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Abstract— This paper presents the current situa-
tion and how to minimize its effect in India through
a mathematical model of infectious Coronavirus
disease (COVID-19). This model consists of six
compartments to population classes consisting of
susceptible, exposed, home quarantined, government
quarantined, infected individuals in treatment, and
recovered class. The basic reproduction number is
calculated, and the stabilities of the proposed model
at the disease-free equilibrium and endemic equilib-
rium are observed. The next crucial treatment con-
trol of the Covid-19 epidemic model is presented in
India’s situation. An objective function is considered
by incorporating the optimal infected individuals
and the cost of necessary treatment. Finally, optimal
control is achieved that minimizes our anticipated
objective function. Numerical observations are pre-
sented utilizing MATLAB software to demonstrate

the consistency of present-day representation from
a realistic standpoint.

Keywords-Novel coronavirus; SEHGIR model;
Basic Reproduction number; Stability; Optimal con-
trol

I. INTRODUCTION

Recently, the coronavirus disease has turned
out to be a pandemic over almost the whole
world. The basic indication of this infection is
ordinary fever, cough, and breathing problems.
This virus also showed the capability to produce
serious health problems among a specific group of
individuals, including the aged populace as well as
patients with cardiovascular disease and diabetes
[1]. However, a clear picture of the nature of this
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epidemiology is still being explained [2].

This virus transmits from human to human
as a result, Covid-19 disease spread across the
globe, and the total number of active Covid-19
cases increases day by day ([3]-[10]). In particular,
India has become the stiffest affected country with
Covid-19 endemic [11] due to its very high pop-
ulation densities. The figure for positive Covid-19
infection started to increase from 4th March 2020.
As of 8th May 2020, a total of 59690 confirmed
COVID cases, together with 17887 recovered and
1986 deaths in India [12]. Different precaution
measures ([13]-[16]) have been taken by the In-
dian Government to maintain social distance [17]
among the huge numbers of the population in
India. There is no specific medicine for Covid-19
infection to date. Therefore, doctors recommended
different treatments via medication to COVID-19
patients depending on their symptoms. The therapy
and vaccine yet to get, spread of Coved 19 diseases
can be restricted via appropriate precautionary
measures like quarantined mechanisms ([18]-[20]),
individual safeguard from the infected individ-
ual by using social distancing [21], etc. As the
Covid-19 virus spread very quickly throughout the
world, so various mathematical models depending
on the pandemic outbreak ([22]-[32], [33], [34],
[35]) have been performed already. Wu et al. [36]
studied the dynamics behind the spread of Covid-
19 virus world-wise using SEIR model. Read et
al. [37] developed a Covid-19 SEIR model based
on Poisson-distributed daily time augmentations.
Paul et al. [38] presented a mathematical model on
Covid-19 incorporating the different safety strate-
gies to protect the citizens from the virus. Sardar et
al. [39] proposed a mathematical model to identify
the lockdown effect of the spreading of Covid-19
disease in India. Pal et al. [40] explored a Covid-19
based SEQIR model to understand India’s disease
situation.

This paper introduces a six-compartmental
Covid-19 infection model by separating the total
populace into six classes, purposely susceptible,
exposed, home quarantined, government quaran-
tined, infected individuals in treatment as well as

recovered class. We introduce treatment control in
the model to assimilate realistic and biologically
significant in the pandemic situation. A brief de-
scription of the necessary and sufficient conditions
for the existence of multi-objective optimal control
is provided in Section 2. The model derivation
and preliminaries are explained in Section 3. The
basic properties of our proposed model structure
are discussed in Section 4. In section 5, we
introduce the concept of the basic reproduction
number (R0) [41]. Next, we deal with disease-free
equilibrium (DFE) (E0) and endemic equilibrium
(E1) points of the system. It is clear that Covid-
19 infection is not only community health trouble
[42] but also a tremendous societal and monetary
shock on the developing countries. Therefore, it
is an essential concern to control ([43]-[46]) the
spread of Covid-19 infection in India by adopting
several optimal control policies. In Section 6, we
have formulated the Covid-19 epidemic model
with control treatment. This section provides us
a procedure to find optimal control [47] u(t) that
increases the recovery rate as well as minimizes
the cost associated with the treatment. Analytical
results are obtained in the previous sections are
numerically verified in Section 7 with the help
of realistic values of the model parameters using
MATLAB. Lastly, a general conclusion about our
proposed model structure is provided in Section 8.

II. MULTI-OBJECTIVE OPTIMAL CONTROL

Suppose x(t) ∈ X ⊂ Rn represents the state
variables of a system and u(t) ∈ U ⊂ Rm
represents the control variables at time t, with
t0 ≤ t ≤ tf . An optimal control problem consists
of finding a piecewise continuous control u(t) and
the associated state x (t) that optimizes a cost
function J [u(t), x (t)]. The majority of mathemat-
ical models that use the optimal control theory rely
on Pontryagin’s Maximum Principle, a first-order
condition for finding the optimal solution.

Theorem 1. (Pontryagin’s Maximum Principle
[48]) If u∗ (t) and x∗(t) are optimal for the
problem

max
u
J [u(t), x (t)] , (1)
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where

J [u(t), x (t)] = max
u

∫ tf

t0

f (t, x (t) , u (t)) dt,

subject to { dx

dt
= g (t, x (t) , u (t)) ,

x (t0) = x0,

then there exists a piecewise differentiable adjoint
variable λ (t) such that

H(t, x∗(t), u(t), λ(t))≤H(t, x∗(t), u∗(t), λ(t)))

for all controls u at each time t, where the
Hamiltonian H is given by

H(t, x(t), u(t), λ(t))

= f (t, x (t) , u (t)) + λg (t, x (t) , u (t)) (2)

and{
λ
′
(t) = −∂H (t, x∗ (t) , u∗ (t) , λ (t))

∂x
,

λ (tf ) = 0.

While Pontryagin’s Maximum Principle gives
the necessary conditions for the existence of an
optimal solution, the following theorem provides
sufficient conditions.

Theorem 2. (Arrow Sufficiency Theorem [49]) For
the optimal control problem (1), the conditions of
the maximum principle are sufficient for the global
minimization of J [u(t), x (t)], if the minimized
Hamiltonian function H, defined in (2), is convex in
the variable x for all t in the time interval [t0, tf ]
for a given λ.

One of the major side effects of vaccina-
tion/treatment is the creation of drug resis-
tant virus/bacteria which eventually leads to
drug failure (due to ineffectiveness of the vac-
cine/treatment). Optimal control has been used to
curb the creation of drug resistant virus/bacteria or
drug failure (at the same time reducing the cost of
treatment or vaccination) by imposing a condition
that monitors the global effect of the vaccina-
tion/treatment program. Hence if x(t) represents
the group of individuals to be vaccinated/treated

and u(t) ∈ U represents the control on vaccina-
tion/treatment, where the control set U is given
by

U={u(t) :v0≤ u(t)≤v1, Lebesgue measurable},

then, the following objective functions are to be
minimized simultaneously:

I1 (u) =

∫ tf

t0

x (t) dt and

I2 (u) =

∫ tf

t0

um (t) dt, for m > 0,

and the optimal solution can be represented as

min
u
{I1 (u) , I2 (u)} .

In general, there does not exist a feasible solution
that minimizes both objective functions simulta-
neously. Hence, the Pareto optimality concept is
used to simultaneously find optimal control u∗ that
minimizes both objective functions.

III. DERIVATION AND PRELIMINARIES OF

COVID-19 MODEL

This section develops a mathematical model
of COVID-19 transmission with the subsequent
suppositions: The underlying human population is
split up into six mutually exclusive compartments,
namely, susceptible (S), exposed (infected but not
yet infectious) (E), home quarantined population
(population were exposed to the virus but viewing
light symptoms of coronavirus disease and stay at
home isolation) (H), government quarantined pop-
ulation (population was infective in symptomatic
phase, i.e., showing symptoms of coronavirus dis-
ease and stay at Government observation places
for isolation) (G), infected (I), and recovered
class (R) (infectious people who have cleared or
recovered from coronavirus infection). Therefore,
the total human population N(t) = S(t) +E(t) +
H(t) +G(t) + I(t) +R(t).

This model involves certain assumptions which
consist of the following:

(i) The susceptible population (S) comprises
individuals who have not yet been infected
by Covid-19, but may be infected through
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contact with both types of home quarantined
(H) and government quarantined (G) peo-
ple.

(ii) The exposed population (E) comprises indi-
viduals infected with Covid-19 infection but
not infectious.

(iii) The infective population in home quaran-
tined phase (H) comprises individuals who
have Covid-19 infection with light symp-
toms (but capable of infecting) and quaran-
tined at home for isolation.

(iv) The infective population in the symptomatic
phase (G) comprises individuals who have
developed Covid-19 infection with compli-
cations and various symptoms but their test
report yet not come positive and are quar-
antined by the Government facility for iso-
lation.

(v) The infected population (I), whose COVID
19 test is positive clinically and stayed at
hospital for treatment (incapable of infect-
ing others). The infected individuals com-
ing from home and Government quarantined
compartments if their test report comes pos-
itive.

(vi) The recovered class (R) consists of those
who become healed from the disease by
treatment or quarantined program.

(vii) The susceptible individuals become infected
by adequate contact with infective individu-
als in the asymptomatic phase (home quar-
antined) and symptomatic phase (Govern-
ment quarantined), and enter into the ex-
posed class. The susceptible population is
also decreased due to natural death.

(viii) The exposed population is entered into the
home quarantined, government quarantined,
and infected population, respectively. The
said population is also diminished due to
natural death.

(ix) One part of home quarantined individuals
enters into the infected population, and the
other becomes recovered. This population is
also decreased by natural death.

(x) One part of the government quarantined in-

dividuals enters into the infected population,
and the other becomes recovered. This indi-
vidual is also decreased by natural death.

(xi) One part of the infected population enters
into the recovered class. Other individuals
are decreased due to infection and natural
death.

(xii) Home quarantined (asymptomatic), govern-
ment quarantined (symptomatic), and the
infected population recover from the coron-
avirus disease and enters into the recovered
class. The recovered population diminishes
by natural death.

The parameters of the Covid-19 model are pre-
sented as follows:

Λ : The recruitment rate of susceptible
from embedding population.
α1 : The coefficient of transmission rate
from home quarantined to susceptible
individuals, and the expression gives the
transmission rate: α1H(t)S(t).
α2 : The coefficient of transmission rate
from Government quarantined popula-
tion to susceptible individuals, and the
transmission rate is: α2G(t)S(t).
β1 : The fraction of exposed individuals
that will start to show light symptoms of
Covid-19 (but remains capable of infect-
ing others) and move to the class H .
β2 : The rate at which the exposed
individuals become infected by Covid 19
infection and move to the class I.
β3 : The fraction of the exposed individ-
uals that will start to show symptoms of
infection and move to the class G.
γ2 : The rate of home quarantined in-
dividuals eventually show disease symp-
toms and move to class I .
γ1 : The recovery rate of the home
quarantined population H .
σ2 : The rate at which government quar-
antined individuals eventually show dis-
ease symptoms and move to class I .
σ1 : The recovery rate of the Government
quarantined population G.
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d2 : The disease-related death rate of
infective population in the infected phase
I
ε : The recovery rate of the infected
population I .
d1 : The natural death rate of all human
epidemiological classes.

In our proposed Covid-19 model, S(t), E(t),
H(t), G(t), I(t), and R(t) denote the numbers
of susceptible, exposed, home quarantined, gov-
ernment quarantined, infected, and recovered, re-
spectively. Through the contact between suscep-
tible and home quarantined populations, a part
of the susceptible population, i.e., α1H(t)S(t),
becomes infected and enters into exposed class.
Similarly, through the contact between susceptible
and government quarantined populations, a part of
the susceptible people, i.e., α2G(t)S(t), becomes
infected and enters into the exposed category. The
fraction of the home quarantined population γ2

will start to show symptoms of and move to the
class I . Another portion of the home quarantined
population γ1 is recovered from infection due to
treatment or quarantined process and move to the
recovered class R. Similarly, a fraction of the
government quarantined community σ2 will start
to show symptoms of Covid 19 and move to the
class I . Other portion of the home quarantined
population σ1 is recovered from infection due
to treatment or quarantined process and move
to the recovered class R. A fraction of infected
individuals ε is recovered from infection through
treatment in Hospital and move to recovered class
R. Another fraction d2 of the infected individuals
is diminished due to the disease-related death rate
of the infective population. From every class, a
part of the inhabitants is reduced at the natural
death rate d1.

We diagrammatically represent the flow of in-
dividuals from one class to another in Fig. 1.

Therefore, our proposed mathematical model of
the Covid-19 infection is presented through the

Fig. 1. Pictorial representation of proposed Covid 19 model
for Indian scenario

following set of non-linear differential equation

dS

dt
= Λ− (α1H + α2G)S − d1S, (3)

dE

dt
= (α1H + α2G)S − (β1 + β2 + β3 + d1)E,

dH

dt
= β1E − γ1H − γ2H − d1H,

dG

dt
= β3E − σ1G− σ2G− d1G,

dI

dt
= β2E + γ2H + σ2G− d1I − d2I − εI,

dR

dt
= εI − d1R+ γ1H + σ1G;

with initial conditions:

S(0) > 0, E(0) ≥ 0, H(0) ≥ 0,

G(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0. (4)

The SEHGIR model formulation (3) can be
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rewritten as:
dS

dt
= Λ− (α1H + α2G)S − d1S, (5)

dE

dt
= (α1H + α2G)S −AE,

dH

dt
= β1E −BH,

dG

dt
= β3E − CG,

dI

dt
= β2E + γ2H + σ2G−DI,

dR

dt
= γ1H + σ1G+ εI − d1R;

where

A = β1 + β2 + β3 + d1,

B = γ1 + γ2 + d1,

C = σ1 + σ2 + d1,

D = d1 + d2 + ε,

with initial conditions (4).

IV. FUNDAMENTAL PROPERTIES

A. Positivity of the solutions

Theorem 3. Each solution of the proposed system
(5) under conditions (4) satisfy S(t) > 0, E(t) ≥
0, H(t) ≥ 0, G(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0 for
all values of t ≥ 0.

Proof: The first equation of the system (5),
can be written

dS

dt
= Λ− (α1H + α2G)S − d1S

= Λ− ψS;

where ψ = (α1H + α2G) − d1. Thereafter by
integration, we obtain the following expression

S(t)=S(0) exp

(
−
∫ t

0
ψ(s)ds

)
+Λ exp

(
−
∫ t

0
ψ(s)ds

)∫ t

0
e
∫ t

0
ψ(v)dvds>0.

Hence S(t) is non-negative for all t. From the next
equation of (5), we get,

dE

dt
≥ −AE.

This equation provides

E(t) ≥ E(0) exp(−At) ≥ 0.

Also, from the remaining equations and with the
help of initial conditions, we obtain

H(t) ≥ H(0) exp(−Bt) ≥ 0,

G(t) ≥ G(0) exp(−Ct) ≥ 0,

I(t) ≥ I(0) exp(−Dt) ≥ 0,

as well as

R(t) ≥ R(0) exp(−d1t) ≥ 0.

So, it is observed that S(t) > 0, E(t) ≥ 0, H(t) ≥
0, G(t) ≥ 0, I(t) ≥ 0, R(t) ≥ 0 for all values of
t ≥ 0. Hence the theorem.

B. Invariant region

Theorem 4. The feasible region Γ defined by

Γ =

{
(S,E,H,G, I,R) ∈ R6

+ : 0 < N ≤ Λ

η

}
,

where η = min {d1, d1 + d2} is positively invari-
ant for the system (3).

Proof: Let

((S(0), E(0), H(0), G(0), I(0), R(0)) ∈ Γ.

Adding the equations of the system (3) we obtain

dN

dt
=Λ−d1S−d1E−d1H−d1H−d1G−(d1+d2)I−d1R.

Therefore,

dN

dt
+ηN=Λ−(d1−η)S−(d1−η)E−d1H

−(d1−η)H−(d1−η)G−(d1+d2−η)I (6)

−(d1−η)R ≤ Λ,

where η = min {d1, d1 + d2}. The solution N(t)
of the differential equation (6) has the following
property,

0 < N(t) ≤ N(0) exp(−ηt) +
Λ

η
(1− exp(−ηt)),

where N(0) represents the sum of the initial
values of the variables. As t → ∞, we have
0 < N(t) ≤ Λ

η . Also, if N(0) ≤ Λ
η then N(t) ≤ Λ

η
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for all t. This means Λ
η is the upper bound of N .

On the other hand, if N(0) > Λ
η implies N(t) will

decrease to Λ
η . This means that if N(0) > Λ

η , the
solution (S(t), E(t), H(t), G(t), I(t), R(t)) enters
Γ or approaches it asymptotically. Hence it is
positively invariant under the flow induced by the
systems (3) and (4).

Thus in Γ the mathematical model (3) with ini-
tial conditions (4) is well-posed epidemiologically.
Hence it is sufficient to study the dynamics of the
model in Γ.

V. EXISTENCE OF EQUILIBRIUM AND

STABILITY ANALYSIS

In this section, we will study the existence and
stability behavior of the system (3) at various
equilibrium points. The equilibrium points of the
system (2.1) are:

(i) Disease-free equilibrium (DFE):

E0

(
Λ

d1
, 0, 0, 0, 0, 0

)
,

(ii) Endemic equilibrium:

E1(S∗, E∗, H∗, G∗, I∗, R∗).

A. The basic reproduction number

The basic reproduction number (BRN) ([50]-
[53]) of the system (3) will be obtained by the
next-generation matrix method [54].

Let z = (E(t), H(t), G(t), I(t), S(t), R(t))T ,
the proposed Covid-19 system (3) can be written
in the following form:

dz

dt
= z(z)− υ(z);

where

z(z) =


(α1H + α2G)S

0
0
0
0
0

 ,

υ(z) =


AE

−β1E +BH
−β3E + CG

−(β2E + γ2H + σ2G) +DI
−(γ1H + σ1G+ εI) + d1R
−Λ + (α1H + α2G)S + d1S

 .

The Jacobian matrices of z(z) and υ(z) at the
DFE E0 are as follows, respectively:

Dz(E0) =

F4×4 0 0
0 0 0
0 0 0

 ,
Dυ(E0) =

V4×4 0 0
0 0 0
0 0 0

 ,
where

F =


0 Λα1

d1
Λα2

d1
0

0 0 0 0
0 0 0 0
0 0 0 0

 ,

V =


A 0 0 0
−β1 B 0 0
−β3 0 C 0
−β2 −γ2 −σ2 D

 .
Following [54], R0 = ρ

(
FV −1

)
where ρ is

the spectral radius of the next-generation matrix
(FV −1). Thus, from the model (3), we have the
following expression for BRN R0 :

R0 =
Λ

d1

1

ABC
[α1β1C + α2β3B].

Notice that Λ
d1

is the number of susceptibles at the
DFE.

B. Existence of endemic equilibrium
E1(S∗, E∗, H∗, G∗, I∗, R∗)

In this section, we will analyze the ex-
istence of a non-trivial endemic equilibrium
E1(S∗, E∗, H∗, G∗, I∗, R∗) of the system (3). To
find the endemic equilibrium of the system (3), we
consider the following:

S(t) > 0, E(t) > 0, H(t) > 0,

G(t) > 0, I(t) > 0, R(t) > 0
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and

dS

dt
=0,

dE

dt
=0,

dH

dt
=0,

dG

dt
=0,

dR

dt
=0. (7)

From the third, fourth, fifth, and sixth equation of
(7) we obtain

H∗=
β1E

∗

B
, G∗ =

β3E
∗

C
,

I∗=
E∗

D
[β2 +

γ2β1

B
+
β3σ2

C
],

R∗=
E∗

d1

[
ε

D
{β2+

γ2β1

B
+
β3σ2

C
}+ γ1β1

B
+
β3σ1

C

]
.

Now from dE
dt = 0 and using the values of H∗and

G∗, we get,

S∗ =
Λ

d1R0
> 0.

Again, putting the value of S∗ in the first equation
of (7) we gain,

E∗ =
Λ

A

[
1− 1

R0

]
.

Hence, E∗ has a unique positive solution iff R0 >
1.

Summarizing the above discussions, we arrive
at the following result.

Theorem 5. The system (3) has a DFE
E0( Λ

d1
, 0, 0, 0, 0, 0), which exists for all pa-

rameter values. If R0 > 1 the system
(3) also admits a unique endemic equilibrium
E1(S∗, E∗, H∗, G∗, I∗, R∗).

C. Asymptotic behavior

For the stability of DFE E0( Λ
d1
, 0, 0, 0, 0, 0) we

consider the theorems given below

Theorem 6. The DFE E0 of the system (3) is
locally asymptotically stable if R0 < 1.

Proof: See Appendix A.

Theorem 7. The diseases free equilibrium (DFE)
E0( Λ

d1
, 0, 0, 0, 0, 0)is globally asymptotically sta-

ble (GAS) in R6
+ for the system (3) if R0 < 1

and becomes unstable if R0 > 1.

Proof: We rewrite the system (3) as
dX
dt = F (X,V ),
dV
dt = G(X,V ), G(X, 0) = 0,

where X = (S,R) ∈ R2 (the number
of uninfected individuals compartments), V =
(E,H,G, I) ∈ R4 (the number of infected individ-
uals compartments), and E0( Λ

d1
, 0, 0, 0, 0, 0) is the

DFE of the system (3). The global stability of the
DFE is guaranteed if the following two conditions
are satisfied:
(i) For dX

dt = F (X, 0), X∗ is globally asymptot-
ically stable in R2.

(ii) G(X,V ) = BV − Ĝ(X,V ), Ĝ(X,V ) ≥ 0
for (X,V ) ∈ Ω,

where B = DVG(X∗, 0) is a Metzler matrix, and
Ω is the positively invariant set to the model (3).
Following Castillo-Chavez et al. [55], we check
for aforementioned conditions. For system (3),

F (X, 0) =

[
Λ− d1S

0

]
,

B =


−A Λα1

d1
Λα2

d1
0

β1 −B 0 0
β3 0 −C 0
β2 γ2 σ2 −D


and

Ĝ(X,V ) =


( Λ
d1
− S)(α1H + α2G)

0
0
0

 .
Clearly, Ĝ(X,V ) ≥ 0 (using Theorem 2), when-
ever the state variables are inside Ω (the positively
invariant set of the model (3)). Again, it is clear
that X∗ = ( Λ

d1
, 0)T is a globally asymptotically

stable equilibrium of the system dX
dt = F (X, 0).

Hence, the theorem follows.

Theorem 8. The endemic equilibrium point
E1(S∗, E∗, H∗, G∗, I∗, R∗) of the system (3) is
locally asymptotically stable if R0 > 1, B1B2 −
B3 > 0 and B1B2B3 −B2

1B4 −B2
3 > 0

Proof: See Appendix B.
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VI. PROPOSED COVID-19 MODEL WITH

CONTROL

In this section, the primary focus is to set
up an optimal control problem of the epidemic
model (3). In the present situation of the Covid-
19 outbreak, it is highly essential to construct an
optimal control problem so that the total amount
of drug is minimized. Here we take one control
variable u(t) on the recovery rate of the infectious
individuals in the infected phase with treatment in
the hospital. Therefore, our epidemic model with
one control and the same initial conditions (4)
becomes:

dS

dt
=Λ− (α1H(t) + α2G(t))S(t)− d1S(t),

dE

dt
=(α1H + α2G)S − (β1+β2+β3+d1)E,

dH

dt
=β1E − γ1H − γ2H − d1H,

dG

dt
=β3E − σ1G− σ2G− d1G,

dI

dt
=β2E(t) + γ2H(t) + σ2G(t) (8)

−(d1 + d2)I(t)− u(t)I(t),

dR

dt
=u(t)I(t) + γ1H(t) + σ1G(t)− d1R(t).

The control function u(t), 0 ≤ u(t) ≤ 1 represents
the fraction of the infected individuals who are
identified and will be treated. When u(t) is close
to 1 then the treatment failure is low, but the
implementation cost is high. For the model (8), the
single-objective cost functional to be minimized is
given by the objective functional ([56]-[59])

J(u(t)) =

∫ tf

0
[G1I +

1

2
G2u

2]dt; (9)

with G1 > 0 and G2 > 0, where we want to
minimize the infectious group I while also keeping
the cost of treatment u(t) low. The term G1I
represents the cost of infection, while the term
1
2G2u

2 represents the cost of treatment. The goal
is to find an optimal control, u∗, such that

J (u∗) = min {J(u) : u ∈ U} , (10)

where

U ={u : u is Lebesgue measurable,

0 ≤ u ≤ 1, t ∈ [0, tf ] } (11)

Applying the Pontryagins Maximum
Principle, we have the following result(
S
∗
, E

∗
, H

∗
, G

∗
, I

∗
, R

∗
)

of the system (8),
that minimizes J(u) over U .

Theorem 9. There exists an optimal control u∗and
corresponding solutions

(
S
∗
, E

∗
, H

∗
, G

∗
, I

∗
, R

∗
)

of the system (8), that minimizes J(u) over U .
Furthermore, there exist adjoint functions λi(t),
i = 1, 2, 3, 4, 5, 6, such that

dλ1

dt
=(λ1−λ2)(α1H+α2G)+λ1d1,

dλ2

dt
=(λ2−λ3)β1+(λ2−λ5)β2+(λ2−λ4)β3

+λ2d1,
dλ3

dt
=(λ1−λ2)α1S+(λ3−λ6)γ1+(λ3−λ5)γ2

+λ3d1,
dλ4

dt
=(λ1−λ2)α2S+(λ4−λ6)σ1+(λ4−λ5)σ2

+λ4d1,
dλ5

dt
=(λ5−λ6)u+(d1 + d2)λ5−G1,

dλ6

dt
=d1λ6;

with transversality conditions

λi(tf ) = 0, i = 1, 2, 3, 4, 5, 6,

and the control u∗ satisfies the optimality condition

u∗ = min{max{0, (λ5 − λ6)I
∗

G2
}, 1}.

Proof: The Hamiltonian is defined as follows:

Ĥ=G1I+
1

2
G2u

2+λ1[Λ−(α1H+α2G)S−d1S]

+λ2[(α1H + α2G)S −AE] (12)

+λ3[β1E −BH] + λ4[β3E − CG]

+λ5[β2E + γ2H + σ2G− (d1 + d2)I − uI]

+λ6[uI + γ1H + σ1G− d1R],
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where λi (i = 1, 2, 3, 4, 5, 6) are the adjoint
functions to be determined.

The form of the adjoint equations and transver-
sality conditions are expected results from Pon-
tryagin’s Maximum Principle [60]. The adjoint
system can be obtained as follows:

dλ1

dt
= −∂Ĥ

∂S
= (λ1−λ2) (α1H+α2G)+λ1d1,

dλ2

dt
= −∂Ĥ

∂E
= (λ2 − λ3)β1 + (λ2 − λ5)β2

+(λ2 − λ4)β3 + λ2d1,

dλ3

dt
= −∂Ĥ

∂H
= (λ1 − λ2)α1S + (λ3 − λ6)γ1

+(λ3 − λ5)γ2 + λ3d1,

dλ4

dt
= −∂Ĥ

∂G
= (λ1 − λ2)α2S + (λ4 − λ6)σ1

+(λ4 − λ5)σ2 + λ4d1,

dλ5

dt
= −∂Ĥ

∂I
= (λ5−λ6)u+(d1+d2)λ5−G1,

dλ6

dt
= −∂Ĥ

∂R
= d1λ6.

(13)
The transversality conditions (or boundary condi-
tions) are

λi(tf ) = 0, i = 1, 2, 3, 4, 5, 6. (14)

By the optimality condition, at u = u∗(t) we have

∂Ĥ

∂u
= G2u

∗ − (λ5 − λ6)I
∗

= 0

⇒ u∗(t) = (λ5−λ6)I
∗

G2
.

(15)

By using the bounds for the control u(t), we get

u∗ =


(λ5−λ6)I

∗

G2
, if 0 ≤ (λ5−λ6)I

∗

G2
≤ 1.

0, if (λ5−λ6)I
∗

G2
≤ 0.

1, if (λ5−λ6)I
∗

G2
≥ 1.

In compact notation:

u∗ = min

{
max

{
0,

(λ5 − λ6)I
∗

G2

}
, 1

}
. (16)

Using (16), we obtain the following optimality

system:

dS

dt
=Λ− (α1H + α2G)S − d1S, (17)

dE

dt
=(α1H + α2G)S −AE,

dH

dt
=β1E −BH,

dG

dt
=β3E − CG,

dI

dt
=β2E + γ2H + σ2G− (d1 + d2)I

−min

{
max

{
0,

(λ5 − λ6)I
∗

G2

}
, 1

}
I,

dR

dt
=min

{
max

{
0,

(λ5 − λ6)I
∗

G2

}
, 1

}
I

+γ1H + σ1G− d1R,
dλ1

dt
=(λ1 − λ2) (α1H + α2G) + λ1d1,

dλ2

dt
=(λ2 − λ3)β1 + (λ2 − λ5)β2

+(λ2 − λ4)β3 + λ2d1,

dλ3

dt
=(λ1 − λ2)α1S + (λ3 − λ6)γ1

+(λ3 − λ5)γ2 + λ3d1,

dλ4

dt
=(λ1 − λ2)α2S + (λ4 − λ6)σ1

+(λ4 − λ5)σ2 + λ4d1,

dλ5

dt
=(λ5−λ6) min {max{ 0,

(λ5−λ6)I
∗

G2
}, 1}

+(d1 + d2)λ5 −G1,

dλ6

dt
=d1λ6;

subject to the following conditions:

S(0) > 0, E(0) ≥ 0, H(0) ≥ 0,

G(0) ≥ 0, I(0) ≥ 0, R(0) ≥ 0

and

λ1(tf ) = 0, λ2(tf ) = 0, λ3(tf ) = 0,

λ4(tf ) = 0, λ5(tf ) = 0, λ6(tf ) = 0.

This completes the proof.
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Fig. 2. Sensitivity of R0 to α1 and α2, rest of the parameters are based on Table 1

VII. NUMERICAL SIMULATIONS

The current section presents some computer
simulations to assess the proposed model’s ap-
plicability for the Covid-19 scenario. The simu-
lation is carried out based on available data of
pandemic infection in India. Also, these numerical
simulation is very much crucial from a practical
viewpoint.

Estimating the parameters of the model for
India, we have studied the proposed Covid-19
system. The main objective is to study the effects
of two quarantined population parameters α1 and
α2, to show the impact of these parameters on
the pandemic curve through the graphical presen-
tation. By changing the values of the mentioned
parameters, we observe the infected population’s
behavior for 60 days from 2nd April for their
particular base values. Table 1 and Table 2 give
the values of the model parameters and initial
population density, respectively.

Based on Table 1, the BRN is R0 = 3.0909,
which is much greater than one. Hence the in-
fection spread so quickly in India. Therefore, it
needs to take the right policy to reduce the value
of R0 much less to 1. For the proposed model, a
graphical presentation of R0 to α1and α2 is given
in Figure 2.

TABLE I
MODEL PARAMETERS FOR COVID-19 SYSTEM

Parameters Values (Unit) Data Source
Λ 50000 day−1 [61]
α1 2 × 10−10 day−1 Estimated
α2 1 × 10−10 day−1 Estimated
β1 0.4 day−1 Assumed
β2 1 × 10−6 day−1 Assumed
β3 0.05 day−1 Assumed
γ1 0.15 day−1 Estimated
γ2 0.0028 day−1 Estimated
σ1 0.15 day−1 Estimated
σ2 0.002 day−1 Estimated
ε 0.06 day−1 Estimated
d1 2 × 10−5 day−1 [61]
d2 0.001 day−1 Estimated

TABLE II
PRELIMINARY POPULATION DENSITY FOR COVID-19

MODEL

S(0) E(0) H(0) G(0) I(0) R(0)
12×108 2×105 2×105 5×104 1649 5×104

In Figure 3, the ’red’ curve presents an infected
individual for this proposed model, and the bar
diagram is the actual infected individual as per
our available data. Figure 3 depicts that the ac-
tual infected individual almost coincides with our
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Fig. 3. Time series of infected population with parameter values and initial conditions from Table 1 and 2 during 1/4/2020
to 29/5/2020.
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Fig. 4. Time series of the infected population with α2 = 1 × 10−10 for different values of α1 and other input values taken
from Table 1 and 2.

proposed model curve from 1st April to 29th May
2020. Therefore, the proposed Covid-19 model is
best fitted to the current situation of India.

For fixed α2 if we gradually decrease α1, the
infected individuals is also reduces steadily, which
is presented via Figure 4.

Therefore, practically if we strictly follow the
home quarantined restriction, then naturally α1 de-
crease, and also the pick of the infected individual
reduces. It is also observed from Figure 4 that for
α1 = 2 × 10−10, the pick of the disease reached

almost after 160 days from 1st April 2020, and the
height number of infected cases around 1700000.
For α1 = 1.9 × 10−10 and α1 = 1.8 × 10−10

the pick of infection reached almost after 175 and
220 days, respectively from 1st April 2020, and
the corresponding height number of infected cases
may be around 1200000 and 800000, respectively.

Again if we fixed α1 at 2×10−10 and the values
of α2 gradually increase, then the infected number
of individuals is also gradually increasing, which
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Fig. 5. Time series of infected population with parameter values and initial conditions from Table 1 and 2 during 1/4/2020
to 29/5/2020.
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Fig. 6. Time series of infected population with α1 = α2 using data from Table 1, 2 starting from 1st April to 29th May
2020.

is depicted in Figure 5.

This situation arises as we increase α2, then the
government quarantined technique is slackly ap-
plied to the population. In this case α2 = 3×10−10,
the pick of infection reached almost 125 days after
1st April 2020, and the total number of highest
infected individuals will be around 3000000.

Also, we making α1 = α2 = 2 × 10−10, i.e.,

if Government take a policy to convert all home
quarantined individuals into government quaran-
tined. In that case, the value of R0 = 1.6368 <
3.0909 is less than the previous value of R0.
Therefore, infected individuals are automatic de-
creases, which are depicted in Figure 6.

Figure 6 shows that if the Government takes said
policy, then the maximum number of infected is
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Fig. 7. The graph of u with respect to time t based on Table 1, 2 and G1 = 0.005 and G2 = 1000 starting from 30/4/2020
to 7/8/2020.
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Fig. 8. The control diagram for the infected population (I) using data given in Table 1 along with G1 = 0.005 and
G2 = 1000 from 30/4/2020 to 7/8/2020.

restricted to about 8000. Unfortunately, to arrange
this type of quarantined system is not possible for
Government since India is a country with large
populations. Therefore, the Government has to
think above other possible ways to restrict Covid-
19 infection.

Therefore, this paper provides a way to restrict
the infection by optimal control policy. We try to
recover the infected patients by using the mini-
mum drug. The present section explores the idea
to solve the control problem numerically and will
interpret the findings graphically. The boundary
value problem in this paper estranged boundary
conditions ranges between t = 0 to t = tf .
The optimality problem is solved intended for 100
days. Actually, given time tf = 100 represent the
period at which the given treatment is stopped.

TABLE III
INITIAL DENSITIES FOR THE OPTIMAL CONTROL PROBLEM

(17)

S(0) E(0) H(0) G(0) I(0) R(0)
11.76×108 2×106 5×106 5×105 89987 16×106

The collocation method is the best technique to
solve two-point BVPs numerically. The current
optimization problem solves numerically using
MATLAB for our control problem based on Table
1 and Table 3.

Here, we choose weight constants G1 = 0.005
and G2 = 1000, respectively in the objective
function given in (17). Figure 7 represents the
optimal control graphs for treatment control u. It
shows that treatment control is very much neces-
sary when the disease prevails. Also, this control
function minimizes the cost function J .
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Fig. 9. Diagram for the infected populace (I) without control using data from Tables 1, 2 and G1 = 0.005, G2 = 1000
from 30/4/2020 to 7/8/2020.

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

8

Time

P
o
p
u
la

ti
o
n
 R

Fig. 10. The control diagram of the recovered population (R) based on Tables 1, 2 and G1 = 0.005, G2 = 1000 from
30/4/2020 to 7/8/2020.

The graphs of the infected population (I) and
recovered population (R) with treatment control
and without treatment control with respect to time
t are presented in Figure 8 to Figure 11, respec-
tively.

From these figures, we can predict that treat-
ment control is exceptionally efficient in reducing
COVID infection. Therefore, control acquiesces
the best result to control the Covid-19 epidemic

outbreak.

VIII. DISCUSSIONS AND CONCLUSIONS

This paper explores the idea of a six-
compartmental Covid-19 infection model fitted for
the India scenario. The present model has exhib-
ited the effects of different precautions proposed
by the administration to control India’s infectious
disease. This study has also presented the impact
of home and Government quarantined technique
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Fig. 11. Diagram of the recovered population (R) without of control based on Table 1, 2 and G1 = 0.005, G2 = 1000
during 30th April to 7th August 2020.

on the Covid-19 epidemiological model via a non-
linear differential equation system. The dynamical
behavior of our proposed model is presented at
DFE and endemic equilibrium points. We have
calculated the BNR and verify that it behaves a
crucial role in predicting the stability nature of all
possible equilibrium points and the existence of
the disease soon. Also, a sensitivity analysis of R0

is carried out to α1 and α2 through Figure 2. This
analysis has shown that the parameters α1 and α2

are vital to restrict the spread of infection.

The most crucial part related to public health
importance is that this paper has built up a suitable
optimal control problem to reduce the number of
infected individuals. Though the infection may be
controlled by reducing the parameters’ values α1

and α2, it is not a long term solution to restrict
the spread of the disease. Therefore, we deem
the treatment of infected individuals by medicine
as a control to diminish the spread of Covid-19
infection. In this paper, we include a quadratic
control to quantify this goal. To minimize the
objective functional (9), the control function u(t)
is considered.

This study also numerically verified the theo-
retical analysis by using MATLAB software to

validate scientific findings through plot compar-
ative figures of infected populations with different
values of α1 and α2. We have observed from
Figure 4 for α1 = 2× 10−10 and α1 = 1× 10−10

that the pick of infection will be attained in the
mid of September 2020 and around 1700000 may
be affected in that time. Again if the administration
has taken the policy to cover all the populations
under the Government quarantined process (which
is impossible for a country like India), i.e., α1 =
α2, then Figure 6 show that a maximum number
of infected individuals are around 80000, the in-
fection may be eradicated within October 2020.

The proposed optimal control strategies are ben-
eficial to reduce the number of infected popu-
lations, which is presented through comparative
Figure 8 to Figure 11. It may also be concluded
from these figures that the only treatment of an
infected individual by medicine may not be the
possible way to die out the disease from India
and the globe. Therefore, vaccination should be
necessary as early as possible to protect the world
from the Covid-19 endemic.

Our mathematical model on the Covid-19 epi-
demic diseases gives some consequences of pub-
lic health policies. Many of our proposed model
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parameters are assumed or estimated, but it de-
pends on many factors; these parameters may
be considered as fuzzy or stochastic rather than
deterministic. Consequently, it may include fuzzy
or stochastic differential equations in the proposed
model for future work consideration. The progress
of treating Covid-19 disease by different medicines
in a cost-effective way is the main objective of
health administrators, policy-makers, and scientists
until a vaccine is discovered. The present paper
gives a little effort to reach this objective to restrict
Covid-19 infection.
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Appendix A. Proof of Theorem 4
The variational matrix of system (3) at DFE E0

is given by

ME0
=



−d1 0 −α1Λ
d1

−α2Λ
d1

0 0

0 −A α1Λ
d1

α2Λ
d1

0 0

0 β1 −B 0 0 0
0 β3 0 −C 0 0
0 β2 γ2 σ2 −D 0
0 0 γ1 σ1 ∈ −d1


Therefore, eigenvalues of the characteristic equa-
tion of ME0

are −d1,−d1 and −D and and the
solution of the cubic equation,

P (λ) ≡ λ3 +A1λ
2 +A2λ+A3 = 0 (A.1)

where

A1 =(A+B + C),

A2 =(AB +AC)(1−R0)+BC

+

(
α1β1C

B
+
α2β3B

C

)
Λ

d1
,

A3 =ABC(1−R0).

Now, it is easily noted that, A1 > 0, A3 > 0 if
R0 < 1. After some simplifications, we get

A1A2−A3 =(A+B)AB

[
(1−R0)+

Λα2β3

d1AC

]
+(A+ C)AC

[
(1−R0) +

Λα1β1

d1AB

]
+BC(B + C) + 2ABC

Here, we can notice that, if R0 < 1 then A1A2 −
A3 > 0 if R0 < 1. Therefore, by the Routh–
Hurwitz Routh–Hurwitz criterion [62] it follows
that P (λ) = 0 has negative real roots if R0 < 1,
i.e., the system (3) at DFE E0 when R0 < 1.This
completes the proof.

Appendix B. Proof of Theorem 6
The variational matrix of system (3) at

E1(S∗, E∗, H∗, G∗, I∗, R∗) is given by,

ME1
=


b11 0 b13 b14 0 0
b21 b22 b23 b24 0 0
0 b32 b33 0 0 0
0 b42 0 b44 0 0
0 b52 b53 b54 b55 0
0 0 b63 b64 b65 b66


where, b11 = −d1R0, b13 = −α1S

∗, b14 =
−α2S

∗, b21 = d1(R0−1), b22 = −A, b23 = α1S
∗,

b24 = α2S
∗, b32 = β1, b33 = −B, b42 = β3,

b44 = −C, b52 = β2, b53 = γ2, b54 = σ2,
b55 = −D, b63 = γ1, b64 = σ1, b65 =∈,
b66 = −d1.

Therefore, eigenvalues of the characteristic
equation of ME1

are −D, −d1and the solution of
the equation,

Q (λ) ≡ λ4+B1λ
3+B2λ

2+B3λ+B4 = 0 (B.1)

where

B1 = A+B + C + d1R0,

B2 =
Λ

d1R0

[
α1β1C

B
+
α2β3B

C

]
+(A+B + C)d1R0 +BC,

B3 = (α1β1 + α2β3)d1(R0 − 1) +BCd1R0

+
Λα1β1C

B
+

Λα2β3B

C
B4 = ABCd1(R0 − 1).
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Now, it is easily noted that Bi > 0 (i = 1, 2, 3)
and B4 > 0 if R0 > 1.

By the Routh–Hurwitz criterion [62], it follows
that Q (λ) = 0 has negative real roots if

Bi > 0 for i = 1, 2, 3, 4,

D1 = B1 > 0,

D2 =

∣∣∣∣B1 B3

1 B2

∣∣∣∣ = B1B2 −B3 > 0,

D3 =

∣∣∣∣∣∣
B1 B3 0
1 B2 B4

0 B1 B3

∣∣∣∣∣∣
= B1B2B3 −B2

1B4 −B2
3 > 0.

Therefore the system (3) shows local asymptotic
stability at E1 when R0 > 1, B1B2−B3 > 0 and
B1B2B3 − B2

1B4 − B2
3 > 0. This completes the

proof.
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