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Abstract— According to the IUCN, most sea
turtles fall into one of the endangered categories.
Since, sea turtles, like many other reptiles, present
an unusual developmental process, marked by the
determination of the sex of the offspring by envi-
ronmental factors, more specifically by temperature.
In the temperature sex determination (TSD) system
the temperature of an embryo’s environment during
incubation period will dictate the embryo’s sex
development. This developmental process, together
with the complex mating and nesting behavior and
the vulnerability of sea turtles to threats of a natural
or anthropogenic nature, naturally lead to the study
of the population dynamics of the species. For this
reason, in this paper, we have developed a contin-
uous model given by a system of three ordinary

differential equations to study the dynamics of the
green sea turtle population long-term, focusing the
mathematical simulations on the data obtained for
the nesting species of Galapagos Islands. Through
the qualitative analysis of the model, the following is
demonstrated: 1) The flow induced by the system is
positively invariant on the region of biological inter-
est (Ω); and 2) The given condition on f̂ is necessary
and sufficient for the unique nontrivial equilibrium
point (I∗) to be globally asymptotically stable in that
region. When implementing the estimated values for
our parameters in the numerical simulations, it was
observed that indeed the population of Galapagos
green sea turtles complies with the condition for
which the nontrivial critical point (I∗) is globally
asymptotically stable; that is, the asymptotic stabil-
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ity is maintained for any initial value within the set
Ω. In contrast, when altering the estimated values
of the parameters so that the established condition
is not met, the trivial critical point (I0) becomes
globally stable, and the population falls towards
extinction regardless of the values taken within the
positively invariant Ω set.

Keywords-population dynamics; sex-structured
continuous time model; Chelonia mydas; equilibrium
point; local stability; global stability.

I. INTRODUCTION

Sea turtles present a temperature sex determina-
tion (TSD) system, this is an evolutionary condi-
tion that turtles, like other reptiles, have adopted
throughout time. In the TSD system, the tempera-
ture of an embryo’s environment during incubation
period will dictate the embryo’s sex development.
Many species of turtles [1], tortoises [2], lizards
[3], and crocodiles [4] that exhibit TSD have a
thermosensitive period (TSP) during which the
embryo sex is developed. For turtles, this period
has been observed to take place during the mid-
trimester of the embryo incubation period [5]. The
temperature that defines the 1:1 sex ratio balance,
known as pivotal temperature, is ∼ 29.4◦C [6],
[7]. When the mean temperature of the nest during
TSD is around the pivotal temperature an even
distribution of male and female hatchlings occur
[6], [7]. Below the pivotal temperature, hatchling
sex population will be mostly male; and above, it
will be mostly female[6], [7], [8].

With a trend towards increasing mean global
temperature, species with TSD are particularly af-
fected. The population of sea turtles is facing high
egg mortality and feminization of the offspring[9],
[10]. In recent years a disproportionate ratio of
female to male turtle eggs has been observed in
a number of different studies [11]. Unfortunately,
monitoring sex ratios involves a series of method-
ological and ethical complications. Sex ratios data
obtained from the study of adult populations have
predicted a complete feminization and a possibly
extinction of marine turtles in the future if tem-
perature continues rising [10], [7], [12], [13]. Due
to the complex nesting behavior of sea turtles and

the mechanism by which the sex of the offspring
is determined, it is reasonable to look into the
factors that could be directly affecting the sex
ratios of eggs, such as sand temperatures. In order
to understand why there is a bias towards the fe-
male population in sea turtles. The most prevalent
hypothesis points at climate change as the main
factor leading the rising at sand temperatures in
nesting sites [11], [10]. The lack of males within
the sea turtle population will eventually affect the
population dynamics. It is unknown the minimum
proportion of males sufficient to support the sea
turtle population in such a way to avoid population
collapse or even extinction. This problem naturally
lends itself to investigation via a sex-structured
model to analyse the dynamic of the population.

II. MODEL FORMULATION

The green turtle, like other sea turtles, has a
remarkable life cycle. Individuals inhabit widely
separated localities during the course of their lives.
These habitats include foraging, migration, breed-
ing, and nesting areas (Figure 1). After hatchlings
emerge from their nests, they immediately travel
to the sea. Once in the ocean, the hatchlings are
washed away by ocean currents, live a pelagic
phase in the open ocean, and are not seen again
until they appear as juveniles in foraging areas,
probably a decade later [14]. This period of time
between the hatchling and juvenile stages is known
as the ”lost years” because the migratory route
taken by the hatchlings and their behavior remains
a mystery [14], [15]. In the foraging areas, they
continue to mature until they become subadults.
Subadults are occasionally seen foraging in the
open ocean [14]. Once the turtles reach sexual
maturity, males and females return to their home
beach to mate and nest. This behavior is known
as philopatry and has been documented for several
species [19].

Because during the early stages of the turtle
life cycle, hatchlings, juveniles, and subadults are
not reproductively active, we can simplify the life
cycle of the green turtle and consider only two
main stages: adults and eggs. In turn, the adult
stage can be divided into two populations: female
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Fig. 1. Schematic diagram of the Chelonia mydas life cycle.

adults and male adults, which are interesting to
analyze by themselves. An schematic diagram of
the simplified life cycle of green sea turtle is
shown in Figure 2.

This scheme of the life cycle (Figure 2) makes a
clear distinction between adult males and females,
focusing on their interaction during mating pro-
cess that eventually will result in the production
of eggs. After an incubation period of 7 to 9
weeks [17] the eggs develop into either female
or male sea turtles. It also shows the outflows
of each stage: the death of adult females, males,
and eggs respectively. Successful mating of males
and females will produce and increase the egg
population which in turn will develop into males
and females. What determines the proportion of
eggs that develop as males or females is the
incubation temperature of the eggs.

The reproductive biology and nesting behavior
of sea turtles comprises a number of aspects that
make modeling this interaction truly challenging.
The interaction itself between males and females
involves a variety of factors that can strongly
affect the birth rate of the population and therefore
the long-term dynamics. Density of adult female
(AF ) and male populations (AM ), the behavioral
responses during mating process, and searching
efficiency [18], are some of the variables to take

into account for a successful mating.
This study is particularly concerned on the

proportion of eggs allocated to males and females
in the population. At time t, we denote the egg
population as E(t) and adult population for males
and females as AM (t), AF (t) respectively. The
dynamics of the egg population is governed by the
following first order ordinary differential equation:

dE

dt
= g(AF , AM )− (α+ µe)E, (1)

where α is the maturity rate of eggs that become
adult males or females. µe is the mortality rate
of the egg stage. The function g(AF , AM ) is the
recruitmant rate of eggs and is represented by:

g(AF , AM ) = f̂(AM +AF )

(
1− AM +AF

K

)
.

For this particular case, function g is dependent
on the size of the population, so it is defined by a
logistic type function, where f̂ is the fecundity
rate, K is the environmental carrying capacity,
the maximum population size that the environment
can sustain indefinitely. The saturation constraint
shows that when the adult population approaches
the carrying capacity, then the egg per-capita ap-
proaches zero.
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Fig. 2. Schematic diagram of the mathematical model.

For changes in adult male and female population
over time linear ordinary differential equations
were developed:

dAM
dt

= qαEM − µAM , (2)

dAF
dt

= (1− q)αEF − µAF , (3)

where the proportion of male and female eggs are
given by q and 1−q receptively. µ tell us the death
rate for the adult stage. As there is not evidence
of different maturity and death rates for males and
females, α and µ remains the same for both sexes.

From (1) to (3) the next system of differential
equations is proposed:



dAM
dt

= qαE − µAM ≡ F1(AM , AF , E)

dAF
dt

= (1− q)αE − µAF ≡ F2(AM , AF , E)

dE

dt
= f̂ (AF +AM )

(
1− AM +AF

K

)
− (α+ µe)E ≡ F3(AM , AF , E)

(4)

III. QUALITATIVE ANALYSIS OF THE MODEL

In this section we will give a complete quali-
tative description of the dynamics of system (4),
concretely, we characterize the region where the
system is positively invariant and we shall describe
completely the global stability of the nontrivial
equilibrium point.

Since the vector field of system (4) is con-
tinuously differentiable, our first result, follows
from the fundamental existence-uniqueness theo-
rem (see for instance L. Perko [24], Hale [25]).

Theorem 3.1: For any initial condition
AM (0) ≥ 0, AF (0) ≥ 0, and E(0) ≥ 0, there
exists β > 0 such that system (4) has a unique
solution defined on [0, β).

The next theorem guarantees that the system (4)
is biologically well behaved and that the dynamic
of the system is concentrated on a bounded region
of R3

+. Concretely, the following results holds:
Theorem 3.2: Suppose that f̂ < 2µ(α+µe)

α , then
the region Ω defined by

Ω=

{
(AM , AF , E) ∈ R3 : 0 < AF < K,

0 < AM < K −AF , 0 < E <
µK

2α

} (5)

is positively invariant under the flow induced by
(4) (see Figure 3).
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Fig. 3. Region where (4) is positively invariant

Proof: In order to proof this theorem, we will
analyze the vector field defined by (4) on ∂Ω,
this analyze is made in the following table. Note
that the prism given by Ω has five faces and six
vertices.

i) AM ∈ (0,K), AF = 0, E = 0
A′
M = −µAM < 0,

A′
F = 0,

E′ = f̂
(

1− AM
K

)
AM > 0

ii) AM = 0, AF ∈ (0,K), E = 0
A′
M = 0,

A′
F = −µAF < 0

E′ = f̂
(

1− AF
K

)
AF > 0

iii) AM = 0, AF = 0, E ∈ (0, µK
2α

)
A′
M = qαE > 0

A′
F = (1− q)αE > 0

E′ = −(α+ µe)E < 0

iv) AM = K, AF = 0, E ∈ (0, µK
2α

)

A′
M = −µK + qαE ≤ −µK

2
< 0,

A′
F = (1− q)αE > 0,

E′ = −(α+ µe)E < 0,
v) AM = 0, AF = K, E ∈ (0, µK

2α
)

A′
M = −qαE > 0,

A′
F = −µK + (1− q)αE ≤ −µK

2
< 0

E′ = −(α+ µe)E < 0,
vi) AM = 0, AF ∈ (0,K), E = µK

2α

A′
M = qµK

2
> 0,

A′
F = no matter sign

E′ = −(α+ µe)
µK
2α

+ f̂
(

1− AF
K

)
AF

≤ −(α+ µe)
µK
2α

+ f̂ K
4
< 0

vii) AM ∈ (0,K), AF = 0, E = µK
2α

A′
M = no matter sign

A′
F = (1− q)µK

2
> 0

E′ = −(α+ µe)
µK
2α

+ f̂
(

1− AM
K

)
AM

≤ −(α+ µe)
µK
2α

+ f̂ K
4
< 0

viii) AM ∈ (0,K), AF = K −AM , E = 0
A′
M = −µAM < 0,

AF = −µAF < 0,
E′ = 0

ix) AM ∈ (0,K), AF = K −AM , E = µK
2α

Note that 〈1, 1, 0〉 is a normal vector of
the plane AM +AF = K. Therefore,
〈F1, F2, F3〉 · 〈1, 1, 0〉 = −µK

2
< 0, and

E′ = −(α+ µe)
µK
2α

< 0. So, 〈F1, F2, F3〉
is directed to the interior of Ω

x) AM ∈ (0,K), AF = 0, E ∈ (0, µK
2α

)
A′
M = no matter sign

A′
F = (1− q)αE > 0

E′ = no matter sign
xi) AM = 0, AF ∈ (0,K), E ∈ (0, µK

2α
)

A′
M = qαE > 0,

A′
F = no matter sign,

E′ = no matter sign.
xii) AM ∈ (0,K), 0 < AF < K −AM , E = 0
A′
M = no matter sign

A′
F = no matter sign

E′ = f̂
(

1− AM+AF
K

)
(AM +AF ) > 0

xiii) AM ∈ (0,K), 0 < AF < K −AM , E = µK
2α

A′
M = no matter sign

A′
F = no matter sign

E′ = −(α+ µe)
µK
2α

+ f̂
(

1− AM+AF
K

)
(AM +AF )

≤ −(α+ µe)
µK
2α

+ f̂ K
4
< 0

xiv) AM ∈ (0,K), AF = K −AM , E ∈ (0, µK
2α

)
This case is analogous to (ix)

Therefore, we have that the vector field given by
the right side of system (4) on the boundary of Ω is
directed to the interior of the set Ω, in consequence
solutions with initial data in Ω remain there for any
t ≥ 0. This conclude the proof. �

Remark 1: From Theorem 3.2 we deduced that
the solutions of system (4) are defined for all t ≥
0.

Hereafter we will assume that f̂ < 2µ(α+µe)
α .

The equilibria of system (4) are obtained by the
solutions of the following algebraic equations

qαE − µAM = 0

(1− q)αE − µAF = 0(
1− AM +AF

K

)
f̂ (AF +AM )

− (α+ µe)E = 0

(6)

So, the equilibria of (4) consist of one triv-
ial critical point I0 = (0, 0, 0), that always ex-
ists, and a unique nontrivial critical point I∗ =
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(A∗M , A
∗
F , E

∗) which exists if and only if the
following condition is true

f̂ >
µ(α+ µe)

α
(7)

In this case, we have

A∗M =qK

(
1− µ (α+ µe)

f̂α

)
,

A∗F =(1− q)K
(

1− µ (α+ µe)

f̂α

)
,

E∗ =µK

(
1− µ (α+ µe)

f̂α

)
.

(8)

A. Local stability of equilibrium points

In this subsection we shall discuss the local
stability properties of the equilibria I0 and I∗.

Theorem 3.3: The equilibrium point I0 is lo-
cally asymptotically stable if f̂ < µ(α+µe)

α

Proof: The Jacobian matrix of system (4)
about the equilibrium point I0 is given by

J(I0) =


−µ 0 qα

0 −µ (1− q)α

f̂ f̂ −α− µe

 (9)

and the characteristic polynomial associated to
(9) is

P (λ) = a0λ
3 + a1λ

2 + a2λ+ a3, (10)

where a0 = 1, a1 = α+µe+ 2µ, a2 = (−f̂α+
µ(α+ µe)) + µ(α+ µ+ µe) and a3 = µ(−αf̂ +
µ(α + µe)). Since a1, a2 and a3 are positive and
a1a2 − a3 = (α+ µe + 2µ)(−f̂α+ µ(α+ µe)) +
µ(α+ µ+ µe)− µ(−αf̂ + µ(α+ µe)) > 0, so by
the Routh-Hurwitz criterion (see [16]) we have that
the equilibrium point I0 is locally asymptotically
stable. �

Theorem 3.4: The equilibrium point I∗ is local
asymptotically stable if and only if f̂ > µ(α+µe)

α .

Proof: The Jacobian matrix of system (4)
about the equilibrium point I∗ is given by

J(I∗) =


−µ 0 qα

0 −µ (1− q)α

γ∗ γ∗ −α− µe

 , (11)

where

γ∗ =
2µ(α+ µe)

α
− f̂ .

After a simple calculation, one finds the char-
acteristic polynomial is

P (l) = a0λ
3 + a1λ

2 + a2λ+ a3, (12)

where a0 = 1, a1 = µe + α+ 2µ, a2 = f̂α+ µ2,
and a3 = µ(f̂α− µ(α+ µe)).

Since a0, a1 and a3 are positive and a1a2−a3 =
(µe + α+ 2µ)(f̂α+ µ2)− µ(f̂α− µ(α+ µe)) >
0, then we have by the Routh-Hurwitz criterion
(see [16]) that the equilibrium point I∗ is locally
asymptotically stable for system (4). Therefore I∗
is locally asymptotically stable if and only if it
exist, i.e. if and only if f̂ > µ(α+µe)

α . �

B. Global stability analysis

Now, we are ready to prove that under some
conditions the non trivial equilibrium point is
globally asymptotically stable, this is done trans-
forming system (4) into a planar system and ap-
plying Bendixon’s criterion first, and next Poincare
Bendixon’s Theorem. After that, we go back to
system (4) and prove the global asymptotic stabil-
ity of the three dimensional equilibrium point.

Theorem 3.5: If f̂ > µ(α+µe)
α , then the equi-

librium point I∗ is global asymptotically stable in
Ω; otherwise I0 is global asymptotically stable.

Proof: Let (AM (0), AF (0), E(0)) be an arbi-
trary initial data on Ω. If we make the change of
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variable A = AM + AF , then system (4) can be
reduced to the following bidimensional system


dA

dt
= αE − µA := G1(A,E)

dE

dt
= f̂

(
1− A

K

)
A

− (α+ µe)E := G2(A,E).

(13)

Since the vector field of system (13) is directed
to the interior of the region

Ω̃=

{
(A,E) ∈ R2 : 0<A<K, 0<E<

µK

2α

}
,

we have that Ω̃ is positively invariant (see Figure
4)

Fig. 4. Region where (4) is positively invariant

Note that (AM (0) +AF (0), E(0)) ∈ Ω̃ and the
system (13) has the equilibrium points Ĩ0 = (0, 0)
and Ĩ∗ = (A∗, E∗) where A∗ = α

µE
∗ and E∗ is

given by (8). Since

div(G1, G2) = −(µ+ α+ µe) < 0

we get, by using the Bendixon’s criterion (see
[24]), that system (13) has not periodic solutions
in Ω̃. On the other hand, the eigenvalues of the
linearized system around Ĩ∗ associated to (13) are
given by

λ=
1

2

(
−(µ+α+µe)±

√
(µ+α+µe)2−4αf̂

)
,

which have negative real part (<(λ) < 0). So,
Ĩ∗ is locally asymptotically stable, and applying
Poincare-Bendixon’s Theorem (see [25]), we con-
clude that the equilibrium point Ĩ∗ is globally
asymptotically stable on Ω̃. That is to say,

lim
t→∞

A(t) = A∗ and lim
t→∞

E(t) = E∗.

Now, by using the first equations of system (4),
we get that

AM (t) = AM (0)e−µt + e−µt
∫ t

0
qαE(s)eµsds.

On the other hand, given ε = E∗/2, there exists
τ > 0 such that E(t) > E∗/2 for t > τ ; hence∫ t

0
qαE(s)eµsds=

∫ τ

0
qαE(s)eµsds+

∫ t

τ
qαE(s)eµsds

≥
∫ τ

0
qαE(s)eµsds+

∫ t

τ
qα
E∗

2
eµsds−→∞ as t→∞.

Therefore, by using the L’Hospital rule, we have
that

lim
t→∞

AM (t) = lim
t→∞

AM (0)e−µt

+lim
t→∞

e−µt
∫ t

0
qαE(s)eµsds

qα

µ
E∗= A∗M .

Analogously, we obtain that

lim
t→∞

AF (t) =
(1− q)α

µ
E∗ = A∗F .

So, the equilibrium point I∗ = (A∗M , A
∗
F , E

∗) is
globally asymptotically stable in Ω.

If µ ≥ f̂α
α+µe

, then I0 is the unique point of
equilibrium of system (4). Following an analogous
reasoning to the one above, we have that I0 is
globally asymptotically stable. This conclude the
proof. �

IV. NUMERICAL SIMULATION

In this section is devoted to show numerical
examples that illustrate our results. In this sense
we will use Table I, and several initial conditions.

If let us pick f̂ = 0.25 and K =
1, then the nontrivial critical point I∗ =
(0.24385, 0.24385, 0.025361) is a global attractor
(see Figure 5)
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TABLE I
PARAMETERS DESCRIPTION AND VALUES CONSIDERING THE GALAPAGOS ISLANDS AND ECUATORIAN MAINLAND

GREEN SEA TURTLE POPULATIONS.

Parameter Description Estimated values Reference

α Maturity rate of green turtle 0.54 ±0.45 [20]
µ Per capita death rate for adults 0.052 ± 0.005 [21]
µe Per capita death rate for eggs 0.79 ± 0.19 [22]
q Proportion of eggs that become male 0.5 [23]
f̂ Fertility rate 0.35 ± 0.15 (Estimated)

Fig. 5. Solutions of system (4) with f̂ = 0.25 and K = 1

If let us pick f̂ = 0.01 and K = 1, then the
trivial critical point I0 is the global attractor (see
Figure 6).

Fig. 6. Solutions of system (4) with f̂ = 0.01 and K = 1

V. CONCLUSION AND FINAL REMARK

The model developed in this paper is character-
ized by studying the population dynamics through
a sex-structured continuous time model. Unlike
conventional discrete age-structured models, in
this paper we seek, through the distinction between
sexes, to determine how the different parameters
described influence population dynamics and its
stability. From the above results of the qualitative
analysis of the model, we infer that the condition
established determine the persistence and stability
of the green turtle population or its extinction. In
terms of the biological significance of the proposed
condition, we can deduce that the number of
offspring a female individual produce over time
should be biger than the outflow rates of the pop-
ulation stages. This model can be used as a basis
for a more complex models and include a series of
parameters that can offer us a better appreciation
of population dynamics and how it is affected
or distorted by the influence of new parameters,
such as temperature. Since the proportion of males
and females is directly related to the incubation
temperature of the eggs, modeling the population
dynamics by considering the proportion of male
eggs as a function of temperature q(T ) and adding
details about other stages of the turtle life cycle
could reveal new conditions, which help to envi-
sion the population situation and take actions for
the conservation of the species. The methodology
applied here to study the dynamics of the popula-
tion of green turtles on the Galapagos island, can
be applied to study the dynamics of other types of
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reptiles whose reproduction also depends on the
environment and temperature changes. In all these
cases, the region of biological interest will be of
the polyhedral type, which allows us to study the
vector field on each face of the region, and the
invariance of this region can be achieved in the
same way we did it with the prism in this work.
After that, we can study the local stability of the
equilibrium points by linearizing the differential
equation around them, and looking at the sign of
the eigenvalues; then reduce the system to a two-
dimensional one and apply Bendixon’s criterion,
and finish it with the Poincare-Bendixon theory to
conclude that the non-trivial equilibrium point is
globally asymptotically stable. From the foregoing
comments, it is clear that our method can be used
to study a broad class of similar problems.
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