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Abstract— In this paper, we provide a brief survey
of mathematical modelling of malaria and how it is
used to understand the transmission and progression
of the disease and design strategies for its control
to support public health interventions and decision-
making. We discuss some of the past and present
contributions of mathematical modelling of malaria,
including the recent development of modelling the
transmission-blocking drugs. We also comment on
the complexity of the malaria dynamics and, in par-
ticular, on its multiscale character with its challenges
and opportunities. We illustrate the discussion by
presenting a curve fitting using a 95% confidence
interval for the South African data for malaria from
the years 2001−2018 and provide projections for the
number of malaria cases and deaths up to the year
2025.
Keywords: Mathematical modelling, malaria, South
Africa, data fitting

I. Malaria and its mathematical modelling

Malaria is an indirectly transmitted disease of
humans that requires the interaction of three dis-

tinct living organisms (the components) to sustain
transmission. These are:

1) Parasites of genus Plasmodium that causes
malaria disease in humans. Four species of
Plasmodium have long been recognized to
infect humans and cause illness, namely,
P. falciparum, P. malariae, P. vivax and P.
ovale. The fifth one, P. knowlesi, that nat-
urally infects macaques have recently been
recognized to cause zoonotic malaria also
in humans, but no cases of the human-
mosquito-human transmission have been re-
ported. Of these species, P. falciparum is
responsible for most malaria deaths globally
and is the most prevalent species in Sub-
Saharan Africa, [77]. P. vivax is the second
most significant species and is prevalent in
Southeast Asia and Latin America. P. vivax
and P. ovale have the added complication of
the dormant liver stage which, after some
time, can be reactivated in the absence of a
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mosquito bite, leading to clinical infection,
[29], [77].

2) Humans (host), where parasites grow and
multiply first in the liver cells and then
in the red cells of the blood, producing
merozoites which cause symptoms and ill-
ness, and gametocytes which is the form of
the parasites that can be transferred to the
mosquito during a blood meal.

3) Female Anopheles mosquitoes (vector),
which are the agents responsible for trans-
mitting the disease from one human to an-
other. They become infected when they feed
and ingest human blood that contains ma-
ture gametocytes. After a mosquito picks up
the gametocytes, they start another cycle of
growth and multiplication in the mosquito,
eventually producing sporozoites. When the
mosquito takes a blood meal on another hu-
man, it injects the sporozoites with its saliva
and infects humans. Thus, the mosquito car-
ries the parasite from one human to another,
acting as a vector.

Despite malaria being preventable and treat-
able, it remains one of the most prevalent and
deadliest human infection in developing countries,
especially in the sub-Saharan Africa, where young
children and pregnant women are most affected,
[78]. According to the latest WHO malaria report,
released on the 30 November 2020, there were
229 million cases of malaria in 2019 compared to
228 million cases in 2018. The estimated number
of malaria deaths stood at 409 000 in 2019,
while there were 405 000 deaths in 2018. The
WHO African Region carries a disproportionately
high share of the global malaria burden with as
much as 94% of malaria cases and malaria deaths
recorded there in 2019, [77]. It is feared that the
number of malaria deaths may increase in the years
2020/2021 due to the COVID-19 pandemic, espe-
cially in the sub-Saharan Africa, where the number
of COVID-19 cases is rising, [69]. First, malaria
and COVID-19 share several common symptoms
such as fever, breathing difficulties, tiredness or
acute headache, which may lead to misdiagnosis,

particularly when the clinicians rely mainly on the
symptoms, [43]. Further, COVID-19 can disturb
and affect the control and treatment of malaria
in different ways including delays in the distri-
bution of the insecticide-treated bed nets (ITNs),
difficulties in testing and treatment in hospitals
over-crowded with COVID-19 patients and due to
restricted availability of the health workers.

Fighting malaria requires coordinated research
across many disciplines, with mathematics and
mathematical modelling playing an important
role. Here we use mathematical tools to represent
and analyze real-world processes to make
predictions or otherwise provide insights about
their dynamics. In mathematical epidemiology, we
create simplified representations, called models,
of diseases such as malaria in a population,
to understand how the infection may progress
in the future. Mathematical models are the
cheapest and often the only way to test different
scenarios for the development of a disease
and various interventions such as vaccination
programs, [1], [16], [52]. Thus, they are crucial
to study the malaria transmission mechanism
and the dynamics of its progression, predict
and estimate the prevalence and incidence and
evaluate strategies for control. Hence, they
help to inform the public health interventions
policy-decision making. For instance, results
obtained from mathematical models may predict
which populations are most vulnerable to the
disease, allowing for focusing antimalarial drugs
and preventative treatments on high-risk groups.
However, the effectiveness of such models and
their robustness largely depend on the choice
of model and the researcher’s adherence to the
assumptions governing the chosen model’s use.

Over the past century, many mathematical mod-
els of various complexity levels, some discussed
in more detail in Section 2, have been developed.
They have been used to answer the following
questions related to its development, growth, pro-
gression and transmission in endemic and high
transmission areas.
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1) What are the predicted peak number of cases
and the time of its occurrence? What is the
expected cumulative number of cases over
the epidemic (i.e. final attack rate)?

2) What is the basic reproduction number (R0)
and the current value, or the time course, of
the effective reproduction number?

3) What might be/is the potential impact of
antimalarial drugs?

4) How should antimalarial drugs be prioritized
for the distribution among the population
subgroups to minimize infectiousness for
those infected, prevent the development of
resistance, and shorten the duration of the
illness?

5) When should the vaccination be introduced,
even though there is no currently approved
vaccine for malaria? What would be the
impact of vaccine timing on the benefits of
vaccination? Can the vaccine/drug effective-
ness be predicted?

Mathematical analysis can be applied at various
levels, such as the disease transmission dynam-
ics between humans and mosquitoes, the in-host
immuno-pathogenesis dynamics of the malaria
parasites, or pharmacokinetics (PK) and pharma-
codynamics (PD) properties of the drugs and vac-
cines. We emphasize here that though there is no
currently approved vaccine for malaria, the search
for malaria vaccine continues and mathematical
models can help in the theoretical design, clini-
cal trials, and the vaccine’s deployment. Within-
host modelling of infectious diseases has drawn
significant attention in the last half-century due
to its significance in improving our understanding
of how the microscopic processes develop and
affect the host health. Besides, it is crucial to un-
derstand how the within-host dynamical processes
(immunological processes) of the parasite impact
on the population-level dynamics of the disease
spread (epidemiological processes), [53]. In this
paper, however, we will focus on the population-
level compartmental malaria transmission models.

II. A brief review of mathematical models of
malaria

A. History and background of mathematical mod-
els of malaria

Mathematical epidemiology (modelling of in-
fectious diseases) can be traced back to the work
of Daniel Bernoulli. He formulated and solved
a model for smallpox in 1760 and used it to
evaluate the effectiveness of the inoculation of
healthy people against the smallpox virus, [1].
Much later, William H. Hamer [36] formulated
and analyzed a model to understand the recurrence
of measles epidemics. He was the first to propose
that the spread of infection should depend on the
numbers of susceptible and infective individuals
and suggested the mass action law for the rate of
new infections. His ideas have served as a founda-
tion of compartmental models since then, [15]. In
1927 William O. Kermack and Anderson G. McK-
endrick, [44], developed a general epidemic model
and described the relationship between susceptible,
infected and immune individuals in a population.
The Kermack–McKendrick epidemic model has
successfully predicted the behaviour of outbreaks
in many epidemics, [15], [45].

Mathematical modelling of malaria dates back
to the work of Sir Ronald Ross. He was the first
to understand malaria’s human-mosquito transmis-
sion mechanism, winning for this achievement the
Nobel Prize in Medicine in 1902. Subsequently,
in 1911 he developed a compartmental differential
equation model of malaria as a host-vector disease,
[67]. Ross divided the human and mosquito pop-
ulations into the susceptible (S) and infectious (I)
classes and used the so-called S hIhS h model for
humans and S vIv for mosquitoes, where S h, Ih, S h

and S v, Iv represent susceptibles and infectious
humans and mosquitoes, respectively. Using his
model, he showed that reducing the mosquito pop-
ulation below a critical level would be sufficient
for malaria elimination. In other words, contrary
to the common belief of that time, there is no
need to kill all mosquitoes to control the disease.
This result has been since known as the mosquito
theorem.
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Ross’ model was extended in 1957 by George
Macdonald, who included the exposed (infected
but not infectious) mosquito class, [50]. The Ross-
Macdonald model of malaria transmission has had
a significant influence on malaria control. One of
its main conclusions is that malaria’s endemicity
is most sensitive to the changes in the mosquito
survival rate. The Ross-Macdonald model allows
for several other conclusions. First, it shows that
malaria can persist in a population only if the
number of mosquitoes is greater than a given
threshold. Second, the prevalence of infections
in humans and mosquitos depend directly on the
basic reproductive number calculated in the paper.
The basic reproduction number, usually denoted
by R0, is defined as the average number of in-
fections produced by one infectious individual
introduced into a fully susceptible population over
the duration of the infectious period, [26], [73]. It
depends on the duration of the infectious period,
the probability of infecting a susceptible individual
upon contact, and the number of new susceptibles
contacted in a unit of time, i.e., the number of
newly infected individuals per unit time, [39],
[40]. In the malaria context, R0 should take into
account that an infectious human must first infect a
mosquito, which then generates secondary infec-
tions among humans, thus determining it is not
straightforward. R0 helps determine whether an
infectious disease can spread through a population.
In particular, if R0 < 1, then each infectious
individual produces on average less than one new
infectious individual, and thus the disease should
die out in the long run. On the other hand, if
R0 > 1, then each infectious individual infects on
average more than one individual, and thus the
infection should be able to spread, [26], [73].

It is worth noting that the researchers such
as R.A. Ross, W.H. Hamer, A.G. McKendrick
or W.O. Kermack who, between 1900 and 1935,
laid the foundations of the mathematical approach
to epidemiology, were not mathematicians but
public health physicians, [15]. This observation
emphasizes the fact that though biological and
epidemiological research has greatly improved our

knowledge of the life cycle of the malaria parasite
within humans and mosquitoes, it cannot achieve
a complete understanding of the complexities of
malaria on its own. Hence, resorting to mathemat-
ical models that can integrate various multiscale
and intertwined aspects of the disease and, by
using mathematical tools such as local and global
stability analysis, bifurcation analysis, sensitivity
analysis and data fitting, yield short- and long-
term predictions about its progress, proves to be
a necessity. The models, however, should reflect
the current epidemiological knowledge and thus,
they evolve to incorporate the latest empirical find-
ings. To wit, the Ross-Macdonald model assumed
that infected humans cannot develop immunity
against malaria and that the human and mosquito
populations are homogeneous. With the evidence
showing that this was an oversimplification, the
model has been extended in different directions
by incorporating acquired immunity, variability in
the mosquito and human populations, demography
and age-structure, the environment or other rel-
evant factors such as more realistic transmission
mechanisms. We briefly mention some of these
extensions. In [7], the authors considered only
the human population but also incorporated the
class of immunized humans and included an age
structure. The work in [4] included the exposed
classes and introduced a S hEhIhS h and S vEvIv

compartment model for humans and mosquitoes,
respectively. (Ngwa & Shu, 2000) [57] also study
an S hEhIhS h and S vEvIv compartment model but
considering varying population sizes. In [20], the
authors extended the latter by including constant
human immigration. An important addition to the
malaria transmission models was the inclusion of
the immunity function to the human population in
[27]. Socioeconomic factors in the human popu-
lation and environmental factors in the mosquito
population have been considered in [83] and oth-
ers. In [58], the authors formulated a mathematical
model that incorporated one aquatic stage of the
mosquitos and availability of the adult vector and
human treatment. They introduced, in particu-
lar, the so-called basic offspring number whose
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magnitude determines the existence of a thriv-
ing mosquito population in the sense that when
this number is below unity, then the mosquito
population becomes extinct. In recent years, the
climate change has attracted attention in the field,
and this resulted in a series of papers considering
this aspect in modelling, see, e.g. [31], [62], [61],
[56], [83]. Other malaria transmission models in-
corporate treatment in their models, see, e.g. [24],
[60]. It is reassuring that in [32], the authors used
current modelling techniques to show that there is
no bistable equilibrium in the malaria transmission
and therefore, that elimination is feasible.

Mathematical modelling of malaria can also in-
clude information about how different parts of the
population, such as adults and children, interact,
and how these interactions influence the infection’s
spread, resulting in age-structured mathematical
models, where the hosts are grouped into com-
partments composed of individuals in the same
age-group and infection status, see e.g., [12], [28],
[34], [33], [37]. Age-structured models are im-
portant to address intervention strategies involving
the treatment with novel antimalarial drugs and
vaccines. In [34] the authors fitted real data to an
age-structured model to investigate the effective-
ness of intervention strategies in reducing malaria
parasites’ count. In the subsequent paper, [33],
an age-structured model was used to estimate
the changing age-burden of P. falciparum malaria
using real data in sub-Saharan Africa.

It is important to note that the process of com-
plete eradication of an infectious disease such as
malaria is divided into five main phases, defined in
[55] and summarized in [76, p.2]. These are the
transmission control, the disease elimination, the
infection elimination, the eradication and the ex-
tinction. Mathematical modelling of malaria can be
applied at each of these phases. Several models, in-
cluding the ones discussed above, were developed
for the phases ”the transmission control” or ”the
disease elimination ”. Some recently published
mathematical models considered the other phases.
For example, (White, et al., 2009), the authors
used a mathematical model that required the input

data in the form of a single estimate of parasite
prevalence to consider ”the infection elimination”
phase. Their model included critical interventions
targeting malaria transmission, which are currently
available or in the final development stages. Their
results showed that a simple model has a similar
short-term dynamic behaviour to complex models.
They also demonstrated that the population level
protective effect of multiple controls was crucial
to overcoming failed elimination attempts. How-
ever, it is important to realize that even though
a simple mathematical model could be suitable
for situations where the data are sparse, more
complex models, populated with new data, would
provide more information, especially in the long-
term, [75].

A recent development in new anti-malaria drug
design opens new avenues for mathematical mod-
elling. For instance, in [17] the authors estimated
the transmission reduction that can be achieved
by using drugs of varying chemo-prophylactic
or transmission-blocking activity and they con-
cluded that transmission reductions and eradica-
tion of malaria depend strongly on the deployment
strategy, treatment coverage and endemicity level.
In [80], the authors formulated a mathematical
model that incorporates the effects of transmission-
blocking drugs (TBDs) on reducing the number
of malaria infections. Our mathematical results
predict, in particular, that treating with TBDs
both clinical and subclinical malaria infections is
required malaria eradication.

B. Different types of mathematical models in
malaria

Generally, several types of mathematical mod-
els have been used to describe the transmission
dynamics of infectious diseases, such as malaria.
These are the deterministic models, stochastic
models, statistical models, computer-based mod-
els, etc. Several modelling approaches consist in
using the available data to derive the process’s
statistical parameters and a fitted curve describ-
ing its dynamics. We refer to them as statisti-
cal modelling; they can be used mainly for pre-
dictions, information extraction, and description
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of stochastic structures, see [46], [22]. However,
statistic modelling mostly reveals correlations and
not causations in the studied process. For that
we need mechanistic models which attempt to
reflect the causal relations in the process and
thus, by using appropriate conservation laws and
constitutive relations, give a description of the
process’s dynamics, based on the understanding of
its driving mechanisms. In deterministic models of
this kind, the model’s output is fully determined
by the parameter values and the initial conditions,
without any room for random variation or uncer-
tainty. Deterministic models with continuous time
can be written using ordinary, partial, or delay
differential equations, [1], [16], while if we use
discrete time intervals, the model takes the form
of a difference equation, see [48] for an example
of a discrete malaria model.

On the other hand, while recognizing and us-
ing the causal relations in the described process,
stochastic models allow for randomness in one or
more inputs, making the evolution not precisely
predictable. This implies that the same set of
parameter values and initial conditions lead to an
ensemble of different outputs, [1], [16] and thus
the outcome can be predicted only with some
probability. Some authors have used a stochastic
process to model malaria, e.g. [47], [54], [64],
[11], [35], just to mention a few.

Since mathematical models are approximations
of real-life phenomena, each type of mathematical
model has its advantages and disadvantages. We
have listed some of the limitations of mathemat-
ical models in the conclusion section, Section 6.
However, we emphasize that the models based on
our understanding of the mechanisms driving the
described processes tend to have better potential
for making robust and reliable predictions.

Though we recognize that for successful
control and eradication of malaria it may be
necessary to use a combination of different
mathematical modelling approaches [2], [51],
in this paper, we shall focus on deterministic
compartmental models discussed above and
discuss some of them in more detail. Such

models, consisting of appropriately constructed
systems of ordinary differential equations, are
the most used mathematical tools in modelling
malaria transmission dynamics.

III. Generic mathematical model of malaria

In this section, we present a generic malaria
model and explain how to use it to represent the
disease’s complex transmission dynamics.

Mathematical modelling of malaria begins with
collecting and understanding basic biological facts
relevant to the disease. These facts form the
model’s assumptions and rephrased in mathemat-
ical terms, become its constitutive relations. The
model then consists of an appropriate system of
conservation laws with the coupling described by
these constitutive relations.

For instance, in a population of humans of
size Nhin a region affected by malaria, we can
distinguish a group of individuals who are not
infected by the malaria parasites but are at risk
of getting it; they are called susceptibles and
denoted by S h. The remaining individuals, who
are infected and can pass the infection to others
are called infectious and denoted by Ih. Individuals
in this compartment may fail to recover and die
or can recover (either due to natural causes or
medication), and then move to the recovered, Rh,
group. However, it is known that recovering from
malaria induces only temporary immunity, so, after
a certain time, the recovered can get reinfected
upon being bitten by an infectious mosquito. Such
individuals will move from the Rh class back to
the S h class. We can refine the description of
this process by introducing the exposed class Eh

of infected but not infectious humans to account
for the malaria incubation time. Models describ-
ing such a progression of malaria in humans are
called S hIhRhS h or S hEhIhRhS h models, respec-
tively. Analogous models can be constructed for
the mosquito population.

The progression between the compartments is
a conservative process in the sense that the in-
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(a) Simple SIR-SI flow diagram for transmission dynamics of malaria.

(b) Flow diagram for S hEhIhRhS h − S vEvIv transmission dynamics of malaria.

Figure 1: Simple SIR-SI flow diagram (a) and a flow diagram for S hEhIhRhS h−S vEvIv (b) transmission
dynamics of malaria.

dividuals in, say, the class S h that become in-
fected, vanish from this class but must reappear
in the infectious class. The mechanism of the
progression is modelled then by appropriate con-
stitutive relations. We must rephrase these no-
tions using mathematical functions, expressions
and equations. Usually, the first step in construct-
ing a model is representing the relevant processes
in a flow diagram. The diagram in Figure 1a

shows the basic structure of such S hIhRhS h − S vIv

model for human-mosquito transmission dynamics
of malaria, while Figure 1b shows a flow diagram
for an S hEhIhRhS h − S vEhIv malaria model with
demographic phenomena such as natural births and
deaths, see, e.g.

A typical example of a mathematical
S hEhIhRhS h − S vEvIv model for transmission
dynamics of malaria with demography, see, e.g.
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[20], [23], [57], [80], is given by
dS h

dt
= fh (Nh)+ρhRh−ΛhS h−gh (Nh) S h,

dEh

dt
= ΛhS h − (νh + gh (Nh)) Eh,

dIh

dt
= νhEh − (δh + γh + gh (Nh)) Ih,

dRh

dt
= γhIh − (ρh + gh (Nh)) Rh, (1)

dS v

dt
= fv (Nv) − ΛvS v − gv (Nv) S v,

dEv

dt
= ΛvS v − (νv + gv (Nv)) Ev,

dIv

dt
= νvEv − gv (Nv) Iv,

where Λh and Λv the forces of infections (infection
rates) of humans and vectors, respectively and the
total populations of humans and vectors at any
time t≥0 is, respectively, Nh (t) = S h (t) + Eh (t) +

Ih (t) + Rh (t) and Nv (t) = S v (t) + Ev (t) + Iv (t).

A. Types of the force of infection

When an infectious female Anopheles mosquito
bites a susceptible human, there is a probability
that the parasite (in the form of sporozoites) will
be injected into the human’s bloodstream and
travel into liver cells to infect hepatocytes. The
process when a susceptible human gets infected
by an infectious mosquito is represented in the
model by a function called the force of infection
(of humans), denoted here by Λh. The analogous
process for the female mosquitoes when, after
biting an infections human, the gametocytes form
of the malaria parasite enters the mosquito’s mid-
gut, is represented by a function called the force
of infection of mosquitoes, denoted here by Λv.
The form of the force of infection has a significant
impact on the dynamics of malaria, but it depends
on many factors and should be carefully chosen
for the problem. We shall briefly discuss the most
common choices.

We begin with a general form of the force of
infection introduced in [20] without clear justifi-
cation. Here we shall derive this form based on
the Holling type argument, (Holling, 1959). We
begin with some introductory observations. The

force of infection of humans, Λh, is the product
of the number of mosquito bites a human can
have per unit of time, bh (Nh,Nv), the probability of
the transmission of the disease from the mosquito
to human, βhv and the probability that the biting
mosquito is infected, Iv

Nv
. Similarly, the force of

infection of vectors, Λv, is the product of the num-
ber of bites a susceptible mosquito can make per
unit time on humans, bv (Nh,Nv), the probability
of the transmission from an infectious human to
vector and the probability that the bitten human is
infectious, βvh

Ih
Nh

+β̃vh
Rh
Nh

. Here we take into account
that both Ih and Rh humans can be infectious
with possibly different transmission probabilities,
0≤β̃vh < βvh < 1. Therefore, the forces of in-
fections of humans and vectors, respectively, are
given by

Λh = bh (Nh,Nv) βhv
Iv

Nv
,

Λv = bv (Nh,Nv)
(
βvh

Ih

Nh
+ β̃vh

Rh

Nh

)
.

It remains to derive the formula for the total
number of bites per unit time. It can be written
as

b (Nh,Nv) = bh (Nh,Nv) Nh = bv (Nh,Nv) Nv.

To proceed, we define two parameters, σh and σv,
that are, respectively, the constant average number
of mosquito bites a human can receive (respec-
tively, a mosquito can make on a human) per unit
time. σh depends on the human’s exposed area,
awareness, etc., while σv depends on the mosquito
gonotrophic cycle, its preference for human blood
and the time used for feeding. Consider a certain
period T that, for a mosquito, can be split as
T = Tna + Ta, where Tna is the time where the
mosquito cannot bite and Ta is the time available
for biting. Thus, in time T , the total number of
bites received by all humans can be written as

b (Nh,Nv) T = σhTaNh. (2)

Now, if a mosquito can make only σv bites in
a unit time, it means that it is not able to bite
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for 1/σv after each bite. Besides, in time T it has
σhNhTa

Nv
meals. Hence

T = Ta +
σhNhTa

Nvσv
. (3)

Thus, plugging (3) into (2) and simplifying
yields

b (Nh,Nv) =
σvσhNvNh

σvNv + σhNh
. (4)

Therefore, the force of infections are modelled by

Λh =
σvσh

σvNv + σhNh
βhvIv,

Λv =
σvσh

σvNv + σhNh

(
βvhIh + β̃vhRh

)
.

(5)

As noted in [20], these formulae generalize
several previously used expressions for the forces
of infection. In particular, if Nv/Nh is small, then
factoring out Nh from the denominator and setting
Nv/Nh to 0, we obtain

Λh = σvβhv
Iv

Nh
, Λv = σv

βvhIh + β̃vhRh

Nh
, (6)

which are known as standard infection forces, (An-
derson, 2013), (Allen, 2008), (Martcheva, 2015),
(Hethcote, 2000). On the other hand, if Nh/Nv is
small, we can write

Λh = bhβhv
Iv

Nv
, Λv = bvβvh

(
Ih

Nh
+ β̃hv

Rh

Nh

)
, (7)

where bh (Nh,Nv)≈σh and bv (Nh,Nv)≈Nhσh/Nv,
which corresponds to the original mass action
model of Ross, that was written in terms of frac-
tions of the population, [5], [3]. In particular, if
the populations are constant, then this model is
the usual mass action compartmental model.

Finally, we mention saturated infection rates,
where the force of infection is given by a version
of the Holling II functional response. It was first
introduced to infectious disease modelling in [19]
in their study of the cholera epidemic. We can
adopt such a force of infection for malaria mod-
els with treatment or acquired immunity. Then,
assuming that only individuals from the infected

class Ih are infectious, the force of infection of
humans by mosquitoes and the force of infection
of mosquitoes will be given by, respectively,

Λh = σvβhv
Iv

1 + ηvIv
, Λv = σvβvh

Ih

1 + ηhIh
,

with an obvious modification if also Rh individuals
can contribute to the infections.

The use of the Holling type II incidence function
to model the infection process reflects the fact that
the number of effective contacts between infective
and susceptible individuals may saturate at high
infective levels due to overcrowding, or due to
the preventive measures applied in response to the
disease, [42], [49], [58], [68], [81], [59].

B. Choice of the demographic functions

The demographic terms fh (Nh) and gh (Nh) can
take several forms, depending on the population,
and we list the common ones. We note that similar
choices work for both fv (Nv) and gv (Nv) . We also
assume that there is no vertical transmission of the
infection, so all new newborns are susceptible.

1) There are births with a constant total birth
rate Πh and natural deaths with per capita
natural death rate µh so that fh (Nh) = Πh and
gh (Nh) = µh. In this case, the vital dynamics
(dynamics in the absence of infection) will
be dNh

dt = Πh−µhNh. We note that this choice
is used mostly for mathematical convenience
as fitting this model to real populations pro-
duces unrealistic rates Πh and µh, [52].

2) The demography is governed by the Malthu-
sian law, that is, the total birth and death
rates are proportional to the total popula-
tion, [20], [57]. Thus, fh (Nh) = ψhNh and
gh (Nh) = µh and in this case the vital
dynamics is given by dNh

dt =
(
ψh − µh

)
Nh.

3) The birth rate is directly proportional to the
total human population, fh (Nh) = ψhNh,
while the death rate depends on the density
of the population size in a nonlinear way.
For instance, in addition to the intrinsic
deaths, there may be additional deaths due
to the overcrowding, which can be mod-
elled as gh (Nh) = µh + µ̃hNh, where µ̃h is
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(a) Line plot of number of indigenous reported malaria
cases

(b) Line plot of number of indigenous reported malaria
caused deaths

Figure 2: Line plots of the number of indigenous reported malaria cases and deaths in South Africa
for the years 2001 − 2018.

the additional constant death rate. Then the
vital dynamics is given by dNh

dt = ψhNh −

Nh
(
µh + µ̃hNh

)
, where we assume that ψh is

sufficiently large so that the vital dynamics
is logistic.

We can use other types of birth functions,
such as the Ricker function, [65], the Beverton-
Holt function, [13] or the Maynard-Smith-Slatkin
function, [72].

C. Fitting the malaria model into the South
African data

According to the WHO report 2019 [78], South
Africa reported 9540 indigenous cases of malaria
in 2018, with 69 deaths. However, the number of
reported indigenous cases of malaria in 2017 was
22 064. In South Africa, malaria is transmitted
mainly in the border areas due to the cross-
border movement of populations, including work-
ers from neighbouring malaria-endemic countries
and South Africa residents travelling there. We
also note here that according to the Department
of Health of the Republic of South Africa, some
parts of the country are endemic for malaria. At the
same time, 10% of the population (approximately
4.9 million people) is at risk of contracting the

disease, with P. falciparum being the dominant
malaria species.

A summary of the number of reported indige-
nous malaria cases and deaths in South Africa for
the years 2001-2018 is shown in Figure 2. We
plotted them in the Python programming language
using data from the WHO website, [79].

Figure 3 and Figure 4 depict curves fitted
from model (1) using malaria data obtained from
(WHO-GHO, 2016) for the number of indigenous
reported malaria cases and malaria caused deaths,
respectively, in South Africa in 2001−2018. Here
we use the forces of infections Λh = bhβhv

Iv
Nv

and

Λv = bvβvh

(
Ih +ζrRh+ ζe Eh

Nh

)
. We set the initial condi-

tions S h (2001) = 5 × 106, Rh (2001) = 0 and let
Ih (2001) = to vary between 15, 000 and 30, 000 ,
since in 2001 the number of indigenous re-
ported malaria cases was 26506. We then as-
sumed Eh (2001) = 50000, S v (2001) = 50000,
Ev (2001) = 5000 and Iv (2001) = 4000. Further-
more, as a guessed starting parameters we used the
baseline values listed in Table 1, obtained from
literature except for the population projection of
South Africa in (Worldometers, 2020), where we
estimated µh = 0.0159 per year since the average
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lifespan of South Africans in 2017 was 63 years
and Πh = 70000 per year since the annually
approximately 7×105 people are added to the total
population but only 10% are at risk of malaria. We
use µv = 17.38 per year since the lifespan of an
Anopheles mosquito is 10-21 days.

Figure 3: A fitted curve for indigenous reported
malaria cases in South Africa , Ih for model (1)
using data from WHO-GHO [79] for the years
2001 − 2018, and projections up to 2025.

Figure 4: A fitted curve for indigenous reported
malaria caused deaths in South Africa, for the
model (1) using data from [79] for the years 2001-
2018, and projections up to 2025. The method used
to fit the model in both cases is lsqcurvefit with
multi-start for global fit in MATLAB.

We observe that the theoretical curves in Figures
3 and 4 do not cater well for short term variations

in the number of cases and deaths. This is since
neither model considers seasonal or environmental
variations that heavily affect malaria incidence.
In particular, the spike in 2017 could be partly
attributed to the higher than normal rainfall be-
tween the 2015 − 2016 and subsequent drought in
Southern Africa.

Parameter uncertainty and the predicted uncer-
tainty is important for qualifying a confidence in
the solution, and for adjusting parameter values so
that a correlation best fits data. As it is directly
mentioned in here, “the 95% confidence bands
enclose the area that you can be 95% sure contains
the true curve. It gives you a visual sense of
how well your data define the best-fit curve. As
such, we extend the data fitting in Figures 3 and
4 to include a 95% confidence bands, as can be
observed in Figure 5 and Figure 6.

Figure 5: A fitted curve for indigenous reported
malaria cases in South Africa showing a 95%
Confidence interval, for the model (1) using data
from (WHO-GHO, 2016) for the years 2001-2018,
and projections up to 2025.

We note here that while fitting model (1) to the
data using the baseline values as guessed starting
parameter values with their corresponding lower
and upper bounds in Table I, we only let six
parameters, namely, Ch,Ch, νh, νv and ρh to be
unknown so that the algorithm will estimate their
values with a 95% confidence interval.

As can be seen in Figure 5 or Figure 6, several
of data points lie below and above the fitted
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Table I: Parameters, their baseline values used for fitting, dimension, references and lower and upper
bounds used. Several of the ranges for the parameter values are directly taken from [21], where they
used data for the high and low transmission areas. Other parameter ranges are adapted from [17], [33]
and some are estimated.

Parameter Baseline
Value Used

Dimension Reference Ranges (lower & upper
bounds used)

Πh 70000 H×year−1 Calculated from [82] fixed
Πv 5000 V×year−1 Assumed [1 × 103, 5 × 105]
Cv = βvhb 0.2 H×V−1×year−1 [21] [0.01, 2]
Ch = βhvb 0.6 H×V−1×year−1 [21] [0.01, 2]
νh 0.1 year−1 [21]) [0, 10]
δh 0.008 year−1 Calculated from [79] [0, 0.1]
ρh 0.47 year−1 [21] [0.0005, 2]
γh 0.275 year−1 Assumed [0, 10]
ζe 0.005 1 Assumed [0, 1]
ζr 0.001 1 Assumed [0, 1]
νv 0.083 year−1 [21] [0.005, 2]
µv 17.38 year−1 [78] fixed
µh 0.0159 year−1 Calculated from [82] fixed

Figure 6: A fitted curve for indigenous reported
malaria caused deaths in South Africa showing
a 95% confidence interval, for the model (1) for
the years 2001-2018, and projections up to 2025.
To fit the model into the malaria data we used
a method in MATLAB called “lsqcurvefit” (least-
square curve fit) with multi-start for global fit,
and to obtain the confidence interval we used
the method called “nlpredci”, which stands for a
nonlinear prediction. It is a nonlinear regression
prediction for confidence intervals.

lines, and some of them are outside of the %95
confidence brand. Clearly these residuals are not
well-behaved and the residuals are not evenly

distributed over the time series. So, we must
emphasize here that the parameters of the model
are not identifiable with best estimates, and they
have large error ranges. This is because the model
has 7 state variables and 15 parameters, but it is
fitted to a time series of two observations, and
thus it is overparameterized. Its proper calibration
and providing relevant statistical information such
as confidence interval, margins of errors and pa-
rameter estimates require more data, not available
at present. Thus, we do not claim that the data
fitting given in Figure 3 and Figure 4 or Figure
5 and Figure 6 are definitive. Others may argue
that it could have been better to use a much
simpler model or simply to use an exponential
decay function to statistically fit the given data
for the number of malarai cases and deaths, and
estimate the fewer parameters involved in defining
an exponential decay function with best parameter
fit and narrow confidence interval. However, we
want to use a mechanistic model, as these model
when correctly constructed and validated can have
a strong predictive power, and can be used to test
effectiveness of an intervention, as such interven-
tions can in principle be include mechanistically
in the model.

The preceding discussion shows how impor-
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tant it is to validate the results obtained from
mathematical models by comparing them with the
field data. Correctly done, statistical analysis of
the results allows us to assess the model’s ability
to simulate essential features of the transmission
dynamics of malaria, that is, to validate the model.
It also provides for extrapolation and interpolation
of the data for future predictions and estimates of
input parameters for more complex mathematical
models [22], [46]. It is worth noting that though
complex mechanistic models have more predictive
power, the uncertainty in the parameters estimates
strongly curtails this power. Thus, an important
part of modelling is balancing the model’s com-
plexity with the availability of reliable data.

IV. Reducing complexity of models by multiple
scale analysis

One of the ways of reducing the complexity
of a model is exploiting its structural features to
aggregate functionally similar variables and thus
simplify the model without losing salient features
of is dynamics. There are various ways of models’
aggregation, [8], the most popular being the one
based on the existence of multiple time scales in
it. Let us explain this approach using a malaria
model as an example.

We have observed that, due to the interplay of
host and vector dynamics as well as the com-
plex evolution of the vector population itself, see,
e.g. [58], malaria models have indeed become
increasingly involved, making their robust analysis
difficult if not impossible. Fortunately, biological
phenomena often occur on time or size scales of
widely different orders of magnitude. For instance,
in malaria models, mosquitoes’ vital dynamics
occurs on a much faster time scale (average lifes-
pan of fewer than 21 days) than that of humans
(average lifespan of around 65 years). Because
of this, malaria models can be considered as
multi scale models, see, e.g. [30], which paves the
way for their significant simplifications. Showing
that it is indeed possible and that the simplified
models preserve essential features of the original
dynamics requires a delicate mathematical analysis
belonging to the field of singular perturbation

theory, see, e.g. [9], [10], [66]. We shall illustrate
this approach on the model given by (1) with
fh (Nh) = ψhNh, gh (Nh) = µhNh, fv (Nv) = ψvNv,
and gv (Nv) = ψvNv, that is, assuming a stable
mosquito population. Further, for computational
simplicity, we discard the exposed classes so that

dS h

dt
= (ψh − µh) S h + (ψh + ρh) Rh + ψhIh

−σvβhv
Iv

S h + Ih + Rh
S h,

dIh

dt
= σvβhv

Iv

S h+Ih+Rh
S h − (δh+γh+µh) Ih,

dRh

dt
= γhIh − (ρh + µh) Rh, (8)

dS v

dt
= µvIv − σvβvh

Ih

S h + Ih + Rh
S v,

dIv

dt
= σvβvh

Ih

S h + Ih + Rh
S v − µvIv,

where we used Nh = S h + Ih + Rh and Nv = S v + Iv.

Next, using parameter values directly from [20,
Table 4.1] in a time scale of years, we write system
(8) as

dS h

dt
=1.26×10−2S h + 5.36Rh + 2.8×10−2Ih

−4.38
Iv

S h + Ih + Rh
S h,

dIh

dt
=4.38

Iv

S h + Ih + Rh
S h − 1.37Ih,

dRh

dt
=1.35Ih − 5.34Rh, (9)

10−3 dS v

dt
=5.22×10−2Iv−1.82×10−1 Ih

S h+Ih+Rh
S v

10−3 dIv

dt
=1.82×10−1 Ih

S h+Ih+Rh
S v−5.22×10−2Iv,

with initial condition

(S h(0),Ih(0),Rh(0),S v(0),Iv(0))= (S 0
h,I

0
h ,R

0
h,S

0
v ,I

0
v ).

We can observe that µv = 5.22×101 per year,
whereas µh = 1.58×10−2 per year, that is, they
differ by 3 orders of magnitude. The idea here is
to replace the factor 10−3 by a small parameter
ε and try to approximate (9) by solutions of the
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(a) infected humans (b) infected mosquitoes

Figure 7: Solution curves for the infected class for different values of ε. The solution of the original
system corresponds to ε = 10−3 and solution to (10) corresponds to ε = 0.

simplified problem with ε = 0, that is,

dS̃ h

dt
= 1.26×10−2S̃ h + 5.36R̃h + 2.8×10−2 Ĩh

−4.38
Ĩv

Ñh
S̃ h,

dĨh

dt
= 4.38

Ĩv

Ñh
S̃ h − 1.37Ĩh, (10)

dR̃h

dt
= 1.35Ĩh − 5.34R̃h,

0 = 5.22×10−2
(
Nv − S̃ v

)
− 1.82×10−1 Ĩh

Ñh
S̃ v,

with the same initial conditions, where we used
the fact that Nv is constant.

Clearly, (10) is a lower-dimensional system and
it follows that (subject to adding an initial layer
corrector) its solutions approximate the solutions
of (10), see [9], [10], [66]. We illustrate this
result in Figure 7, where we present numerical
simulations of (10) with initial conditions S 0

h =

1000,R0
h = 0, I0

h = 40, S 0
v = 100, I0

v = 30, [20], and
with 10−3 replaced by different values of ε, so that
with ε = 10−3 we recover the solutions of system
(8). The solution for (10) corresponds to ε = 0. We
observe that as ε approaches to zero, the solutions

get closer to the solution of (10). See, Figure 7.

V. Current research towards malaria
elimination and eradication

Even though antimalarial drugs are widely avail-
able and can be used at different cycles within
a human, it is unlikely that they can eliminate
malaria on their own and novel strategies are ur-
gently needed. One of them is developing interven-
tions to interrupt or completely block the malaria
transmission by targeting the transmission of either
the gametocytes to the vector or the sporozoites
to humans. Such transmission-blocking interven-
tions (TBIs) can be either transmission-blocking
drugs (TBDs) or transmission-blocking vaccines
(TBVs), [25], [6]. Then, [74], [70], TBDs can be
classified as drugs targeting the malaria parasite
within the human host, drugs targeting the parasite
in the vector or drugs targeting the vector itself.

Designing a drug whose primary objective is the
transmission-blocking would be a game-changer
leading to comprehensive malaria elimination,
[14], [18]. During the drug development process,
the central focus is on the ability of the compound
to achieve one of the following goals: killing the
malaria parasites during the liver stage or the blood
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Figure 8: Flow diagram showing the malaria transmission dynamics between human and mosquito
populations with transmission-blocking drug treatment.

stage of infection, blocking the formation and
maturation of gametocytes, providing chemopre-
vention to high-risk groups or else preventing the
parasite cycle within the mosquito. Mathematical
models are important at this stage to guide drug de-
velopment by studying its pharmacokinetics (PK)
and pharmacodynamics (PD). In the first case,
the models can help us study the change of the
drug concentration over time as determined by its
absorption, distribution, metabolism and excretion.
These are typically described by a set of differen-
tial equations representing the physical compart-
ments, where the different processes occur. In the
second case, mathematical models can describe
the relationship between drug concentration and
its killing efficacy. This can be shown as a ’dose-
response curve’ showing the efficacy as a function
of the measured concentration of the drug in the
blood, [38], [41], [63], [71].

Still, there is a lack of insight about the
population-level impact of different strategies of
rolling out the TBDs that can be obtained from
mathematical modelling. In our recent work, [80],
we have addressed this problem by proposing and
providing a preliminary analysis of a population
level mathematical model of human-mosquito in-

teractions that take into account an intervention
using TBDs. Our model extends (1) by including
the class Th of people under treatment with a
TBD, and the class Ph of people who have been
successfully treated and are (at least temporarily)
immune to malaria and (at least temporarily) does
not transmit malaria. We allow the treatment to
fail in which case the individuals from Th move
back to Ih or Rh (so that they remain infectious) or
be successful whereby the individuals stop being
infections. The model can be represented by the
flow diagram in Figure 8.

Our model is still preliminary and, in particular,
it has not been tested on the real data that, due to
the novelty of the field, are hard to obtain. Nev-
ertheless, we determined a threshold quantity that
governs the spread of malaria under treatment by a
TBD and, using this threshold, we investigated the
impact and sensitivity of the model parameters that
can be manipulated to drive the threshold quantity
below unity. We also derived an expression that
relates the drug efficacy and its treatment rate, and
determined a critical treatment coverage rate, that
is, the rate beyond which the TBD can eliminate
malaria.

On the other hand, also research for a malaria
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vaccine has been underway. In particular, signif-
icant progress has been made in this field with
the development of the pre-erythrocytic vaccine,
named RTS,S. However, the use of malaria vac-
cines is not yet implemented well.

As noted before, a limitation of such complex
malaria models is that they can be overparam-
eterized and it could be impossible to fit the
parameters accurately on a given data set. This
creates uncertainty in the simulation results. The
main problem is that we require extensive data
sets for estimating the parameter values with small
error margins, as models of malaria are usually
highly complex.

VI. Conclusion

Mathematical modelling is a process that uses
mathematical tools to represent, analyze, make
predictions, or otherwise provide insight into real-
world phenomena. The value of mathematical
models lies in that they help us to understand real-
world phenomena by simplifying complex sce-
narios. For instance, analysis of epidemiological
models informs us about their dynamics and thus
enables predictions about the development of the
disease. In this way, mathematical models offer
a cheap alternative to expensive, impractical, or
impossible field and experimental work. Mathe-
matical models also have their disadvantages and
shortcomings. A model is just an approximation
of a real-life phenomenon since the complexity of
nature makes it impossible to exactly represent it
by a manageable set of equations. A mathematical
model is as good as the assumptions used to
formulate it, and thus it will work only when these
assumptions are satisfied. Even after a model is
formulated and analyzed, the results may be not
entirely conclusive, since the theory on which we
base it may be inadequate, or the available data
do not suffice for its validation. In particular, for
malaria, the data availability is often not suffi-
cient for reliable identification of the parameters,
and this uncertainty strongly limits the predictive
power of many models.

Nevertheless, over the past century, mathemat-
ical models of malaria of various levels of com-

plexity concerning the human, mosquito, and Plas-
modium parasite populations have been developed
and studied to understand the malaria infection
mechanisms and thus facilitate its control and,
ultimately, elimination. Moreover, mathematical
modelling of malaria dynamics is important to
guide the drug development, suggest a deployment
strategy and quantify adequate treatment coverage.
Whenever possible, quantitative and qualitative
results from mathematical models of malaria are
compared with the observational data to identify
the model’s strengths and weaknesses. In many
cases, however, the scarcity of reliable data on the
human behaviour, the life cycles and behaviour of
both the vector and the parasite, proliferation and
waning of immunity, age profiles of symptomatic
and asymptomatic infections or parasite’s drug
resistance limits the usefulness of many mathemat-
ical models in the policy-making processes. Thus,
the importance of models is often not so much
quantitative but rather qualitative, as was already
noted by Ross and several other researchers. It
is, therefore, crucial for mathematical modellers to
collaborate closely with life and health scientists
and public health workers to facilitate an informed
and robust exchange leading to better models and
knowledge-based decisions.
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