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2 Department of Basic and Technical Engineering Sciences
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Abstract— We develop a new model of
integro-differential equations coupled with
a partial differential equation that focuses
on the study of the naturally acquiring im-
munity to malaria induced by exposure to
infection. We analyze a continuous acquisi-
tion of immunity after infected individuals
are treated. It exhibits complex and realis-
tic mechanisms precised mathematically in
both disease free or endemic context and
in several numerical simulations showing
the interplay between infection through
the bite of mosquitoes. The model confirms
the (partial) premunition of the human
population in the regions where malaria
is endemic. As common in literature, we
indicate an equivalence of the basic repro-
duction rate as the spectral radius of a
“next generation” operator.
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I. INTRODUCTION

One of the major health challenges in
Africa is the management of malaria en-
demicity [15], [9], [13], [21], [11], [3], [15],
[18]. As underlined by Langhorne [11]
“preventative and treatment strategies are
continuously hampered by the issues of
the ever-emerging parasite resistance to
newly introduced drugs, considerable costs
and logistical problems”. Understanding the
mechanisms of naturally acquiring immu-
nity to malaria [11] even with modeling,
is important to analyze its hidden mecha-
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nisms, and justifies our study [19], [9], [13],
[21], [11], [3], [15], [18]. The “premunition”
could be defined as the natural acquired
immunity capacity to live with a relatively
low concentration of malaria parasite, and
resist to falling sick. The immunity is not a
sterilizing type in that the infection persists
longer than the symptoms and individuals
can exhibit relapses or recrudescences or
become reinfected. Moreover, chronic infec-
tion persists, although the maximum par-
asite load reached is low. Even if it adds
a little in terms of reduction of parasite
load as compared to innate resistance, this
additional immunity is substantial in terms
of morbidity as it keeps the parasite load
low, below the threshold of pathogens. Super
infection can occur, but it remains at a low
grade” [19]. Obi et al. [19] precised that
“premunition is independent of transmis-
sion levels provided it occurs at least once
a year”. It is rapidly lost: exactly one year
without re-challenge is enough to lose this
protective state. It is strain independent
and clearly immunoglobulin G (IgG) depen-
dent. The delay of acquisition is remarkably
long, compared to the rate of transmission”.
Moreover, [19] states that epidemiological
studies in Africa and Papua New Guinea
have helped to define three clinical periods:
a short period of 0 - 5 years where mortal-
ity can occur; a long period of 0 to 15-20
years where morbidity is ”frequent” (though
decreaing in frequency with age); thereafter
a longer period of premunition where the
diseases in any form is absent. This paper
addresses the impact of a continuous level of
premunition on a scale of 0 (non immune) to
1 (high degree of immune responsiveness to
infection in terms of premunition) in recov-
ered individuals. It will be interesting to see
which mechanisms support the evolution of
the number of (partially) immune humans
to the natural acquisition of premunition. It
is common to see that an individual from

an endemic region (central Africa, South
America..) who goes out to a malaria epi-
demic region (west Europe for e.g), has a
great chance to fall sick if he turns back
to another endemic (malaria) region [22].
[14] claims that ”after a couple of more
infections, anti-disease immunity develops
and causes suppression of clinical symptoms
even in the presence of heavy parasitemia
and also reduces the risk of severe disease.
Frequent and multiple infections slowly lead
to the development of anti-parasite immu-
nity that results in very low or undetectable
parasitemia. (...). Premunition suggests an
immunity mediated directly by the presence
of the parasites themselves and not as much
as the result of the previous infections” [13],
[9]. Malaria affects more than 40 % of the
world population in over 90 countries [14].
We adopt the partial differential approach
to model the premunition acquisition. More
specifically, we use an integro-differential
modeling coupled with a partial differential
equation because they track very well the
continuity of the temporary immunity level.
One could rather consider several discrete
states of the immunity level and obtain a
huge number of differential equations that
are more complex to use. After some math-
ematical analysis of the model, we made
several numerical simulations. Our math-
ematical analysis and simulations support
the fact that the premunition is a continu-
ous process because the relative resistance
to a low level of parasite seems to increase
with time in an endemic situation. But it
is clear that the level of premunition is
somehow a probability with a possibility
to suffer from the severe malaria disease
if other negative factors are dramatically
considered (physiological lacks, physical or
psychological injuries . . . ) even if the level
of premunition is high. Moreover, the non
frequently mosquitoes-human biting contact
like in the use (properly or not) of the bed
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nets could lead to a partial immunity with a
possibility to suffer from the severe malaria
disease. As a biological and modeling as-
sumption, we consider that usage of bed
net should be rigorous to avoid instability
in the premunition acquisition process. Fol-
lowing [14], [13], [9], more recovered people
in endemic area seems to have a high de-
gree of immune responsiveness after being
continuously exposed to mosquitoes biting.
Then, in endemic areas, the adult popula-
tion (of more than 5 years) could live with
the parasite in an asymptomatic carriers
status. It explains why public health strate-
gies in high endemicity region of malaria,
concerns children from 0 to 5 years old and
pregnant women. Our main result supports
the fact that more recovered people in en-
demic area seem to have a high degree of
immune responsiveness after being continu-
ously exposed to mosquitoes biting. Finally,
it’s likely to see that in malaria endemic
areas, the population (in adulthood likely
more that five years old) could live mainly
as ”recovered” even within the presence of
heavy parasitemia as biologically pointed
out by [14], [13], [9]. Our work is subdivided
as follow: The second section describes our
model and some extensions, the third sec-
tion presents the main results. The fourth
section shows the simulations and analyses
them, mainly in the cases where the trans-
mission functions a,m, c, c̃(.,θ) are periodic
(even constant). The fifth section discuss the
important results and in the last section, we
conclude our work.

II. MODEL DESCRIPTION AND EXTENSION

Similarly as in [8], [18], the model sub-
divides the total human population at time
t, denoted by Nh(t), into the following
sub-populations of susceptible Sh(t), symp-
tomatic infectious with sickness Ih(t) and
recovered individuals Rh(t,θ) with tempo-
ral immunity level θ ∈ [0,1] at a time t ≥
0. Biologically, it is logical to assume that

the level of acquired immunity cannot be
0 in endemic areas like Africa. So that
Nh(t) = Sh(t) + Ih(t) +

∫ 1
0 Rh(t,θ)dθ. The to-

tal vector (mosquito) population at time t,
denoted by Nv(t), is sub-divided into suscep-
tible Sv(t) and infectious mosquitoes Iv(t).
Thus, Nv(t) = Sv(t) + Iv(t). Susceptible in-
dividuals are recruited at a constant rate
Γh(t). We define the force of infection from
mosquitoes to humans by β(t) as the product
of the transmission rate per contact with
infectious mosquitoes m(t) and the success-
ful biting rate after a contact a(t) (seen in
[8] as the product of the mosquito contact
rate α with the mosquito biting rates θmh(t))
and the probability that the mosquito is
infectious Iv/Nh [18]. The natural death
rate of human is µh. Recovered individual
loses immunity at a rate γ(t,θ). Susceptible
mosquitoes are generated at a per capita
rate Γv(t) at time t and acquire malaria
through contacts with infectious humans
with the force of infection ϕ(t). Mosquitoes
are assumed to suffer death due to natural
causes at a rate µv(t) at time t. g(t,θ)Rh(t,θ)
represents the total number of recovered
leaving the level θ to the greater level θ′′ ∈
]θ,1] and g(t,θ) < γ(t,θ).

We emphasize on the term Rh(t,θ) which
is the number of recovered individuals with
an acquired temporal immunity level θ ∈
[0,1] at a time t ≥ 0. It’s dynamics is de-
scribed by

∂Rh(t,θ)
∂t

+
∂j(θ)Rh(t,θ)

∂θ

= β(t)
∫ θ

0
Rh(t,θ′)dθ′ − γ(t,θ)Rh(t,θ)

that includes through β(t), the impact of the
”new bites of mosquitoes” on all the Rh(t, s)’-
recovered individuals who moves to a next
stage of new individuals with a greater level
of immunity θ > s.
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A. Model equation
The formulation and construction of the

model’s equations (for t,θ > 0) are given by:

dSh(t)
dt

=Γh(t)+
∫ 1

0(γ(t,θ
′)−g(t,θ))Rh(t,θ′)dθ′

−β(t)Sh(t)− µh(t)Sh(t)

dIh(t)
dt

=β(t)Sh(t)−δ(t))Ih(t)− µ̃h(t)Ih(t)

∂Rh(t,θ)
∂t

+
∂j(θ)Rh(t,θ)

∂θ
=

β(t)
∫ θ

0 Rh(t,θ′)dθ′ − γ(t,θ)Rh(t,θ)

dSv(t)
dt

=Γv(t)−(ϕ(t)+µv(t))Sv(t)

dIv(t)
dt

= ϕ(t)Sv(t)−µv(t)Iv,
(1)

where β(t) =
a(t)m(t)Iv(t)

Nh(t)
, j(θ) = αθ and

ϕ(t) =
a(t)

(
c(t)Ih(t) +

∫ 1
0 c̃(t,θ′)Rh(t,θ′)dθ′

)
Nh(t)

with µ̃ = µh + d and (1) initial conditions (P1)
or (P2) exclusively, that is

(P1)



Sh(0) = S0
h

Ih(0) = I0
h

Rh(t,0) = δ(t)Ih(t)
Rh(0,θ) = R0

h(θ),∀θ ∈ [0,1]
Iv(0) = I0

v
Sv(0) = S0

v

or

(P2)



Sh(0) = S0
h

Ih(0) = I0
h

∂Rh(t,0)
∂t = δ(t)Ih(t)

Rh(0,θ) = R0
h(θ),∀θ ∈ [0,1]

Iv(0) = I0
v

Sv(0) = S0
v.

Remark 2.1: The function j(θ) is a fac-
tor characterizing the rate of entering the
Rh(t,θ) compartment if other influxes are

neglected. A generalization of the func-
tion j could include the state of a within-
host model of blood cells with the malaria
pathogen [16].
The function g(t,θ) could be β(t)z(θ), but
one could also consider that g(t,θ) = (1 −
k)γ(t,θ) with k ∈ [0,1] as in the section IV
of simulations. The first and third equation
re-stated become:

dSh(t)
dt

= Γh(t) +
∫ 1

0 kγ(t,θ′)Rh(t,θ′)dθ′

−β(t)Sh(t)− µh(t)Sh(t)

∂Rh(t,θ)
∂t

+
∂j(θ)Rh(t,θ)

∂θ
=

β(t)
∫ θ

0 Rh(t,θ′)dθ′ − γ(t,θ)Rh(t,θ),
(2)

where k represents the fraction of recovered
individuals R(t,θ) who move to other levels
θ′ ∈ ]θ,1].

We will explore some of this particular
cases:
Case 1. Values of γ, g and c̃ motivated by

the biological references therein:
• the level of infection θ satisfies dθ

dt = αθ

and
∫ 1

0 ρ(θ) = 1, with ρ a probability
density [26], [24]

ρk,l(θ) = l
(−l.ln(θ))k−1 θl−1

Γ(k)
e−lθ .

• Consider

g(t,θ) = (1− k).γ(t,θ), (3)

where

γ(t,θ) = γ(t) =
he−ht

1− e−ht ,

h is the annual rate of infections of indi-
viduals [12], 0 < k≤ 0.4466 and 0.4466 =
76.6× 58.3 is the probability to be likely
protected from the common perfect pos-
session and use of the bed nets in
Cameroon [2], [5] over three years of use
of the Long-lasting insecticide-treated
bed nets (LLINs). We have the average
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TABLE I: Table of parameters

Parameters Interpretation Average value Reference
e immigration rate of humans 12

365.25 [7]
f relative birth rate of humans 40

365250 [7]
j relative rate of acquiring premunition [16]
q immigration rate of mosquitoes 10000

21 [5]
x birth rate of new adult female mosquitoes 130

1000 [7], [4]
µh humans per capita death rate 1

59×365.25 modified [7], [8]
µv mosquitoes per capita death rate 1

21 [7], [18]
Γv(t) recruitment of mosquitoes q + x.Nv(t) [7]
Γh(t) recruitment of humans e + f .Nh(t) [7]
a(t) man biting rate 0.5× 19 [7], [1]
m(t) prob. of dis. transm. from inf. mosq. to human 0.022 [7]
c(t) prob. of dis. transm. from inf. humans to mosq. 0.48 [7]
c̃(t) prob. of dis. transm. from recovered humans to mosq. 0.048 [7]
d(t)) human disease induce mort.rate 9× 10−5 [1]

γ(t,θ) average per cap. rate of lost of immu. [0.027-0.0146] [1]

h rate of infectious per year for Sh to become Ih h =
ln
(

1
1−e180.〈γ〉

)
180 [12]

δ recovery rate of humans [0.035-0.03704] [12]

value 〈γ〉 = 1
180

∫ 180
0 γ(t)dt (180 days is

estimated by Raoult [22]) of γ that leads
to

h =
ln
(

1
1−e180.〈γ〉

)
180

.

See values of 〈γ〉 in Table I. It is also
possible to consider the average value
as γ (seen as constant);

• c̃(t,θ) could be either a constant or
c(t)ρ(θ).

Case 2. Γh(t) = e + f (t)Sh(t) and Γv(t) = q +
x(t)Sv(t). Here, these forms combines
the proportional and constant influxes
(birth, migration, ...) in the humans and
mosquitoes compartments.

Case 3. Γh(t) = Γh > 0 and Γv(t) = Γv > 0
seen as constants.

Case 4. In the references below, we collect
these values of the parameters:

This kind of models which track the
global dynamics according to the temporal
level of immunity (inducing premunition)
has not been developed before. Langhorne,
Pinkevych and Mandal’s reviews [11], [12],
[21] described the lost of immunity in a local
aspect (some discrete values of θ) by focusing

only on the dynamics of infected individuals.
We go beyond that by studying continuously
the impact of the reverse effect of acquiring
immunity not discretely (for a fixed θ ∈ [0,1]
) but globally with all the interactions be-
tween the different individuals (susceptible
or infected at all the stages of premunition)
in order to see the overall dynamics.

B. Extension of model (1) to different
malaria strains with same initial conditions

We shall consider a single strain of
malaria (such as Plasmodium falciparum)
in this study since it is the major cause
of mortality and morbidity in the tropical
and sub-tropical areas of the globe [23].
Several strains exists (falciparum, gambiae,
coustani, balabacensis, funestus, nili, ...) [7,
p.1290, Table A.3] but we focus on the afore
mentioned. If we name ”i” the strain in a
decreasing level of infectiousness depending
on the global prevalence (with ”1” for P. Fal-
ciparum, ”2” for the next..., (i), ... until the
strain ”n” with the lowest infectiousness and
prevalence. i could also be the patch index
where the dominant strain is also called i),
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one could get the following model:



dSh(t)
dt

=Γh(t)! +Σn
1
∫ 1

0 kγi(t,θ′)R(i)
h (t,θ′)dθ′

−Σn
1 βi(t)Sh(t)− µh(t)Sh(t)

dIh(t)
dt

=Σn
1 βi(t)Sh(t)−δ(t))Ih(t)− µ̃h(t)Ih(t)

∂R(i)
h (t,θ)
∂t

+
∂αθR(i)

h (t,θ)
∂θ

=

βi(t)
∫ θ

0 R(i)
h (t,θ′)dθ′− [γi(t,θ)+βi(t)g(θ)]R(i)

h (t,θ)

dSv(t)
dt

=Γv(t)− (Σn
1 ϕi(t) + µv(t))Sv(t)

dIv(t)
dt

=Σn
1 ϕi(t)Sv(t)− µv(t)Iv,

(4)
where βi(t) =

ai(t)mi(t)Iv(t)
Nh(t)

and ϕi(t) =

ai(t)
(

ci(t)Ih(t) +
∫ 1

0 c̃i(t,θ′)R(i)
h (t,θ′)dθ′

)
Nh(t)

with initial condition (P1) or (P2).
In the sequel, we will study some math-

ematical and biological properties of our
model (1) simplified as (2) and present the
analysis derived.

III. MAIN RESULTS UNDER INITIAL
CONDITION P1

A. Well-posedness of the model (1) with ini-
tial condition P1 and g(t,θ) = (1− k)γ(t,θ)

Assumption 3.1: Assume that the func-
tions a,m,δ, c,k,γ(.,θ),µh, µ̃h,µv are positive
and bounded (as x, f of the case 2), for
example in L∞

+(0,+∞). Moreover, g(t,θ) =
(1− k)γ(t,θ).

Assumption 3.2: Assume that the func-
tions δ,µh, µ̃h,µv are positive, g = 0, e,q = 0
and constant (as x, f of the case 2), and
the functions a,m, c̃,γ, c are positive and
bounded (as x, f of the case 2), for example
in L∞

+(0,+∞) for a,m, c and L∞
+(0,+∞)× (0,1)

for c̃,γ. Moreover,

min{x, f , µ̃h} −
[
kγ + esssup[0,+∞) {β}

]
> 0.

Proposition 3.1: Under Assumptions 3.1,
we have N(t) = Sh(t)+ Ih(t)+

∫ 1
0 Rh(t,θ)dθ +

Sv(t) + Iv(t) and a suitable differentiation
under the integral:

(e+q)−
(

max

{
x, f , µ̃h, sup

[0,+∞)

{δ}
})

N≤ dN
dt
≤

(e+q)−
(

min{x, f ,µh}−
[
kγ+esssup

[0,+∞)

{β}
])

N.

Moreover, one could re-write model (1) with
initial conditions as the following abstract
non autonomous Cauchy problem

u′(t)=A(t,u(t))+V(t)u(t)+H(t,u(t)), t > 0,

u(0) =



S0
h

I0
h

R0
h

0
S0

v
I0
v

 ∈ X0+,

with [V(t).] bounded and [V(t).] + H(t, .) lo-
cally Lipschitzian in t.
Proof: The proof is obtained by straight-
forward computations with this strategy. In
order to deal with (1)-(initial condition), let
us introduce the Banach spaces

X = R×R× L1(0,1)×R×R×R

and

X0 = R×R× L1(0,1)× {0} ×R×R

endowed with the usual product norm, as
well as its positive cone X+ defined by

X+ = [0,+∞)× [0,+∞)× L1(0,1)
×[0,+∞)× [0,+∞)× [0,+∞)

and X0+ = X+ ∩ X0. Consider the linear op-
erator A : D(A) ⊂ X→ X defined by

D(A) = R2 × L1(0,1)×R3
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and

A

t,


αSh
αI
z
0
αSv
αIv



 = LA(t)

where Rh(t,1) = 0, Nh = Sh + Ih +
∫ 1

0 R(θ)dθ,
Nv = Sv + Iv and:
Case 2: (Γh(t) = e + f (t)Nh(t) and Γv(t) =
q + x(t)Nv(t)),

LA(t)=



−µh(t)αSh +
∫ 1

0 kγ(t,y)z(y)dy
+ f (t)Nh

− (δ(t) + µ̃h(t))αIh

−α.× z′ − (γ(t, .) + α) z

−z(0)

−µv(t)αSv + x(t)Nv

−µv(t)αIv .


.

Consider also the non-linear map

F

t,


αSh
αI
z
0
αSv
αIv



=



e− β∗(t)αSh
β∗(t)αSh

β∗(t)
[∫ θ

0 z(y)dy−g.z
]

δ(t)αIh
q + ϕ∗(t)αSv ,
ϕ∗(t)αSv


with β∗(t) =

a(t)m(t)αIv(t)

αSh(t) + αIh(t) +
∫ 1

0 z(y)dy
and

ϕ∗(t) =
a(t)

(
c(t)αIh(t) +

∫ 1
0 c̃(t,θ′)z(y)dy

)
αSh(t) + αIh(t) +

∫ 1
0 z(y)dy

.

Case 3: (Γh(t) = Γh(:= e) > 0 and Γv(t) =
Γv(:= q) > 0 seen as constants.)

LA(t) =


−µh(t)αSh +

∫ 1
0 kγ(t,y)z(y)dy

− (δ(t) + µ̃h(t))αIh
−α.× z′ − (γ(t, .) + α) z
−z(0)
−µv(t)αSv
−µv(t)αIv



Consider also the non-linear map

F

t,


αSh
αI
z
0
αSv
αIv



 =



Γh − β∗(t)αSh
β∗(t)αSh

β∗(t)
[∫ θ

0 z(y)dy−g.z
]

δ(t)αIh
Γv + ϕ∗(t)αSv ,
ϕ∗(t)αSv


with β∗(t) =

a(t)m(t)αIv(t)

αSh(t) + αIh(t) +
∫ 1

0 z(y)dy
and

ϕ∗(t) =
a(t)

(
c(t)αIh(t) +

∫ 1
0 c̃(t,θ′)z(y)dy

)
αSh(t) + αIh(t) +

∫ 1
0 z(y)dy

.

In fact, the non linear term can further be
broken in two terms: V(t) the linear part
describing the initial transmission θ = 0
and H = F−V the very non linear part of F
corresponding essentially to the horizontal
transmission:

V

t,


αSh
αI
z
0
αSv
αIv



 =


0
0
0
δ(t)αIh
0
0

 .

Now identifying


αSh
αI
z
0
αSv
αIv

 with u(t)=


αSh
αI
z
αSv
αIv

,

re-writes (1)+initial condition as the follow-
ing abstract non autonomous Cauchy prob-
lem

u′(t)=A(t,u(t))+V(t)u(t)+H(t,u(t)), t>0,

u(0) =



S0
h

I0
h

R0
h

0
S0

v
I0
v

 ∈ X0+

Remarks 3.1: If we consider β(t) with
Nv(t) at the denominator like Didjou [8]
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instead of Nh, then Property 3.1 provides the
boundedness due to the Gronwall inequality.
The choice of the denominator of β(t) is an
interplay between modeling considerations
and the biological explications of the models
in literature.

Proposition 3.2: Under Assumptions in
Case 2, we have the following:

i) A is an infinitesimal generator of
a strongly continuous semigroup
(TA(t))t>0 that is exponentially stable
with domain D(A).

ii) N is bounded.
iii) under more restrictive conditions, one

could obtain that ||V(t)|| < ||δ||∞ and
(A + V(t))t>0 generates an evolution
family. Moreover the non linear map F
is locally Lipschitz-continuous and for
all initial condition in X, there exists
an interval of time [0, tmax) in which
the problem (1)-(initial condition) has a
unique mild solution [26], [20] and is
wellposed. Moreover, the mild solution
is a global solution on [0,+∞).

Proof:

1. The existence and uniqueness of the
strongly continuous and infinitesimal
semigroup of A in the Item i) is proved
from theorem A.7 of [17], retrieved by
[26] in page 673.

2. Item ii) and the exponential stability
come from (Pa) in Proposition 3.1 and
Gromwall inequalities.

3. Item iii) This local solution is bounded
on bounded time intervals by the
boundedness of the mild solution. Then
Theorem A.8 [20], [26] implies that the
maximum time interval on which the
solution exists is infinite. In other words
the mild solution is a global solution on
[0,+∞).

Remarks 3.2: To study the problem (1)-
(initial condition P2), one can consider the
methods in the work of Chekroun [6].

B. Steady states of model (1) for

g(t,θ) = (1− k)γ(t,θ).

Notation 3.1: We set the following:
1- Y0+={X∈C ([0,1] ,R)∩C ((0,1) ,R) , X≥0};
2- f = 0, x = 0, c̃ ≡ c is constant, γ̃ = γ + α

and a,m,µh,µv,γ are positive constants;
3- when it exists, the steady states

X∗ = (S∗h , I∗h , R∗h,S∗v , I∗v ) is either the dis-
ease free equilibrium (DFE) XF :=
(SF

h , IF
h , RF

h ,SF
v , IF

v ) or an endemic equilib-
rium (EE) XE := (SE

h , IE
h , RE

h ,SE
v , IE

v );

4- δ̃ := δ + µ̃h, φ∗ =
ac(I∗h+

∫ 1
0 R∗h(δ)dθ)

S∗h+
∫ 1

0 R∗h(δ)dθ)+Ih
and

β∗ = amI∗v
S∗h+

∫ 1
0 R∗h(δ)dθ)+Ih

;

5- the ”next generation operator” K : Y0+→
X0+ such that ∀R∗h ∈ X0+:

K(R∗h)[θ] = e−
(α+γ)

α ln(θ)R∗h(0)

+VP
∫ θ

0

β?

αθ′
e−

(α+γ)
α [ln(θ)−ln(θ′)]

∫ θ′

0
R∗h(σ)dσdθ′.

(”VP” of
∫ θ

0 ...dθ′ is the ”pricipal value”
seen literally as ”limε−→0 of

∫ θ
ε ...dθ′”.)

We could see K as

K(R∗h)[θ] = θ−
(α+γ)

α

[
R∗h(0) +

β?

α

∫ θ

0
θ′

γ
α

∫ θ′

0
R∗h(σ)dσdθ′

]
.

6- Precisely with β̃ =
e+kγ

∫ 1
0 R∗h(θ

′)dθ′

SE
h

− β∗,

K(R∗h)[θ] = θ−
(α+γ)

α

[
R∗h(0) +

1
α

(
e+kγ

∫ 1
0 R∗h(θ

′)dθ′

SE
h

− β̃

)∫ θ

0
θ′

γ
α

∫ θ′

0
R∗h(σ)dσdθ′

]
7- r(K) is the spectral radius of the next

generation operator [10].
8- λ1 = I∗h +

∫ 1
0 R∗h(θ)dθ and λ2 = IE

v . In the
literature, it is common to consider r(K)
as an equivalence of the basic reproduc-
tion rate. Under the condition on com-
pactness and the supporting properties
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of K [10] [Proposition 6.6, page 321],
it is possible to prove the existence of
the endemic steady states and study the
stability of the steady states depending
on the sign of r(K)− 1. .

Some biological remarks on the possible
steady states and the basic reproduction
threshold is summarized in the following
proposition with straightforward computa-
tion.

Proposition 3.3: Following the notations
above in Notation III-B, we have the follow-
ing results:
1- Possible steady states seen as{

S∗h , I∗h , R∗h,S∗h , I∗v
}

, are: XF ={
e
β̃

,0,0, q
µ̃v

,0
}

for the disease free

equilibrium, and XE =
{

e
β̃

, IE
h , RE

h , q
µ̃v

, IE
v

}
for the endemic equilibrium;

2- Endemic steady state XE is such that:
a) SE

v = q−µv Iv
µ̃v

with SE
v < SF

v ;

b) e + kγ
∫ 1

0 RE
h (δ)dδ = µhSE

h + δ̃IE
h .

Remarks 3.3: The existence problem of
the endemic steady state(s) is a solution to
the fixed-point problem F(RE

h ) = RE
h where F

is an operator, in a subspace of Y0+.

IV. NUMERICAL SIMULATIONS

In this section, our initial conditions are:
Sh(0) = 100000 individuals (humans), Ih(0) =
1000 individuals (humans), Rh(0,θ) = δ(0) ∗
Ih(0) individuals (humans), Sv(0) = 10000
mosquitoes, Iv(0) = 10000 mosquitoes. We
run the simulation over T = 1500days. We
set also: g(t,θ) = (1 − k).γ(t,θ) following
(3) and considering individuals living with
mosquitoes without clinical malaria by re-
inforcing premunition, we run the simula-
tions.

A. Simulation for (1)-(initial condition P1)
with g(t,θ) = (1− k)γ(t,θ) with more infec-
tious humans for a long period of time

In this case, immigration rate in humans
is e = 1000

59∗365 , [5, Table 1, page 4]. For other

parameter values, see Table I with α = 0.85
(assumed). After several simulations, all the
compartments go to extinction (zero) and
there is just nothing we can say further. This
type of results is not interesting as seen in
the literature ([19] and references therein).
The problem (1)-(initial condition P2) the is
more interesting as we see below.

B. Simulations of model (1) with initial con-
dition P2, g(t,θ) = (1− 0.2466)γ(t,θ) and less
infectious humans for a long period of time

The immigration rate in humans is given
to be e = 1

59∗365 , [5, Table 1, page 4]. For other
values of parameters, see Table I with α =
0.85 (assumed). Numerical simulations give
the following results:

In figures 1a, 1b, 1c, 1d, Fig 2 and other
figures not shown here, we observe that the
parameters e and k play a great role in the
dynamics of the model. We also see that
the number of infectious humans could go
to zero with a large number of recovered
individuals installed for a long time: The
disease subsisting in mosquitoes and human
and they do not fall sick although they bear
the parasite. We see graphically that the
proportion p1 of recovered individuals with
a premunition level θ ∈

[
1
2 ,1
]

is greater than
the proportion p2 of recovered individuals
with a premunition level θ ∈

[
0, 1

2

]
. It sug-

gests that people in areas where malaria
is endemic, are more likely to get premu-
nition if they are continuously bitten by
mosquitoes.

C. Simulation of model (1) with initial con-
dition P2 and g(t,θ) =

(
1− 1

10

)
γ(t,θ)

In this case, the immigration rate in hu-
mans is e = 1000

59∗365 (see Table 1, page 4, [5]).
For other parameter values, see Table I with
α = 0.85 (assumed).

In figures 3a, 3b, 3c, 3d and Fig 4, one
could again say that the proportion p1 of
recovered individuals with a premunition
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(a) Suceptibles humans,
(e = 1

59∗365 , g(t,θ) = (1− 0.2466)γ(t,θ))
(b) Infectious humans
(e = 1

59∗365 , g(t,θ) = (1− 0.2466)γ(t,θ))

(c) Susceptible mosquitoes
(e = 1

59∗365 , g(t,θ) = (1− 0.2466)γ(t,θ))
(d) Infected mosquitoes
(e = 1

59∗365 , g(t,θ) = (1− 0.2466)γ(t,θ))

Fig. 1: Dynamics of the model (1) using P2 with e = 1
59∗365 , and g(t,θ) = (1− 0.2466)γ(t,θ)

level θ ∈
[

1
2 ;1
]

is greater than the proportion
p2 of recovered individuals with a premuni-
tion level θ ∈

[
0, 1

2

]
, and support the fact that

the factor e and k are very important.

V. DISCUSSION

a) : A model for naturally acquiring
immunity to malaria diseases was studied
in the present work. The ability or capacity
of a person who acquires natural immunity
to live with a relatively low concentration

of malaria and resist to falling sick was
considered to be the premunition. Suscep-
tibility and death are high during child-
hood but as children grow, they gradually
begin to have intermittent absence of par-
asitemia, followed by lower density para-
sitemia, splenomegally and finally premu-
nition. On the other hand, pregnant women
especially primigravids (first pregnancy) are
highly susceptible to malaria infections and
serious diseases since the natural defense
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Fig. 2: The number of recovered individuals
(e = 1

59∗365 , g(t,θ) = (1− 0.2466)γ(t,θ))

mechanisms are reduced during pregnancy.
Adolescents and adults sometimes have par-
asitemia and occasionally clinical symptoms
but their premunition depends on the indi-
vidual’s antibodies. Antibodies as a protec-
tive measure can also boost the immunity
of an individual to malaria. The pathogen
replication cycle assumes a typical viral
pathogen that replicates using a machinery
of host cells called target cells [16]. The
ability of the target cells to fight the disease
is what gives premunition to an individual’s
organism.

b) : In section I we gave a review of pre-
vious work concerning the loss of immunity
and pointed that this work on acquiring im-
munity for malaria is a pioneer approach. In
section II, we derive an integro-differential
equation for acquiring immunity for malaria
in humans taking into account all possible
strains of the pathogens indexed by i. In sec-
tion III, we obtained three main results from
the analysis of the model namely: the well-
posedness of the model was established with
initial conditions P1, the generator term A
was bounded and found to be exponentially
stable in the domain D(A) defined in Propo-

sition 3.1, N was shown to be bounded in
Proposition p2. Numerical simulations were
done in section IV, with initial conditions P1
and P2. The results with P1 was quiet. Simu-
lations with initial conditions P2 gave more
interesting results. In subsections IV-B and
IV-C we suggested that the premunition is
a continuous process because the relative
resistance to a low level of parasite seems to
increase with time in an endemic situation.
It is clear that the level of premunition
is somehow a probability with a possibility
to suffer from the severe malaria disease
if other negative factors are dramatically
considered (physiological lacks, physical or
psychological injuries . . . ) even if the level
of premunition is high.

c) : The use of bed nets(represented by
k) is recommended without interruption to
avoid a severe disease due to a possible loss
of immunity. At least, a partial immunity
could be acquired if the bed net is not prop-
erly used and rigorous. We observed from
subsections IV-B and IV-C, that more recov-
ered people in endemic areas seem to have a
high degree of immune responsiveness after
being continuously exposed to mosquitoes
bites. This is why Obi et al. [19] said that
“humans repeated infection by Plasmodium
falciparum induce a progressive modulation
of the immune response, eventually leading
to an anti-parasite immunity characteristic
of premunition”. Beside that, we observed
in figures 2 and 4 a relatively increase in
the number of recovered individuals with
temporary immunity, for a long period of
time (about 1000 units).

VI. CONCLUSION

a) : In this paper, we have analyzed
the consideration of continuous acquisition
of immunity (from level 0 to level 1). Our pa-
per confirms that living in malaria endemic
areas implies a premunition in the body of
people exposed to infected mosquitoes bites.
If mosquitoes bites stops for a long time,
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(a) Suceptibles humans,
(e = 1000

59∗365 , g(t,θ) =
(

1− 1
10

)
γ(t,θ))

(b) Infectious humans
(e = 1000

59∗365 , g(t,θ) =
(

1− 1
10

)
γ(t,θ))

(c) Susceptible mosquitoes
(e = 1000

59∗365 , g(t,θ) =
(

1− 1
10

)
γ(t,θ))

(d) Infected mosquitoes
(e = 1000

59∗365 , g(t,θ) =
(

1− 1
10

)
γ(t,θ))

Fig. 3: Dynamics of the model (1)-P2 with (e = 1000
59∗365 , g(t,θ) =

(
1− 1

10

)
γ(t,θ))

susceptible can loose their relative immu-
nity to malaria disease. People should be
conscious and rigorous in the using bed nets
especially in malaria endemic areas to avoid
super infection which and failure of pre-
munition to malaria disease. A perspective
of this work could be to include a space
variable in the model to target places with
high risk of infection (e.g water pools, ...). In
fact, the choice of g depends on the context

one has. To find the right function g, one
needs to solve a kind of inverse problem
from the data. That is a huge perspective
where the least square method could be
used. Finally, it’s common to see in malaria
endemic areas that the population (in adult-
hood likely more than five years old) could
live mainly as ”recovered” even within the
presence of heavy parasitemia and this is
the reason why public health strategies in
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Fig. 4: The number of recovered individuals
(e = 1000

59∗365 , g(t,θ) =
(

1− 1
10

)
γ(t,θ))

high endemicity region of malaria, concerns
children from 0 to 5 years old and pregnant
women: a new model with age of infection is
then more relevant.
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