We define the following activation
function:

A(t;β) =
qe

−tβ − qet
β

qe−t
β

+ qet
β . (3)

Definition 5. Define the following family of new
recurrence generated functions

Ai+1(t;β) = Ai(t+Ai(t;β);β),

i = 0, 1, 2, . . . ; A0(t;β) = A(t;β).
(4)

based on the function A(t;β).

In [1] Bantan, Jamal, Chesneau and Elgarhy
introduced a new power Topp–Leone–G–Family
(NTL–G) of distribution with (cdf)

F (t) = e
αβ
(
1− 1

G(t)

)(
2−eβ

(
1− 1

G(t)

))α
(5)

where α, β ∈ R+ and G(t) is a (cdf) of a baseline
continuous distribution.

The following result shows some inequalities
involving F (t) (see, Proposition 1 [1]):

e
αβ
(
1− 1

G(t)

)(
2−G(t)β

)α
≤F (t)≤2αe

αβ
(
1− 1

G(t)

)
.

(6)
In this paper we study some properties of

the new Topp–Leone–G–Family with baseline
”deterministic–type” (cdf) – (NTLG–DT); G(t) =
1− qet−1, where 0 < q < 1.

Definition 6. We define the following correspond-
ing (cdf):

Q(t) = e
αβ
(
1− 1

1−qet−1

)(
2− eβ

(
1− 1

1−qet−1

))α
(7)

where α, β ∈ R+ and 0 < q < 1.

II. MAIN RESULTS

When studying the intrinsic properties of the
family Mβ(t), it is also appropriate to study the
”saturation” to the horizontal asymptote.

In this Section we give upper and lower esti-
mates for the one–sided Hausdorff approximation
of the Heaviside step–function ht0(t) by means of
family (1), where t0 is the level of the ”median”.

A. The case β = 1.

Let t0 is the unique positive root of the nonlinear
equation M1(t0)− 1

2 = 0.
The one–sided Hausdorff distance d between

ht0(t) and the function (1) satisfies the relation

M1(t0 + d) = 1− qe(t0+d)−1 = 1− d. (8)

The following theorem gives upper and lower
bounds for d

Theorem 1. Let
β = 1,

q < 2

e
2( e1.052.1

−1)
≈ 0.971975.

(9)

Then, for the one–sided Hausdorff distance d
between ht0(t) and the (cdf) – (1) the following
inequalities hold:

dl=
1

2.1(1+ 1
2 ln 2

q )
<d<

ln(2.1(1+ 1
2 ln 2

q ))

2.1(1+ 1
2 ln 2

q )
=dr.

(10)
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Proof. In order to express d in terms of q, let us
examine the function

f(d) = M1(t0 + d)− 1 + d.

From f ′(d) > 0 we conclude that function f(d)
is strictly monotonically increasing.

Consider then the function

g(d) = −1

2
+ (1 +

1

2
ln

2

q
)d,

which approximates function f with d → 0 as
O(d2) (see, Fig. 1).

In addition g′(d) > 0.
We look for two reals dl and dr such that

g(dl) < 0 and g(dr) > 0 (leading to g(dl) <
d < g(dr)).

From (9) we have

g

(
dl =

1

2.1(1 + 1
2 ln 2

q )

)
< 0,

g

(
dr =

ln(2.1(1 + 1
2 ln 2

q ))

2.1(1 + 1
2 ln 2

q )

)
> 0

proving the estimates (10).
For example, for β = 1, q = 0.1 we have

dl = 0.190639 < d = 0.230226 < 0.31596 = dr

and for β = 1, q = 0.9 we have

dl = 0.340317 < d = 0.355551 < 0.36682 = dr.

B. The case β 6= 1.

For given β 6= 1 the one–sided Hausdorff
distance d satisfies the relation

Mβ(t0 + d) = 1− qe(t0+d)β−1 = 1− d. (11)

The reader may formulate the corresponding
approximation problem following the ideas given
in Theorem 1, and will be omitted.

We illustrate the ”saturation” with the (cdf) –
(1) for various β and fixed q = 0.1 (see, Fig. 2)

Fig. 1. The functions f(d) and g(d) for a) β = 1, q = 0.1;
b) β = 1, q = 0.9.

Fig. 2. a) β = 1, q = 0.1; t0 = 0.263156; Hausdorff
distance d = 0.230226; b) β = 2, q = 0.1; t0 = 0.512988;
Hausdorff distance d = 0.208046; c) β = 3, q = 0.1; t0 =
0.640823; Hausdorff distance d = 0.181048; d) β = 6, q =
0.1; t0 = 0.800514; Hausdorff distance d = 0.127635.

III. SOME APPLICATIONS.

It is well known that in many cases the existing
modifications to the classical logistic and Gom-
pertz models do not give very reliable results in
approximating ”specific data”.

We examine the following ”specific datasets”:
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Fig. 3. The fitted model (1).

Example 1. We analyze the following data [4]

data Communication := {{0.584, 0.027},
{0.649, 0.147}, {0.909, 0.187}, {1.039, 0.303},
{1.558, 0.453}, {2.208, 0.527}, {2.792, 0.580},
{3.052, 0.627}, {3.312, 0.657}, {4.091, 0.707},
{4.740, 0.753}, {5, 0.780}, {5.390, 0.827},
{7.078, 0.853}, {7.597, 0.877}, {8.961, 0.903},
{9.091, 0.927}, {10.195, 0.950}, {22.078, 0.980},
{24.610, 1}};

The cdf Mβ(t) for β = 0.484411 and q =
0.82547 is visualized on Fig. 3.

Example 2. Analysis of ”data Nicotine” [5]

data Nicotine :=

{{0.11, 0.021}, {0.21, 0.053}, {0.31, 0.063},
{0.41, 0.105}, {0.51, 0.2}, {0.61, 0.274},
{0.71, 0.358}, {0.81, 0.495}, {0.91, 0.632},
{1.01, 0.726}, {1.11, 0.832}, {1.21, 0.905},
{1.31, 0.942}, {1.41, 0.958}, {1.51, 0.974},
{1.61, 0.979}, {1.71, 0.989}, {1.81, 1},
{1.9, 1}, {2, 1}};

After that using the model Mβ(t) for β = 1.98567
and q = 0.485475 we obtain the fitted model (see,
Fig. 4).

Example 3. Analysis of data ”Biomass pro-
duced by Paesilomyces lilacinus 6029” [6].

After that using the model M∗β(t) = ωMβ(t)
for ω = 10.521, β = 0.805824 and q = 0.97915
we obtain the fitted model (see, Fig. 5).

Fig. 4. The fitted model (1).

Fig. 5. The fitted model.

The new activation function.
We define the following activation function:

A(t;β) =
qe

−tβ − qet
β

qe−t
β

+ qet
β . (12)

In antenna-feeder technique most often occurred
signals are of types shown on Fig. 6 – Fig. 7.

For β even, the corresponding approximation
using model (7) is shown in Fig. 6.

For β odd, the corresponding approximation
using new activation function A(t;β) is shown in
Fig. 7.

A family of recurrence generated functions
based on the A(t;β).

Let us consider the following family of recur-
rence generated functions

Ai+1(t;β) = Ai(t+Ai(t;β);β),

i = 0, 1, 2, . . . ; A0(t;β) = A(t;β),
(13)

based on the function A(t;β).
Let for instance β = 1.
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Fig. 6. The function A(t;β); β = 4, q = 0.01, t0 =
0.587335; Hausdorff distance d = 0.138899; β = 6, q =
0.01, t0 = 0.701333; Hausdorff distance d = 0.111603;
β = 8, q = 0.01, t0 = 0.766378; Hausdorff distance d =
0.0992629; β = 10, q = 0.01, t0 = 0.808266; Hausdorff
distance d = 0.0867535; β = 16, q = 0.01, t0 = 0.87543;
Hausdorff distance d = 0.0632673.

Fig. 7. The function A(t;β); β = 3, q = 0.01, t0 =
0.491867; Hausdorff distance d = 0.152538; β = 7, q =
0.01, t0 = 0.737794; Hausdorff distance d = 0.107003;
β = 13, q = 0.01, t0 = 0.848962; Hausdorff distance
d = 0.073086.

Fig. 8. The recurrence generated family: A0(t) (blue), A1(t)
(red) and A2(t) (dashed).

The recurrence generated family: A0(t), A1(t)
and A2(t) is visualized on Fig. 8.

Some properties of the new Topp–Leone–G–
Family with baseline ”deterministic–type” (cdf) –
(NTLG–DT) Q(t)(7).

We study the Hausdorff approximation of the
Heaviside step function ht0(t) where t0 is the
”median” by families of the new Topp–Leone–G–
Family with baseline ”deterministic–type” (cdf) –
(NTLG–DT).

The obtained two-sides estimations (see Propo-
sition 1. [1] ) in particular case with usage of
the baseline ”deterministic–type” (cdf) for α =
0.9; β = 0.3; q = 0.1

e
αβ
(
1− 1

1−qet−1

)(
2−

(
1− qet−1

)β)α
≤ Q(t)

(14)

≤ 2αe
αβ
(
1− 1

1−qet−1

)

are given in Fig. 9 a.
Let t0 is the value for which Q(t0) = 1

2 .
The Hausdorff distance d between the function

ht0(t) and Q(t) satisfies the relation

Q(t0 + d) = 1− d. (15)
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Fig. 9. a) The two-sides estimations (14) for α = 0.9; β =
0.3; q = 0.1; b) The model Q(t) for α = 0.9; β = 0.3; q =
0.1, t0 = 0.0852097; H–distance d = 0.116811

For fixed α = 0.9; β = 0.3; q = 0.1 we find
t0 = 0.0852097 and from the nonlinear equation
(15) we have d = 0.116811 (see, Fig. 9 b).

From Fig. 9 it can be seen that these estimations
can be used as ”confidence bounds”, which are
extremely useful for the specialists in the choice of
model for cumulative data approximating in areas
of Biostatistics, Population dynamics, Growth the-
ory, Debugging and Test theory, Computer viruses
propagation, Financial and Insurance mathematics.

For other results, see [8]–[53], [59].

IV. CONCLUDING REMARKS.

The results obtained in this article can be suc-
cessfully continued.

1. For example, we study the Hausdorff ap-
proximation of the Heaviside step function ht0(t)
where t0 is the ”median” by families of the
new Topp–Leone–G–Family Q1(t) with baseline
”deterministic–inverse–type” (cdf) – (NTLG–DIT)
G(t) = qe

1
t −1, where 0 < q < 1,

Q1(t) = e
αβ

(
1− 1

qe
1
t −1

)2− e
β

(
1− 1

qe
1
t −1

)α

(16)

Fig. 10. a) The two-sided bounds (17) for α = 0.6; β =
0.1; q = 0.4; b) The model Q1(t) for α = 0.6; β = 0.1; q =
0.4, t0 = 0.698075; H–distance d = 0.153113

The obtained two-sided bounds (see Proposition
1. [1] ) in particular case with usage of the base-
line ”deterministic–inverse–type” (cdf) for α =
0.6, β = 0.1, q = 0.4,

e
αβ

(
1− 1

qe
1
t −1

)(
2− qβ

(
e

1
t −1

))α
(17)

≤ Q1(t) ≤ 2αe
αβ

(
1− 1

qe
1
t −1

)

are given in Fig. 10 a.
Example 4. Storm worm one of the most biggest
cyber threats of 2008.

We analyze the following data [7]

data Storm IDs := {{1, 0.843},
{4, 0.926}, {5, 0.954}, {6, 0.967},
{7, 0.976}, {8, 0.981}, {9, 0.985},
{10, 0.991}, {22, 0.995}, {38, 0.997},
{51, 0.998}, {64, 0.9985}, {74, 0.999},
{83, 1}, {100, 1}, {367, 1}}
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Fig. 11. The fitted model Q1(t).

The cdf Q1(t) for α = 0.14146, β =
161.078891, q = 0.9 is visualized on Fig. 11.

Exploring both features - ”confidential curves”
and ”super saturation” is a must when choosing
the right model.

2. Following the ideas given in [54]–[56] we
consider the following new differential model:

dy(t)
dt = ky(t)s(t) = ky(t)qe

t−1

y(t0) = y0

(18)

where k > 0 and 0 < q < 1.
The general solution of the differential equation

(18) is of the following form:

y(t) = y0e
k

q
Ei(et ln q)− k

q
Ei(ln q) (19)

where Ei(.) is the traditional exponential integral.
The new ”growth” function y(t) and the ”input

function” s(t) = qe
t−1 are visualized on Fig. 12–

Fig. 13.
Example 4. We will analyze a sample of exper-
imental data obtained by the biologist T. Carlson
in 1913 about the development of Saccharomyces
culture in nutrient medium (see, for example [58],
[57]).

After that using the model M∗(t) =

ωe
k

q
Ei(et ln q)− k

q
Ei(ln q) for k = 0.293574,

Fig. 12. The ”growth” function y(t)–(red) and s(t)–(green)
for k = 12.6; q = 0.14; y0 = 0.01.

Fig. 13. The ”growth” function y(t)–(red) and s(t)–(green)
for k = 1.1; q = 0.906; y0 = 0.1.

Fig. 14. The fitted model M∗(t).
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Fig. 15. The fitted model M∗(t).

q = 0.999983 and ω = 30.114 we obtain the
fitted model (see, Fig. 14).

Example 5. Analysis of data ”Biomass pro-
duced by Paesilomyces sinclairi ascomycota”.

After that using the model M∗(t) for ω =
0.305247, k = 3.01914 and q = 0.83 we obtain
the fitted model (see, Fig. 15).

The general solution y(t) has been applied
widely in life testing experiments and debugging
theory.
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