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Abstract— We develop a novel TVBG-SEIR spline
model for analysis of the coronavirus infection
(COVID-19). It aims to analyze the long-term global
evolution of the epidemics “controlled” by the intro-
duction of lockdown/open up measures by the au-
thorities. The incorporation of different “lockdown
scenarios” varying in time permits to analyze not
only the primary epidemic wave but also the arising
secondary wave and any further waves.

The model is supplied by a web-based Scenario
Building Tool for COVID-19 (called shortly SBT-
COVID19) which may be used as a decision sup-
port software by (health) policy makers to explore
various scenarios. This can be achieved by control-
ling/changing the scale of the containment measures
(home and social isolation/quarantine, travel restric-
tions and other) and to assess their effectiveness.
In particular, the SBT-COVID19 Tool permits to
assess how long the lockdown measures should be
maintained.

Keywords-COVID-19; SEIR model; spline models;
time-varying transmission and removed rates; time-
varying basic reproduction number

I. INTRODUCTION

A. Context

The coronavirus infection (COVID-19) started
in December 2019 in Wuhan, China, and has
quickly spread out to almost all other countries in
the world. The possible catastrophic impact on the
economy and health system has required the active
intervention of the authorities to introduce various
containment measures. This caused the necessity
for creating an appropriate model to plan the type,
scale and duration of the measures.

Mathematical models are traditionally used to
analyze the long-term global evolution of epi-
demics, to determine the potential and severity
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of an outbreak, and to provide critical informa-
tion for identifying the type of disease inter-
ventions and intensity. One of the widely used
mathematical models of long-term spreading of
epidemics are the so-called deterministic com-
partmental models (SIR/SEIR type models [4])
which reflect adequately the clinical progression
of the virus spreading, epidemiological status of
the individuals, and the intervention measures. One
of the main purposes of applying such models
is to assess how the expensive containment mea-
sures imposed by the authorities (home and social
isolation/quarantine, travel restrictions, etc.) can
effectively reduce the basic reproduction number,
transmission rate and risk of the disease. In par-
ticular, it is essential to assess how the expensive,
resource-intensive measures implemented by the
authorities can contribute to the prevention and
control of the COVID-19 infection, and how long
they should be maintained.

However the classical SIR/SEIR models have
been primarily studied in the case where the main
parameters - the Transmission rate β (reflect-
ing the virus spread by infected individuals) and
the Removed rate γ (reflecting the hospitaliza-
tion/isolation measures) - remain constant during
the whole period of interest. This does not reflect
in a proper way the extremely dynamic behavior of
such measures during the COVID-19 and similar
epidemics, resulting from the imposition of inten-
sive containment measures by the authorities.

B. Aims and Methods Summary

It is important to extend the classical SIR/SEIR
models by creating new models for the dynamics
of the transmission rates β(t) (sometimes referred
to as Beta) and removed rates γ(t) (sometimes
referred to as Gamma). The main aim of the
present research is to introduce a novel spline-
based SEIR model with time-varying β(t), γ(t)
parameters, or abbreviated TVBG-SEIR model,
which is used to estimate the practical implications
of the public health interventions and containment
measures. We have designed a Scenario Building
Tool for COVID-19 (SBT-COVID19 Tool) based
on the TVBG-SEIR model, which may be used

as a Decision Support Tool to assist the health
decision- and policy-makers in creating predictive
scenarios. It may be used to assess the impact of
previous public health interventions, and to plan
quantitatively and qualitatively the introduction
of future containment measures for achieving the
necessary objectives.

For formulating our model, we use deterministic
spline Ansatz: the transmission rates β(t) and the
removal rates γ(t) are modeled by splines with
two nodes - Node1, Node2 (the same nodes for
both β(t) and γ(t)) - within the time interval
of interest – from StartDate until Today. This
Ansatz allows to properly model the dynamics due
to the introduction of containment measures by the
authorities in two steps. The purpose of fitting of
the TVBG-SEIR model is to identify the nodes
of the splines and the three values of β(t) and
γ(t) on Node1, Node2, and Today date. It is
assumed that β(t) and γ(t) are constant in the
time interval [StartDate,Node1], and of β(t)
is monotone decreasing while γ(t) is monotone
increasing function. The TVBG-SEIR model with
time-varying β(t) and γ(t) will be fitted simulta-
neously to two sets of data: the daily infected cases
(or their cumulative vector), and the removed cases
(which are all removed cases until a certain date).

The choice of just two nodes of the splines for
the rates β(t) and γ(t) seems to be appropriate
for models of historical data (until Today) for not
very long periods of time. These models are used
as a basis for creation of “prediction scenarios”
starting from Today, with a prediction perspective
of about 2 months horizon. These models are
updated every day (by the arrival of the official
daily data), and the scenarios are renewed accord-
ingly. In a more mathematical language “scenario”
means choice of control parameters β(t) and γ(t)
in the form of splines defined after Today, which
determine the SEIR model to be defined below.
One may choose these scenarios in infinitely many
ways. The main objective of our approach is to
choose such scenarios β(t) and γ(t) for which the
SEIR model generates curves which satisfy some
reasonable restrictions, e.g. the number of infected
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daily cases does not explode too abruptly. Let us
emphasize that these are just “possible prediction
scenarios” but not extrapolations in the classical
sense of the word.

The web-based SBT-COVID19 Tool was
designed for visualization of the results of the
fitted model (the daily infected cases), and for
creating prediction scenarios for the daily infected
cases during the next two month horizon, by
controlling the future values of Beta and Gamma.
It is described in detail in Section VII, and is
available at the links

Version 3 (Matlab generated Figures)
http://213.191.194.141:8888/notebooks/
TVBG-SEIR-Spline-model v3.ipynb?token=
b5d97bfbd7dd062e47ee7ab51837e470a8c226743a4667ee

Version 4 (Python generated Figures)
http://213.191.194.141:8889/notebooks/
TVBG-SEIR-Spline-model v4.ipynb?token=
b5d97bfbd7dd062e47ee7ab51837e470a8c226743a4667ee

C. Objectives

In the case of the usual seasonal flu the main
parameters of the spread of the viruses are the
transmission rate β which reflects the power of
the transmission of the virus from infected peo-
ple to susceptibles, the recovery rate γ which is
reciprocal to the recovery period (which is the
sum of “recovery to health cases” + “isolated sick
cases” + “mortality due to the sickness cases”),
and the parameter σ which is the reciprocal to
the incubation period. Due to the long incubation
period and large number of asymptomatic or mild-
symptomatic cases, COVID-19 has proved to be
very insidious and requires intensive emergency
measures from the authorities to reduce the trans-
mission rate β and to increase the recovery rate
γ. For comparison, in the case of the seasonal flu
no intensive containment measures are necessary
to be undertaken by the authorities.

For containing COVID-19, the authorities have
introduced very strong measures which have es-
sentially influenced the dynamics of the param-
eters β and γ. For the majority of states these

measures have been introduced not only in one
step but most often in two steps. It depends on
every society how fast these measures will be
implemented in life. There are two types of mea-
sures: for example, closing schools, pubs, restau-
rants, traveling national or international routes,
social meetings, wearing masks, reduce directly
the transmission rate of the disease β (further
we will call these measures shortly Beta mea-
sures); on the other hand the fast identification
and medication of virus spreaders, hospitalization,
quarantining and similar, increase the rate γ of
“removal from the group of virus spreaders” (fur-
ther we will call these shortly Gamma measures).
It is important to assess how these expensive
and resource intensive measures implemented by
the authorities can contribute to the prevention
and control of the COVID-19 infection, and how
long they should be maintained, [12], [13]. In
order to meet the challenge of Controlled spread
of the COVID-19 (and similar) epidemics, one
needs to develop new mathematical models which
better describe reality. Based on the widely used
conventional epidemiological model SEIR, in the
present research we propose a new model TVBG-
SEIR which incorporates a specific spline model
for the time-varying transmission β and removal
γ rates.

D. Data Acknowledgement

We acknowledge the following data sources
used in the present research of COVID-19:
• HDX Humanitarian Data Exchange V1.39.3

time series covid19 confirmed global.csv
time series covid19 deaths global.csv
time series covid19 recovered global.csv
https://data.humdata.org/dataset/
novel-coronavirus-2019-ncov-cases

• Kaggle SRK Sudalairaj Kumar
https://www.kaggle.com/sudalairajkumar/
novel-corona-virus-2019-dataset#
covid 19 data.csv

The paper is organized as follows: In Section
I we recall the deterministic SEIR model and
introduce some notions and notations. In Section II
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we introduce the discretization of the SEIR model
which is used in the algorithms. In Section III
we introduce and provide all technical details of
the TVBG-SEIR spline model. In Section IV we
provide an application of the TVBG-SEIR model
to Bulgarian data, which are used to illustrate the
work of the SBT-COVID19 Tool for prediction
scenarios. In Section V and Section VI we provide
more examples of analysis, for the Italian data, and
for the German data. In Section VII we describe
the technical details of the SBT-COVID19 Tool for
prediction scenarios. In Section VIII we provide
some recent references about models with time-
varying transmission rates and their fitting to the
data (calibration).

II. THE CLASSICAL DETERMINISTIC SEIR
MODEL: NOTIONS AND NOTATIONS

The main purpose of the authors’ presentation
is to provide all notations and formulas as fully as
possible, to enable the replicability of the calcula-
tions and experiments in the paper. Thus we also
provide a detailed account of the discretization of
the well-known classical SEIR model.

A. Compartmental models

Compartmental models are a framework used
to model in an adequate way the dynamics of
infectious disease. The population is divided into
compartments, with the assumption that every in-
dividual in the same compartment has the same
characteristics. This framework has been devel-
oped for the first time in the paper of Kermack
and McKendrick in 1927 [2]. One may use a
deterministic approach using a system of ODEs or
a stochastic approach which is more complicated.
The deterministic approach is what we follow,
namely our choice is the SEIR model. The main
reason for choosing SEIR model against its sim-
pler relative SIR model, is the long incubation
period of COVID-19, hence, the large “exposed
cases” compartment to be defined below.

For a detailed and excellent introduction to the
compartmental models we refer to the monograph

[4]. We provide a short description of the de-
terministic SEIR model which will be the main
approach in our research.

The classical SEIR model is based on the
consideration of four compartments, CS , CE , CI

and CR which are described as follows: Com-
partment CS : its size is Sr(t) – the number
of ”susceptible” people at time t. Usually, at the
start, S(0) = N is the whole population of the
country under consideration. It is supposed that
nobody has automatic immunity against the virus,
i.e. everybody is susceptible.

Compartment CE : its size is Er(t) – the
number of ”exposed” people at time t - these
are the people who are ”virus carriers” but are
not ”virus spreaders”; the virus is in a latent
form, and usually they do not show symptoms
of sickness. For different viruses the incubation
(latent) period is very different – for the coron-
avirus it was recently statistically estimated that
the average incubation period is 11.5 days [3]. Not
everybody in CE may become ”virus spreader”,
i.e. move to the next compartment CI . Practically,
the compartment CE does not enter the official
statistics since it is not observable, but it is very
important for the modeling of the dynamics of the
virus spread. This compartment is missing in the
simpler SIR model. Compartment CI : its size is
Ir(t) – the number of infectious cases at time t
- these are the people who are ”virus spreaders”,
majority of them show some symptoms, although
they may not show any symptoms (asymptomatic).
It is important to understand in the modeling that
many people who are diagnosed positively are
almost immediately hospitalized or quarantined,
hence they go to compartment CR, but they have
stayed in CI only until they have been diagnosed
(and these are the official data which we obtain
– denoted further by Idata(t) ). Compartment CR

: its size is Rr(t) – the number of recovered
or deceased (or immune) individuals, which are
all called ”removed”. Normally they come from
compartment CI after becoming healthy and no
more virus spreaders. Officially these data are
provided in a cumulative way.
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B. Official data available for modeling purposes

We do not have the ”reality data” Sr(t), Er(t),
Ir(t), Rr(t). The available official data Idata(t)
are the daily ”new infected cases” with COVID-
19, and these are normally people with serious
symptoms. These are the cases which have been
tested and registered officially at the hospitals.
The majority of them are almost immediately
hospitalized or quarantined, hence, they are almost
immediately moved from compartment CI to com-
partment CR. However it is well known that for
seasonal flu (and it is considered to be similar for
COVID-19) the size of CI is much bigger than
that indicated by the official data Idata(t), and
we have the inequality Idata(t) ≤ Ir(t).

The officially announced data Rdata(t) con-
tains the cumulative number of recovered cases
and the Ddata(t) is the cumulative number of
fatalities.

A main point of the modeling paradigm for
COVID-19 (and similar virus infections) is that,
for a certain segment of the society (in this case,
the younger people), the infection symptoms do
not differ essentially from a seasonal flu, hence
the number of unreported cases (those which are
in compartment CI but not in Idata(t) for every
time t) may be much bigger, thus in the above
inequalities more appropriate is to use the sym-
bol ”�”, which denotes roughly speaking ”much
less”. In the case of the seasonal flu it may be even
100 times less.

C. Definition of the continuous SEIR model

The main point of developing the compart-
mental deterministic SEIR model is to provide
some tractable approximations S(t),E(t),I(t),R(t)
to the above time series of the ”reality data”
Sr(t),Er(t),Ir(t),Rr(t). The most widely used is the
model based on a system of Ordinary Differential
Equations with variables S(t), E(t), I(t), R(t)

which is given as follows:

S′(t) = −β(t)S(t)I(t)/N
E′(t) = β(t)S(t)I(t)/N − σE(t)

I ′(t) = σE(t)− γ(t)I(t) (1)

R′(t) = γ(t)I(t)

Let us explain the notations and the correspon-
dence to the “reality data” of the Compartmental
model:

Here the term β(t)I(t)/N expresses the rate at
which new individuals (as a proportion of the total
population size) are infected by the already infec-
tious I(t) individuals, (cf. Keeling-Rohani, (2008),
p.18). Here and further β(t) is called Transmission
rate of the infection, which we call further simply
Beta.

As already said, the coefficient γ(t) is the Re-
moval rate; it is determined by the reciprocal of the
infectious period, after which either the person is
recovered (and no more infectious) or dead (again,
no more infectious). Here and further γ(t) is called
Removal rate, and sometimes we call it simply
Gamma. The coefficient σ is the latent rate, or
the rate of ”becoming symptomatic” (where 1/σ
is the average of the incubation period). In the
present paper we use the constant value σ = 1/5.2
which represents a reasonable approximation, as
the recent research shows, see [3].

The variable S(t) corresponds to the reality
data Sr(t). The quantity σE(t) is equal to the
daily new infectious cases Idata(t). However, the
quantity I(t) of the SEIR model is equal to the
so-called Active Cases which are defined by the
equation

AC(t) = Total Infected(t)−Rr(t)

Here Total Infected(t) is the cumulative sum of
Idata(t) until the date t.

The usual applications of the SEIR model are
with constant rates β(t) and γ(t). One assumes
that the initial values S(0), E(0), I(0) and R(0)
are given and the system is solved for the times
t ≥ 0, where t is an integer. It is assumed that the
following equation holds

N = S(0) + E(0) + I(0) +R(0), (2)
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where N is the total population in the country XX.
Obviously, since the sum

S′(t) + E′(t) + I ′(t) +R′(t) = 0

it follows that equation (2) holds for every time
t ≥ 0.

III. DISCRETIZATION OF THE SEIR MODEL

In practice one uses a discretization of the
continuous SEIR model. In the current work we
use the following discretization of the SEIR model
which is derived from the Euler method for ap-
proximate solution of the initial value problem (1):

S(n+ 1) = Sn − (βnSnIn)/N

E(n+ 1) = En + (βnSnIn)/N − σEn

I(n+ 1) = In + σEn − γnIn (3)

R(n+ 1) = Rn + γnIn

Here Sn, En, In and Rn are respectively the values
of S(t), E(t), I(t) and R(t) on the day t = n,
and the initial values for day n = 0 are S0, E0,
I0 and R0. The above system is iteratively solved
for integers n ≥ 0. We assume that the size N of
the population remains unchanged (hence no usual
birth and mortality are taken into account). As in
the continuous case, the total sum of the above is
assumed to satisfy

N = Sn + En + In +Rn

which makes one of the equations in (3) redundant.
It is well known that the above Euler method for
approximating the solution of (1) is less accurate
than the Runge-Kutta which is widely used, see
e.g. [11]. Again, it is very important for the
modeling process to realize what is the corre-
spondence between the variables of the discrete
model and the officially announced data. On the
day n the value Rn corresponds to the sum of
the cumulative recovered plus fatalities data, i.e.
to Rdata(n) + Deaths(n). The announced daily
data of newly infected Idata(n) correspond to the
amount σEn which is clear from the third equation
in (3). Below we use this correspondence to define
the quadratic function F (θ) for fitting our models.

Remark: One has to note that the continuous
model (1) and the above discrete approximation
(3) have essential differences in the long-term
behavior which has been the subject of much
research. It is important to note that the qualitative
properties of the solution to the differential equa-
tion and of the discrete equation differ essentially
- the continuous case is simpler as usual.

IV. THE TVBG-SEIR MODEL

The SEIR models have proved to be very ef-
ficient in situations where the main parameters β
and γ are constants, in natural conditions, where
no special control by the authorities is exercised,
i.e. no intervention measures are undertaken to
change the transmission and the removal rates in
the course of the epidemics. This is very often the
case with the seasonal flues, where the medical
authorities do not undertake actively special mea-
sures to restrict the social behavior of the citizens,
although nowadays the vaccinations change the
“natural” picture. However due to the specific of
the COVID-19 the situation has become more
dramatic and it has required the interference of
the governments in order to avoid the overloading
of the National Health systems. The authorities
have introduced very strong restrictive measures
which have essentially influenced the dynamics
of the parameters β, γ. For the majority of the
states these measures have been introduced not
only in one step but most often at least in two
steps. In view of the above it makes sense to seek
for mathematical models which try to model as
best as possible the dynamics of the parameters β
and γ. We have decided for spline structure with
two important breakpoint nodes, Node1, Node2
- which reflect the control exercised by the au-
thorities in the form of restriction measures. Also,
it is natural to assume that between the dates
the control measures change the parameters β(t)
and gamma(t) in a monotone way, i.e. β(t) is
decreasing whereas γ(t) is increasing.

A. Technical Description of the TVBG-SEIR model

1) We denote the StartDate by T1; this corre-
sponds to a date when the first cases of COVID-19
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are announced, eventually we may choose T1 to be
a date when the steeper growth of the epidemic
starts. We denote by T4 the EndDate (usually
chosen to be Today).

2) We choose two interior nodes in the inter-
val [T1, T4] for the interpolation splines modeling
the coefficients β(t), γ(t): Node1 = T2 and
Node2 = T3. This corresponds to two steps of
the introduction of restrictive measures imposed by
the authorities of the country XX. Normally, the
date T2 may be the first restrictive measures date,
or a date close to it, and T3 may be the Second
restrictive measures date, or a date close to it.

3) The model is supposed to reflect the natural
expectation that once there are official restrictions,
they will implicate an essential change in the
Transmission and Removed rates although not im-
mediately. We assume that the rate β(t) is mono-
tone decreasing with the time, which corresponds
to the natural expectation that the more restrictive
the measures the smaller the Transmission rate.
Respectively, the rate γ(t) is assumed to be mono-
tone increasing, meeting the expectation that the
stronger the measures, the bigger the removal rate.

4) We assume that β(t) and γ(t) are constant
between the start date T1 and the first node T2,
i.e. β(T1) = β(T2) and γ(T1) = γ(T2). This cor-
responds to the “still” life of the society (without
containment measures) when the rates β(t) and
γ(t) are nearly a constant.

5) To be more precise, the splines which we
consider are not the usual polynomial, but the
so-called exponential splines depending on a pa-
rameter in the exponent, which makes a fast
decay to the next target value of the β(t) rate;
respectively this makes fast increasing to the target
value of the rates γ(t). This corresponds to the
expectation that the speed by which the society
switches from one level of the restrictive measures
to another is relatively fast, and it is reflected by
the size of the exponent we decide to choose. In
fact, we use shape preserving exponential splines
which are just C1 (smooth) and do not need
additional boundary conditions. Alternatively, one
may use C2 (twice differentiable) exponential

splines which would be more technical due to the
necessity to choose boundary conditions (at the
initial and the terminal points). For the practical
purposes, there are different spline functions im-
plemented in Matlab/Octave, R, Python.

On the following Figures we see examples of
the dynamics of β(t) and γ(t) rates:

Figure 1. The rates β(t) for a Model curve

Figure 2. The rates γ(t) for a Model curve

6) An important property of the TVBG-SEIR
model is that due to the above spline model for
the β(t) and γ(t) parameters, where there is a fast
transition to the next target value, a classical SEIR
model with constant β(t) and γ(t) holds during
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larger sub-intervals. In particular, this permits to
provide a reliable estimate of the Basic Reproduc-
tion Number.

7) The Reproduction number (ratio) is a key
variable for all models of epidemics, see [4], [9],
[14], [15]. Following [15] (formula (2.4)), for the
case of the SEIR models with constant rates β(t)
and γ(t), the Reproduction number is given by the
formula

R0 = β/γ,

where we have assumed that the natural birth and
mortality rates are small and also equal. Due to
the above remark, we may extrapolate the above
formula for all time points of interest by putting:

R0 = β(t)/γ(t)

On Figure 3 below we provide the Reproduction
Number R0, obtained by the last formula, for some
specific TVBG-SEIR model:

Figure 3.

8) On Figure 1 we see that the nodes of the
spline satisfy Node1 = T2 = 17 −Mar − 2020
and Node2 = T3 = 7−Apr− 2020. On the other
hand on Figure 2 we have chosen a configuration
with different nodes, T2 = 23−Mar− 2020, and
T3 = 15−Apr − 2020.

9) In the above examples of the dynamics of
β(t) and γ(t) one sees the exponential factor

exp(0.4 ∗ (t − t1)) by which the curve changes
from one level at t = t1 to the next target level.
The coefficient 0.4 is judiciously chosen and may
be varied, as well as the exponential function may
be replaced by a different proper function.

10) The rates β(t) and γ(t), are defined as
interpolation splines on the subintervals defined
by the start date T1, the nodes dates T2, T3, and
the final date T4. Thus the whole configuration
is defined by eight parameters in total, which we
gather in a set θ, given by

θ={T2,T3,β(T2),β(T3),β(T4), γ(T2),γ(T3),γ(T4)}

11) The data which we use for the fitting of
the discrete TVBG-SEIR model are the official
data for daily new infected cases Idata(t) (or
their cumulative vectors cum(Idata)(t) and the
cumulative data for recovered and fatalities.

12) Finally, we fit the Model to the data by
optimizing the positions of the two nodes T2, T3,
and the levels of β(t) and γ(t), i.e. F (θ) by
varying the parameter set θ:

F (θ) =

n∑
j=1

(cum(Idata)(tj)−σ ∗ cum(E)(tj))
2

+(Rdata(tj)+Deaths(t)−R(tj))2.

Here we denoted by cum(E)(t) the cumulative
vector of the solution En of the discrete SEIR
system until the date t.

Let us note that there are different possibilities
to choose the functional F (θ) which is used by
other authors, and one of the most important argu-
ments is the reliability of the officially announced
data.

13) As we said, the minimization of F (θ) is
performed by varying by means of sampling the
two nodes T2 < T3 of the splines in the interval
range [T1, T4]; the interpolation values for the
splines, β(T2), β(T3), β(T4), γ(T2), γ(T3), γ(T4)
are also varied. More details about the possible
choice of proper models are provided below in
Section V.

14) The “curves” Sn, En, In ,Rn of the discrete
SEIR model are obtained by solving the system (2)

Biomath 10 (2021), 2103087, http://dx.doi.org/10.11145/j.biomath.2021.03.087 Page 8 of 17

http://dx.doi.org/10.11145/j.biomath.2021.03.087


O. Kounchev, G. Simeonov, Zh. Kuncheva, Scenarios for the spread of COVID-19 analyzed by ...

with initial conditions given by

S1 = N − E1 − I1 −R1,

where N is the size of the whole population, and
also,

σE1 = Idata(1)

R1 = Rdata(1) +Deaths(1)

I1 = Idata(1)−R(1).
As defined above, the set θ contains the parameters
which determine the (discrete versions of the)
splines for β(t) and γ(t). Additionally, one may
introduce non-negative weights w1(t) and w2(t),
which give priority to some of the data.

15) On Figure 4 below we provide the daily data
of infected cases Idata(t) for Bulgaria:

Figure 4.

16) On Figure 5 below the cumulative data for
recovered and fatalities are provided. On Figure 6
we provide the fitting of the model curve σE(t)
to the above data for Bulgaria, Idata(t).

17) Figure 7 shows the fitting by the model
curve R(t) of the Recovered plus Fatalities data
for Bulgaria.

18) It is important to remark that we have
applied a “parsimonious” approach for construct-
ing the spline model, by which one has to avoid
putting too many nodes in the splines since this
will influence the stability of the model, and might
cause overfitting, hence would spoil the predictive
power of the model.

Figure 5.

Figure 6.

Figure 7.
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19) As we said, the result of the minimization of
the quadratic functional F (θ) is a set of parameters
θ for which the minimum is attained, whereby
there may be multiple solutions. Once we have
found some model based on the parameters θ, we
proceed to constructing “prediction scenarios”. We
choose some date T6, which we call Horizon, say
at most 2 months from Today = T4, by putting
T6 = T4 + 2 months.

Then a scenario is defined by choosing an
additional node T5, which is a Third restriction
measures date, and the parameters

{β(T5), β(T6), γ(T5), γ(T6)}

We put

β(T5) = Coef1 ∗ β(T4)
β(T6) = Coef11 ∗ β(T5)
γ(T5) = Coef2 ∗ γ(T4)
γ(T6) = Coef22 ∗ γ(T5)

The coefficients Coef1, Coef11, Coef2,
Coef22 are used further to control and represent
our scenario building in the SBT-COVID19 Tool.
Their meaning and choice is explained in detail in
Section VIII, where we introduce the Tool.

V. COVID-19 SPREAD IN BULGARIA IN

OCTOBER-DECEMBER, 2020: APPLICATION TO

BULGARIAN COVID-19 DATA AND SCENARIOS

GENERATED BY THE SBT-COVID19 TOOL

In the SBT-COVID19 Tool one may find online
the results for analyzing of the Covid-19 data and
for generating scenarios in the case of Bulgaria, for
the period March-August, 2020, (Kounchev et al.,
(2020), [17]). There we have shown the possibility
for a next wave of the infection.

Here we demonstrate how to generate prediction
scenarios based on the Bulgarian data for the
period 1 October, 2020 – 3 January, 2021. In the
results provided below, it is clearly visible that the
model reflects properly the wave of the epidemic
in October-November and its decline at the end
of December due to the lockdown imposed on
November 25th, 2020. It also hints the appearance

of a next wave for certain scenarios, which cor-
respond to special choices of the splines for β(t),
γ(t) after Today date, which model relaxation of
the containment measures. We have to emphasize
that the date Today and “Third restriction measures
date” are the only nodes of the splines for β(t),
γ(t) in the interval after Today date. Hence, the
only parameters which determine a “prediction
scenario” are the “Third restriction measures date”
and the values of β(t), γ(t) at them.

The SBT-COVID19 Tool will be described in
detail in Section VII. We provide the visualizations
of the model fitting which are available in the SBT-
COVID19 Tool. The thick red curve on the Figures
below shows the fitted model curve until Today =
T4 for the daily new infected cases σE(t) and the
blue stars show the official data for them, namely
Idata(t). The thin red curve shows the prediction
scenarios, after Today.

Definition. Under scenario we understand a
choice of the coefficients Coef1, Coef2, which
indicate whether we relax the measures (i.e. we
set them to 0.2, 0.4, 0.6, 0.8), retain the measures
(=1.0) or tighten measures (i.e. we set them to
1.2, 1.4, 1.6, 1.8) which determine the parameters
β(t), γ(t) of the epidemic after Today date, as
well as of the coefficients Coef11, Coef22, which
indicate a relaxation (if set equal to 1.2, 1.6, 1,8) of
the two types of measures after the HORIZON
date (for which we have three possible choices,
namely, 5, 15, 25 days from Today).

1) For Bulgaria we have considered the data
from the StartDate which is T1 = 1−Oct−2020,
until the end date Today, equal to T4 = 3 −
Jan − 2021. Third restrictions date = T5 =
28 − Jan − 2021, and the Horizon date is T6 =
22− Feb− 2021.

2) As we explained in Section IV the minimiza-
tion of the functional F (θ) consists of considering
many pairs of nodes T2, T3 (about 150 for a three-
month period) for the splines β(t), γ(t). We select
the pair T2, T3 and the corresponding parameters
θ (which define Model1) for which the minimum
F (θ) of F (θ) is attained. However there are also
other parameter vectors θ for which the functional
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F (θ) attains values very close to the optimal
value F (θ). We denote these by θ = θ1, θ2,
θ3, etc. These vectors define parameters β(j), γ(j),
or equivalently, models, which we denote by
Model1, Model2, Model3, etc. The curves of
the TVBG-SEIR model which correspond to these
parameters β(j), γ(j) play a very useful role, and
serve as an alternative to the Bootstrapping pro-
cedure as described in the classical textbooks,
see e.g. Hastie and Tibshirani (2009), [16]. Thus,
it will provide us also alternative to finding the
Confidence intervals for the obtained results.

Let us note that in the example above the
maximum value of the functional F (θ) is 275.90
(taken over all admissible parameters θ), while the
minimum is 30.96.

3) For the optimistic, Model1, we have found
T2 = 9−Nov−2020, T3 = 2−Dec−2020, with
F (θ) = 30.96, hence the ratio max(F (θ))/F (θ
is about 9. Figure 8 below shows the simplest
prediction scenario starting on Today = T4 =
3 − Jan − 2021. In the Legend of the Figure,
Coef1 = 1 and Coef2 = 1 mean that no change
by the authorities will be undertaken starting
Today and ending on the Third restrictions date
= T5 = 28 − Jan − 2021. Further, Coef11 = 1
and Coef22 = 1 mean that no relaxation of the
measures will follow starting on 28−Jan−2020.

Figure 8.

4) However, on 28 − Jan − 2021 only the
measures decreasing the coefficient β may be

partially relaxed, without appearance of a “next
wave”, i.e. we may afford Coef11 = 1.4. This is
seen on the Figure 9 below:

Figure 9.

From Figure 10 below we see that too much
relaxing one of the measures, e.g. the first one,
with Coef11 = 1.8, a “second wave” of infectious
cases will arise in February 2021:

Figure 10.

The second wave is inevitable if more relax-
ation of the measures is allowed by the health
authorities: namely, relaxing both measures, i.e.
Coef11 = Coef22 = 1.8 after 28-Jan-2021 will
generate a strong “next wave” of infections, as
seen from Figure 11.
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Figure 11.

5) Similar are the conclusions with Model3 for
Bulgaria (with Fval = 31.60, with “next wave”
appearing as well.

6) For Model2 (with Fval = 31.78 ) we have
the most optimistic scenario since we may partially
relax both measures after 28 − Jan − 2021 (i.e.
Coef11 = Coef22 = 1.4), and no second wave
will appear, as seen from Figure 12 below:

Figure 12.

As we mentioned above, we may use say ten
models Model2, Model2, . . . , Model11 and gen-
erate their curves I(t) to obtain estimate of the
Confidence intervals at every time t. However we
found the above presentation using “optimistic”
and “pessimistic” scenarios more simple and clear.

VI. APPLICATION TO ITALIAN COVID-19
DATA IN OCTOBER-DECEMBER, 2020, AND

SCENARIOS GENERATED BY THE

SBT-COVID19 TOOL

In the present section we provide similar results
obtained by our scenario SBT-COVID19 Tool for
the Italian data.

1) The results about Italy considered till
Today = 1−Jan−2021 are similar to Bulgarian.
For Model0 we have T2 = 6−Nov−2020, T3 =
20−Nov − 2020, and Fval = F (θ) = 153.09.

Figure 13.

A strong relaxation after the Horizon date 26-
Jan-2021 results in a strong “next wave” seen in
Figure 14

Figure 14.
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2) Model2 has T2 = 3 − Nov − 2020, T3 =
17 − Nov − 2020, and Fval = F (θ) = 159.77.
For it we obtain the following scenario:

Figure 15.

Just as in Model1, further strong relaxation
gives a strong “next wave” provided in Figure 16.

Figure 16.

Model3 has T2 = 6−Nov − 2020, T3 = 23−
Nov−2020, and Fval = F (θ) = 169.72. It gives
the following Figure 17.

Further relaxation after 26−Jan− 2021 shows
a bigger “next wave” in the Figure 18.

Figure 17.

Figure 18.

VII. APPLICATION OF THE MODEL TO GERMAN

COVID-19 DATA IN MARCH-MAY, 2020, AND

SCENARIOS GENERATED BY THE

SBT-COVID19 TOOL

We provide the results for the German data. The
overall feeling is, that unlike the data for Bulgaria
and Italy, they show a very strong tendency to
“explode” into a “next wave”.

1) For the German data, on the Today date =
1 − Jan − 2021, according to our Model1 for
Germany, we have T2 = 3 − Nov − 2020, T3 =
11−Nov − 2020, and Fval = F (θ) = 160.96.

It is seen that if the containment measures
remain the same as before Today, then Germany
is already in the “next wave”, which is seen from
the Figure 19 below:
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Figure 19.

2) However, a moderate tightening of the second
measures (Coef2 = 1.2) will result in a calming
(Figure 20).

Figure 20.

But a much better result will bring the tightening
of the measures influencing the coefficient β, i.e.
Coef1 = 1.2 as seen in the Figure 21.

3) For Model2 we have T2 = 3−Nov− 2020,
T3 = 8−Nov−2020, and Fval = F (θ) = 169.16,
and for Model3 - T2 = 3 − Nov − 2020, T3 =
20 − Nov − 2020, and Fval = F (θ) = 171.61.
The application of the two models gives a result
similar to that of Model1.

On the Figures 22 and 23 one may choose
how strong the tightening of the measures has to
be, within Model2, in order to obtain a stronger
slowdown of the infection progression.

Figure 21.

Figure 22.

Figure 23.
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And for Model3: we have a slight difference on
Figure 24 below:

Figure 24.

VIII. DESCRIPTION OF THE SBT-COVID19
TOOL FOR CONTROLLED SCENARIOS

1) We have designed a SBT-COVID19 Tool
for the Model predictions of the Corona virus
(and similar infectious diseases) spread. The SBT-
COVID19 Tool is based on the fitting of the
TVBG-SEIR model to the official data available
on a daily basis as described in Section II, B).
The online tool is available at the site
http://213.191.194.141:8888/notebooks/
TVBG-SEIR-Spline-model v3.ipynb?token=
b5d97bfbd7dd062e47ee7ab51837e470a8c226743a4667ee

2) First of all, we fit the model for the time
series in the interval [T1, T4], where T4 is Today’s
date. Then the USER may choose several pa-
rameters to make a prediction about the virus
spread during the period [T4, Horizon], where
Horizon is chosen to be at most 2 months from
Today = T4.

3) The first parameter, to be controlled, is the
Third restrictive measures date denoted by T5. The
USER may choose several options, say 5, 15, 25
days from Today (= T4), i.e. one may select the
dates T5 = T4 + 5, T4 + 15, T4 + 25.

4) Then the USER may decide how to
strengthen or relax the Beta measures and the
Gamma measures during the period [T4, T5], by

means of the coefficients Coef1 and Coef2,
respectively; Coef1 = 1 means that the Beta
measures remain the same, while Coef2 = 1
means that the Gamma measures remain the same
in the period [T4, T5]. If Coef1 < 1, then this
means that the Beta measures are “weaker”, and
also, the smaller Coef1 the weaker are the Beta
measures and they will reach a target value at the
date T5, which is defined by the size of Coef1
(Note that Coef1 < 1 means that the rate β(t)
will be bigger!). In a similar way, if Coef2 < 1,
then this means that the Gamma measures will
be “weaker”, and the smaller Coef2, the weaker
are the Gamma measures (note that in such case
the rate γ(t) will be smaller!). A target value
(determined by the size of Coef2) will be reached
at the date T5.

5) On the other hand, if Coef1 or Coef2
are bigger than 1, this means “strengthening the
measures”, resp. of Beta measures and Gamma
measures in the period [T4, T5] to some target
value defined by Coef1, Coef2.

6) The USER has further the possibility to de-
cide what will happen after date T5 - to weaken or
leave the same the Beta and the Gamma measures.
This is decided by the choice of two coefficients –
Coef11 for the Beta and Coef22 for the Gamma
measures. Coef11 = 1 means that one retains the
same level of the Beta measures; Coef22 = 1
means that one retains the same level of the
Gamma measures. If Coef11 > 1 then this would
relax the Beta measures – the bigger Coef11 the
more the relaxation. Coef22 makes the same for
the Gamma measures.

7) A similar way to represent the above ap-
proach to Scenarios design and visualization is
implemented since relatively recently in the pop-
ular online tool Covid-19 Projections, http://www.
healthdata.org/covid/ (Initially, they used confi-
dence intervals around the most probable scenario)
Instead of using coefficients Coef1, Coef2, they
use a more descriptive terminology for “worse”
and “better” scenarios, as “95% masks usage”,
“short lasting vaccination”, etc. Their terminology
changes very fast in time.
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IX. RECENT RESEARCH ON TIME-VARYING

TRANSMISSION RATES

As we already said, presently it is urgent to
consider SIR/SEIR models with time-varying β(t)
and γ(t) rates.

Let us mention some research about solving an
inverse problem for finding time-varying β(t), in
a SIR model, for a fixed removal rate γ, [10],
from the number of infectious cases. In [1], the
authors do research and provide further references
of research on specific models for the transmission
rate β(t).
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