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Abstract— In the present work we discuss the
usage of the framework of chemical reaction net-
works for the construction of dynamical models
and their mathematical analysis. To this end, the
process of construction of reaction-network-based
models via mass action kinetics is introduced and
illustrated on several familiar examples, such as the
exponential (radioactive) decay, the logistic and the
Gompertz models. Our final goal is to modify the
reaction network of the classic Gompertz model in a
natural way using certain features of the exponential
decay and the logistic models. The growth function
of the obtained new Gompertz-type hybrid model
possesses an additional degree of freedom (one more
rate parameter) and is thus more flexible when
applied to numerical simulation of measurement
and experimental data sets. More specifically, the
ordinate (height) of the inflection point of the new
generalized Gompertz model can vary in the interval
(0, 1/e], whereas the respective height of the classic
Gompertz model is fixed at 1/e (assuming the height
of the upper asymptote is one). It is shown that the

new model is a generalization of both the classic
Gompertz model and the one-step exponential decay
model. Historically the Gompertz function has been
first used for statistical/insurance purposes, much
later this function has been applied to simulate
biological growth data sets coming from various
fields of science, the reaction network approach
explains and unifies the two approaches.

Keywords-Systems of ordinary differential equa-
tions, Reaction networks, Chemical reaction net-
works, Evolutionary growth-decay models, Relative
growth rate, Exponential (radioactive) decay, Log-
arithmic change rate, Logistic model, Gompertz
model.

I. INTRODUCTION: REACTION NETWORKS AND

EVOLUTIONARY GROWTH-DECAY MODELS

The present study is devoted to mathemati-
cal models induced by chemical reaction net-
works describing evolutionary changes of biolog-
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ical species. We are interested in smooth changes
that are described either as monotone growth, or
monotone decay, in certain (large) time intervals,
oscillation processes will not be considered in
this work. We briefly call such changes, resp.
functions, growth-decay changes/functions. The
exponential radioactive decay, the Gompertz and
the logistic models are three textbook examples,
where we can consider the state variables involved
as species that react between each others or are
catalysts of certain reaction(s).

The main purpose of this work is to propose a
new modification of the classic Gompertz model
possessing more flexibility and functionalities. On
the way to achieve this goal we offer a brief
introduction into the method of chemical reaction
networks, which turns to be essential in the con-
struction of new meaningful mathematical models,
in particular when it comes to biological growth
and decay processes.

In the preliminary part of this work we present
several examples demonstrating the role of the
chemical reaction network theory (CRNT) in trac-
ing the characteristics of elementary familiar math-
ematical models for the numerical simulation of
complex phenomenological (biological) processes.
The example with the Gompertz model demon-
strates the need of a detailed knowledge on the
basics of elementary reaction networks.

Biological growth-decay functions, describing
evolutionary processes, are often presented in the
literature by means of explicit algebraic expres-
sions. Such a presentation offers little or no infor-
mation on the physico-chemical mechanism of the
studied process. More information in this direction
is provided when the growth-decay functions are
defined as solutions to systems of ordinary differ-
ential equations. In the latter case we may look
for a possible (chemical) reaction network, which
implies the particular dynamical system via mass
action kinetics [20]. If such a network does exist,
we say that the differential system has a realization
(formulation) in terms of a (chemical) reaction
network [6].

Models formulated in terms of reaction net-

works offer additional knowledge for the partic-
ular biological process, possibly leading to further
modifications and improvements of the particular
model.

An essential step towards the generalizion of
purely chemical reaction network, involving just
particular chemical substances towards a more
generalized chemical objects, such as enzymes and
substrates, seem to be done first by the prominent
scientist Victor Henri, who proposed the enzyme
kinetic reaction network, see example 7 below.
Later on scientists working in fields, such as pop-
ulation dynamics and epidemiological modelling,
began to realize that many of their models can be
based on reaction networks, wherein the chemical
substances are considered as more generalized
biological objects often denoted as species [6].

The logistic model is an instructive example
of a growth-decay model possessing a chemical
reaction network [6], [13], [21]. The reaction net-
work presentation enables an easy identification
of the logistic model as a constituent part of
other (more complex) growth-decay models and
to expect similar behaviour of the growth and
decay functions, such as sigmoidal growth and
exponential decay.

Section 2 is intended for readers who are not
familiar with the Chemical Reaction Network The-
ory (CRNT) and its application to mathematical
modelling in biology. On several examples we give
a brief introduction of method of “translation” of a
reaction network into a system of ordinary differ-
ential equations (ODE’s) using the simple “mass
action kinetic” principle. Such a translation turns
the reaction network into an unique mathematical
problem for the time evolution of the masses
(concentrations , densities) of the species. Readers
who are interested in the implementation of the
more involved “power law kinetic” postulates may
consult some textbooks on CRNT [8], [20].

In Section 3 we consider the classical Gompertz
model from the perspective of CRNT. For this pur-
pose we formulate the Gompertz model in terms of
a reaction network. Readers already equipped with
the technique of translation will be able to easily
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trace the relation between the “chemical” reaction
network and the classical ODE’s involved. This
approach allows us to enlighten certain character-
istics of the Gompertz growth function and the
closely related Gompetz decay function involved
(known as mortality law).

In Section 4 we propose a new modification
of the reaction network of the classic Gompertz
model obtaining thus an original Gompertz-like
model possessing one more degree of freedom.
The proposed new model is mathematically anal-
ysed in the spirit of the reaction network approach.
It is shown that the model is a generalization of
both the classic Gompertz model and the one-step
radioactive exponential decay model, forming thus
a hybrid between these two familiar models.

II. PRELIMINARIES: REACTION NETWORKS

AND THEIR TRANSLATION INTO ODE’S

We briefly recall some features of growth-decay
models based on reaction networks as well as some
appropriate terminology and notation.

A. Reaction networks.

Canonical forms. Systems of chemical reac-
tions, briefly: reaction networks, are symbolically
presented as systems of elementary reactions of
the following canonical form:

S +Q
k−→ P +R, (1)

showing that one, two or more species on the
left side of the reaction arrow, called reactants
or reagents (in this example species S and Q),
react, and, as result of the reaction, one, two or
more species, named products (here P and R),
are produced. Note that the arrow should point to
the right and the sign “+” has different meaning
when placed on the left or on the right side of
the reaction arrow: on the left side the “+” means
reaction between the enlisted reactants, whereas
on the right no reaction is assumed between the
product speciess; if such a reaction exists, then
it should be described by a separate elementary
reaction. Just one species on each side of the
arrow is also possible, in fact, as we shall see
below, a reaction of the form S

k−→ P is a

basic one. Note that a presentation, such as S k−→
P

k1−→ Q, is not canonical, the corresponding
canonical presentation for this reaction network is:
S

k−→ P, P
k1−→ Q. As another example, the

often used non-standard presentation of a reverse
reaction network:

S
k−→←−
k1

P

has the following canonical form:

S
k−→ P, P

k1−→ S.

As one more example of a non-canonical famil-
iar reaction network let us mention the enzyme
kinetic reaction scheme between an enzyme E
with a single active site and a substrate S, forming
an enzyme-substrate complex C, which then yields
product P , known as Henri-Michaelis-Menten re-
action [7]:

S + E
k1−→←−
k−1

C
k2−→ P + E.

In canonical form the above reaction network
should be presented as:

S + E
k1−→ C,

C
k−1−→ S + E,

C
k2−→ P + E.

As we shall see below canonical forms are
useful for an easier transform of a reaction network
into a system of differential equations via mass
action principle.

Notation. All species (reactants and products)
partaking in a reaction are denoted by uppercase
letters, such as P,Q,R, S,X, Y . A positive num-
ber called “rate parameter” is written over the
reaction arrow and indicates the velocity of the
reaction.

The reactants on the left side of a reaction
arrow either decay or remain constant, whereas the
product species on the right side of the arrow are
growing or constant. In some cases a species may
appear two or more times at one side of the arrow,
such as A+A, briefly denoted as 2A.
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For example, in the reaction (1) the reactants
S,Q on the left side decay with time, whereas the
product species P,R on the right side are growing.
In a biological context we can say that in this
case the product species grow at the expenses of
the reactant species, or that the growing species
consume the species on the left side of the arrow
(as food resources). In population dynamics (some
of) the species on the left side could be considered
as “parent” species that give birth (reproduce) into
the outcome species on the right side of the arrow.

Catalyst species. One more special case should
be mentioned, namely when a species X appears
on both sides of the arrow, e.g. S+X

k−→ P +X .
In this case species X does not change in time, it is
called a catalyst. Catalyst species enable a reaction
to perform, e. g. in this example without X , the
reaction S k−→ P cannot practically happen.

When studying biological growth/decay pro-
cesses, it is important to identify the species
with catalytic action, the catalysts. In this work
catalysts will be usually denoted by some of the
letters X,Y, Z. Once again, by definition a catalyst
species appears on both sides of a reaction arrow:
on the left side as a reactant and on the right side
as a product.

Note also that some species may partake as
catalysts in a particular reaction, but can also be
involved as reagents in other reaction(s) as part of
the same network; there they may change (grow
or decay). In such situations a catalyst species
may change as result of its total participation in
a particular reaction network [20].

In the “logistic” reaction S + X
k−→ 2X

species X is a catalyst which catalyses the reaction
S

k−→ X , that is X catalyzes its own production
(growing). Such species are called auto-catalysts.
As a (total) result of the logistic reaction, the
catalyst species X is growing in time.

B. Differential systems induced by reaction net-
works via mass action kinetics

Law of Mass action: The rate of a reaction is

proportional to the (mathematical) product of the
concentrations of the reactants.

Using mass action kinetics principle every par-
ticular reaction network can be uniquely trans-
formed (translated) into a system of ordinary dif-
ferential equations (ODE’s), briefly: system of rate
equations, or dynamical system [20], [23]. Such a
transformation (“translation”) is performed in the
following way.

Firstly, we assume homogenous distribution of
the species involved, say P,Q, S, in a certain
volume/area/compartment. Then the quantitative
(numeric) values assigned to species P,Q, S, such
as masses, concentrations, densities, number of
entities (individuals, molecules, cells, etc.), are
considered as smooth functions of time denoted
respectively: p = p(t), q = q(t), s = s(t), so
that their derivatives, resp. p′ = dp(t)/dt, q′ =
dq(t)/dt, s′ = ds(t)/dt, exist up to a certain order.
Functions p, q, s are briefly called concentrations
or masses, and the first derivatives of the masses
p′, q′, s′ are called rates of change (growth or decay
or both) of the respective species. Under these
assumptions, the mass action principle says that
the rate of change of each species is proportional
to the product of the masses of the reacting
species, thereby the coefficient of proportionality
is negative if the species decays (which is the
case when it appears on the left hand-side of the
reaction arrow) and is positive if the species grows
(when appearing on the right hand-side of the
arrow). The proportionality coefficient is called
the rate parameter and is usually written over
the reaction arrow. This procedure is performed
for every elementary reaction of the system of
reactions, that is the reaction network.

The “translation” of a reaction network into
a system of ODE’s via mass action kinetics is
illustrated on the following examples.

Example 1. Consider the reaction network

S +R
k−→ P, k > 0. (2)

Under mass action kinetics principle, reaction (2)
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induces a system of three differential equations,
one for each of the three species, also known as
reaction equations or rate equations:

s′ = −ksr, r′ = −ksr, p′ = ksr, k > 0. (3)

System (3) demonstrates the application of the
mass action law when two reacting species S,R
produce a new species P . In this reaction species
S,R decay, whereas species P grows; so the signs
of the rate parameters for S and R are negative,
and the sign of the rate parameter for P is positive.
The rates (of change) of all three species are
proportional to the product of the masses of the
reacting species S and R, so the absolute values
of all rates are of the form ksr, with k > 0.

Dynamical system (3) implies the identities s′+
r′ = 0, s′+p′ = 0, resp. s+r = c1 = const, s+p =
c2 = const. Such identities are often known as
conservation relations (laws).

Example 2. Consider the reaction network:

S +X
k−→ P +X, k > 0. (4)

The induced system of ODEs is:

s′ = −ksx, x′ = 0, p′ = ksx, k > 0. (5)

Note that equation x′ = 0 is obtained as x′ =
−ksx + ksx = 0. Species X is a catalyst. The
masses of species S and P satisfy the identity s+
p = const.

Example 3. Consider the following reaction
network involving two reactions and three species:

S +X
k−→ P +X, X

α−→ P, (6)

wherein k > 0, α > 0.

The first reaction S + X
k−→ P + X of

reaction network (6) does not cause changes in
catalyst species X , whereas the second reaction
X

α−→ P causes exponential decay of X . The
other declining species is S; species P is growing.
The induced dynamical system is:

s′ = −ksx, x′ = −αx, p′ = ksx+ αx. (7)

Note that the rate p′ of species P is obtained as
the sum ksx+ αx of the rates of P from the two
reactions involving P . Note also that the catalyst
species X changes (decays) due to reaction x′ =
−αx. Dynamical system (7) induces the identity
p+ x+ s = const .

Example 4. For the Henri-Michaelis-Menten

reaction network S + E
k1−→←−
k−1

C
k2−→ P + E a

correct translation produces the following system
of ODE’s for the concentrations s, e, c, p of the
resp. species S,E,C, P :

s′ = −k1es+ k−1c, e′ = −k1es+ (k−1 + k2)c,

c′ = k1es− (k−1 + k2)c, p′ = k2c.

In this last example the “most difficult” rates
formulation seem to be the rates e′ = de/dt
and c′ = dc/dt as they correspond to three
distinct reaction arrows: e.g. for c′ one incoming in
species C and two outgoing arrows from C. The
example also demonstrates one more practically
useful property of reaction networks: they are
more obvious than the resp. systems of ODE’s and
more easy to memorize.

The above examples illustrate the process of
translation of a chemical reaction networks into
systems of ordinary differential equations. They
also illustrate the derivation of an identity relation
connecting the state variables in the system of
ODE’s. We are going next to illustrate how the
induced dynamical systems can be further mathe-
matically analysed.

C. Growth-decay models based on reaction net-
works

Below we present three case studies of famil-
iar growth/decay functions generated by reaction
networks. The goal is to demonstrates the use
of the reaction networks methodology in several
aspects: i) parallel to the growth function other
useful functions appear (such as decay and wave-
like functions) that should be analysed; ii) the
original reaction networks offers meaningful inter-
pretations of the resulting model solutions; iii) in
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the process of modelling and numerical simulation
of particular data sets the modeler can modify the
basic reaction network by introducing meaningful
changes in (some of) the elementary reactions.
This latter possibility will be demonstrated in
Section 4, where we modify the classic Gompertz
model.

Case study 1. Consider the reaction (network):

S
k−→ P, k > 0, (8)

known in chemistry as a “first-order (FO)” reaction
and in nuclear physics as “one-step exponential
radioactive decay (1-SERD)”. This elementary re-
action is known under several additional names
due to its application to various processes such as
radioactive nuclear decay, fluid dynamics, enzyme
kinetics, marine ecology, physico-chemistry, etc.
By definition, a first-order reaction proceeds at a
rate that depends linearly on only one reactant
concentration. Indeed, reaction (8) induces the
following dynamical system for the change rates
of the concentrations s = s(t), p = p(t) of species
S, P :

s′ = −ks, p′ = ks, k > 0. (9)

Dynamical system (9) illustrates how the expres-

sion “product of masses (concentrations)” should
be interpreted in the definition of the mass action
principle when just one species appears on the left
hand-side of the reaction arrow. In such a situation
the “product” consists of only one state variable,
in the case of system (9)—concentration s.

System (9) implies the relation s′ + p′ = 0,
which after integration gives the identity (conser-
vation) relation

s+ p = c = const. (10)

Identity (10) says that at any time moment
variable p gains as muuch as s loses. In certain
real life situations this could be interpreted either
as: i) species P consumes species S as a food
resource, or: ii) compartment S migrates (flows,
transforms) into compartment X . Thus reaction
network (8) exhibits a specific mechanism for the

time evolution of the two species S and P . Species
P grows for the expense of species S, which
proportionally decays.

When equipped with initial conditions

s(0) = s0 > 0, p(0) = p0 ≥ 0, (11)

such that s0 + p0 = c, dynamical system (9) turns
into an initial value problem (IVP) (9)–(11) and
relation (10) becomes s+ p = s0 + p0 = c, hence
s = s0 + p0 − p = c− p.

Let us briefly analyse the IVP for ODEs (9)–
(11). Substituting s = c − p in equation p′ = ks
we obtain an autonomous ordinary differential
equation for the growth function p of the form:

p′ = k(c− p), (12)

with initial condition p(0) = p0.

The differential equations (9), (12) for functions
s and p under initial conditions (11) admit explicit
solutions as functions of t ≥ 0. The solution for s
is the familiar first-order exponential (radioactive)
decay:

s(t) = s0e
−kt. (13)

Function s has an asymptote s(∞) = 0, that is
concentration s vanishes at infinity. Species with
such a property are known as “limiting reagents”
in chemistry.

The solution for p can be obtained using identity
(10) when substituting s by c− p in (13):

p(t) = c− s = c− (c− p0)e−kt,
c = s0 + p0.

(14)

Function p solving (14) has an upper asymptote
p(∞) = c; it is known as exponential (also
saturation) growth model.

To obtain the absolute change rates of functions
s, p we can differentiate expressions (13), (14), or
insert the expression for s, p in the resp. differen-
tial equations. For the absolute decay rate of s we
obtain:

s′ = −ks0e−kt. (15)
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For the absolute growth rate of function p we have

p′ = (c− s)′ = ks0e
−kt

= k(c− p0)e−kt, c = s0 + p0.
(16)

The logarithmic (relative) decay rate rs of func-
tion s is constant, namely:

rs = (ln s)′ =
s′

s
=
−ks
s

= −k. (17)

The logarithmic (relative) growth rate rp of p can
be obtained as follows:

rp = (ln p)′ = p′

p = ks
c−s = k

(
c−p
p

)
= k

(
(c−p0)e−kt
c−(c−p0)e−kt

)
.

(18)

The second derivatives of functions s, p are:

s′′ = (−ks)′ = k2s > 0, (19)

resp.:

p′′ = k(c− p)′ = −kp′ = −k2(c− p0)e−kt < 0.
(20)

Relations s′′ > 0 and p′′ < 0 show that function
s is convex, whereas function p is concave for all
t ≥ 0.

Remarks. 1. In numerical simulation studies the
upper asymptote c of the growth function p, also
known as environmental capacity, is usually set to
one: p(∞) = c = 1. 2. Reaction (8) is the first
chain-link of a multi-step exponential radioactive
decay chain. In the field of radioactive decay and
some population studies one is only interested in
the decay process and ignores the evolution of
the growth species. In such situations one often
presents reaction (8) in the form S

k−→ Ø, k > 0.
The symbol Ø indicates that the reaction equation
for the growth species in dynamical system (9), in
our case equation p′ = ks, is suppressed.

Case study 2. This example is an extension of
the previous reaction network (8). An exponential
mechanism involving two sequential first order
steps in the transformation of three species S, P,Q
is given in the reaction network:

S
k1−→ P, P

k2−→ Q, (21)

where k1, k2 are positive rate parameters. (As
already mentioned, reaction network (21) is often
written in the concise non-canonical form S

k1−→
P

k2−→ Q,).
In nuclear physics reaction (21) is known as

rwo-step exponential radioactive decay (2-SERD).
Denoting the concentrations (densities, masses) of
species S, P,Q as functions of time t by s =
s(t), p = p(t), q = q(t) and their derivatives resp.
by s′, p′, q′, we arrive at the following dynamical
system:

s′ = −k1s,
p′ = k1s− k2p,
q′ = k2p.

(22)

Dynamical system (22) induces the following
conservation identity:

s+ p+ q = c = const. (23)

System (22) shows that s′ < 0 and q′ > 0, so
function s decays, whereas function q grows. It
can be proved that function p first increases until
a certain time moment t∗ and then decreases in
[t∗,∞). Such functions are called unimodal, their
graphs are wave-like; such functions will also be
considered as growth-decay functions. In chem-
istry, species like P , having zero concentration at
the beginning and at the end of the process, are
called “intermediate”.

A detailed discussion of reaction network (21)
and the solutions s, p, q to system (22) are given in
[5]. For the solution to general n-step exponential
radioactive decay system of differential equations
the reader may consult [4].

Case study 3. Let us discuss the familiar logis-
tic model as induced by a reaction network. The
logistic (Verhulst) growth function is originally
introduced in [28] as the solution of a differential
equation of the form x′ = kx(c−x). The solution
of this equation is a sigmoidal growth function
x = x(t), t ∈ R. One usually ignores the related
decay function which is implicitly involved in the
right-hand side of the differential equation as c−x.

Biomath 10 (2021), 2110023, http://dx.doi.org/10.11145/j.biomath.2021.10.023 Page 7 of 21

http://dx.doi.org/10.11145/j.biomath.2021.10.023


S M Markov, The Gompertz model revisited and modified using reaction networks: Mathematical ...

In contrast, the growth-decay presentation of the
logistic model based on reaction networks involves
simultaneously the two functions—growing and
decaying—as a single tuple (pair). The logistic
growth-decay pair is generated by the following
reaction network involving two reacting species
S,X:

S +X
k−→ 2X, (24)

wherein k is a positive rate parameter. As already
mentioned, the symbol 2X in (24) is an abbrevi-
ation for X +X .

Reaction network (24) shows that S is a de-
caying species, and X is a growing species that
catalyses the 1-SERD reaction S

k−→ X , hence,
X is an auto-catalyst species.

Under the assumption of mass action kinetics re-
action network (24) induces the following dynam-
ical system of two differential reaction equations
for the masses (concentrations, densities) s = s(t),
x = x(t) of species S,X , resp.:

s′ = −ksx, x′ = kxs, k > 0. (25)

Due to s′+x′ = 0, after integration, system (25)
induces the conservation identity relation:

s+ x = const = c. (26)

Assume initial value conditions

s(0) = s0 > 0, x(0) = x0 > 0, (27)

satisfying relation (26), so that

s0 + x0 = c. (28)

The initial value problem (25)–(27) implies the
following autonomous differential equations for
the growth function x and the decay function s:

x′ = kx(c− x), x(0) = x0,

s′ = −ks(c− s), s(0) = s0 = c− x0.
(29)

Differential equations (29) show that function x
is monotonically increasing and bounded in R+

with values the interval [x0, c), where the value
c = s0 +x0 is known as (environmental) carrying

capacity. More specifically, function x approaches
asymptotically c: x(∞) = x∞ = c. Function
s is monotonically decreases approaching zero:
s(∞) = s∞ = 0. As traditionally accepted in the
literature, we shall assume c = 1, thus relation
(26) becomes

s+ x = 1. (30)

Equations (29) posses explicit algebraic solu-
tions for t ∈ R. To find solution x we have to
solve:

x′

x(1− x)
= k,

which can be written as

x′

x
+

x′

1− x
= k. (31)

Integrating (31) we obtain

lnx− ln (1− x) = kt+ lnC,

or
x

1− x
= Cekt, C =

x0
1− x0

,

which can be presented as

x =
Cekt

1 + Cekt
=

x0
(1− x0)e−kt + x0

. (32)

For the boundary values of x at t = 0, t =∞,
expression (32) gives resp. x(0) = x0, x(∞) = 1,
as expected.

Using expression (32) for the growth function
x, the decay function s is readily obtained from
identity relation (30) as follows:

s = 1− x = (1−x0)e−kt

(1−x0)e−kt+x0

= s0e−kt

s0e−kt+(1−s0) = s0
s0+(1−s0)ekt .

(33)

Absolute and logarithmic (relative) change
rates.

To obtain the absolute rate of change of the
growing species X , also called absolute growth
rate (AGR), we can differentiate expression (32).

Biomath 10 (2021), 2110023, http://dx.doi.org/10.11145/j.biomath.2021.10.023 Page 8 of 21

http://dx.doi.org/10.11145/j.biomath.2021.10.023


S M Markov, The Gompertz model revisited and modified using reaction networks: Mathematical ...

Alternatively, we can substitute the obtained
expressions for s and x in the equation x′ = ksx
from (29) to obtain:

x′ = k s0e−kt

s0e−kt+(1−s0) ·
x0

(1−x0)e−kt+x0

= kx0(1−x0)e−kt

[(1−x0)e−kt+x0]
2 .

(34)

For the boundary values of function x′ we have
x′(0) = kx0s0 = kx0(1− x0), x′(∞) = 0.

The logarithmic change rate of function x,
known also as relative growth rate (RGR), is
defined as:

rx = (lnx)′ = d(lnx)/dt =
x′

x
. (35)

The RGR (35) of x can be obtained by substi-
tuting expression (33) for function s in differential
equation x′/x = ks to get:

rx =
x′

x
= ks =

k(1− x0)e−kt

(1− x0)e−kt + x0
. (36)

For the boundary values of function rx = x′/x
we have rx(0) = ks0 = k(1− x0), rx(∞) = 0.

To obtain the absolute change (decay) rate of
the species S, we can proceed as follows:

s′ = (1− x)′ = −x′

= − kx0(1−x0)e−kt

[(1−x0)e−kt+x0]
2 = − ks0(1−s0)e−kt

[s0e−kt+(1−s0)]2
.

(37)
The boundary values of function s′ are s′(0) =

−ks0(1− s0), s′(∞) = 0.

The logarithmic change rate (relative decay rate)
of species S is:

rs = (lnx)′ = d(lnx)/dt = s′

s

= −kx = −k x0

(1−x0)e−kt+x0

= − k(1−s0)
s0e−kt+(1−s0) .

(38)

For the boundary values of the relative decay
rate we have rs(0) = −ks0, rs(∞) = 0.

Inflection point of the growth function. To
look for inflection points of growth function x we
need an expression for function x′′ = x′′(t):

x′′ = (x′)′ = (kxs)′ = k(x′s+ s′x)

= k ((kxs)s+ (−kxs)x) = k2xs(s− x).
(39)

Expression (39) reduces the solution of equation
x′′(t∗) = 0 for an inflection point t∗ to equation

s(t∗) = x(t∗), (40)

showing that the values of the decay function s
and the growth function x at t∗ are identical.

The two equations (40): s(t∗) = x(t∗), and
s(t∗) + x(t∗) = 1, due to (30), imply s(t∗) =
x(t∗) = 1/2. Thus we have:

x(t∗) =
x0

(1− x0)e−kt∗ + x0
=

1

2
, (41)

equivalently

e−kt
∗

=
x0

1− x0
=
x0
s0
, (42)

or

t∗ = −1

k
ln

x0
1− x0

= ln(
x0

(1− x0)
)−

1

k . (43)

Expression (43) for t∗ shows that for t∗ > 0,
that is for the existence of inflection of the growth
function, it is necessary that the logarithm in (43)
is positive, that is

x0
(1− x0)

=
x0
s0

< 1,

that is x0 < s0, hence x0 < 1/2.

Consequently, when x0 ≥ 1/2 growth function
x has no inflection. In this case we have x′′(t) < 0
for all t ≥ 0, hence growth function x is concave
on R+.

In the special case x0 = s0 = 1/2, we obtain
the simple expressions:

x = 1/(1 + e−kt),

s = e−kt/(1 + e−kt) = 1/(1 + ekt).

Lag time (phase). Let us find an expression
for the slope of function x at the inflection point.
Using (34) and (42), we obtain

x′(t∗) = kx0(1−x0)e−kt
∗

[(1−x0)e−kt
∗+x0]

2

= kx0
2

(x0+x0)
2 = k

4 .
(44)
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Using (44), we can compute the lag time y,
which satisfies the relation

x(t∗)

y
= x′(t∗) =

k

4
,

hence y = 2/k.

Applications of the logistic and the one-step
exponential radioactive decay (1-SERD) mod-
els. The logistic model finds numerous applica-
tions. A popular application is the Lotka-Volterra
“prey-predator” model in population dynamics.
Denoting the prey species by S and the predator by
X , in its simplest form the Lotka-Volterra model
can be written as a reaction network [6]:

S + X
k−→ 2X,

S
ν−→ 2S, X

µ−→ Ø,
(45)

wherein k, ν, µ are positive rate parameters. Reac-
tion network (45) induces the dynamical system:

s′ = −ksx+ νs,

x′ = ksx− µx.
(46)

The logistic reaction S + X
k−→ 2X describes

the natural reproduction of the predator population.
Reaction X

µ−→ Ø represents the mortality of the
predator. Reaction S ν−→ 2S describes the natural
reproduction of the prey population.

The last two reactions vary in different versions
of the Lotka-Volterra (45), however, the logistic
reaction remains usually the same.

Another familiar application of the logistic
model is the epidemiological SI model, where S
stays for susceptible population and I for infective
one:

S + I
k−→ 2I. (47)

As we see, the basic epidemiological reaction
network (47) coincides with the logistic reaction
(24). Again, the epidemiological SI model (47) is
the backbone of various modifications, such as the
popular SIR model, where R means “removed”
(or “recovered”) population:

S + I
k−→ 2I,

I
ν−→ R,

(48)

where k > 0, ν > 0 are positive rate parameters.
As a further extension to (48), the “vital” SIR

model includes additionally newborn (B) and dead
(D) population compartments; in the simple case
of equal birth and death rates the reaction-network-
formulation of the vital SIR model reads:

S + I
k−→ 2I,

I
ν−→ R, D

µ−→ B,
(49)

where k > 0, ν > 0, µ > 0 are positive
rate parameters. The last reaction: D

µ−→ B
looks somewhat strange; however, it describes
adequately the situation in stable populations.

Models (45), (48), (49) demonstrate an useful
property of the reaction-network-formulation of
models. Namely, such a formulation allows a mod-
eller to construct easily various combinations of
existing familiar elementary models with already
established characteristics. We shall demonstrate
this property in Section 4 with a modification of
the Gompertz model implementing in it certain
features of the 1-SERD and the logistic models.

The two models considered next in the
present work—the classic and modified Gompertz
models—can serve as further examples for our
proposed methodology of treating growth-decay
models induced by reaction networks.

III. THE CLASSIC GOMPERTZ MODEL

REVISITED FROM THE PERSPECTIVE OF

REACTION NETWORKS THEORY

The Gompertz growth function has been ini-
tially designed for insurance purposes [9], and
later used more generally as a modelling growth
function in life sciences, like the logistic one [33].
It is usually presented as the explicit algebraic
solution x = x(t) to an autonomous differential
equation of the form: x′ = νx ln(1/x), ν > 0.
In the sequel we deduce the Gompertz function
x = x(t) starting from a reaction network us-
ing the terminology of CRNT. This allows us to
obtain and analyse the Gompertz growth function
together with the related decay function, giving
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us a general view on the Gompertzian growth-
decay process, as well as a meaningful physico-
chemical interpretation of the state variables and
rate parameters involved. The reaction network
approach explanes and unifies the two approaches.

Consider the following reaction network involv-
ing three species S,X,Q and two reactions:

S
ν−→ Q, S +X

k−→ 2X + S, (50)

wherein ν, k are positive rate parameters [5], [21].

Remarks. Reaction S + X
k−→ 2X + S of

network (50) says that both species X and S act
as catalysts. More specifically species X catalyses
the reaction S−→X + S, turning it into reaction:
S + X−→X + X + S. So, X is a growing
species autocatalysing itself. On the other hand,
species S is also a catalyst in this reaction, it
catalyses the reaction: X−→X + X . As result
in this reaction, species S does not change in
time; however, globally S changes (declines) as
result of the first-order exponential decay reaction
S−→Q. The latter reaction shows that S flows
(migrates) into species Q, that is, outside the
system of the two compartments of our interest
(S,X). As mentioned, species Q can be replaced
by the symbol Ø: S ν−→ Ø, meaning that we shall
ignore the time evolution of species Q.

Assuming homogeneity, denoting the mass-
related numerical characteristics (such as concen-
trations, masses, densities, etc.) of species S,X ,
resp., by lowercase letters s, x, reaction network
(50) induces the following system of two ODE’s
for the state variables s = s(t), x = x(t),
t ∈ R+ = [0,∞) [21]:

s′ = −νs, x′ = kxs, (51)

where ν > 0, k > 0 are rate parameters.

System (51) belongs to the class of biochemical
systems (S-systems), cf. [25], [27] [26], [29], [31].
From system (51) we see that function s satisfies
the uncoupled autonomous first order differential
equation: s′ = −νs, ν > 0. As mentioned in

Section 2, Case study 1., solution s = s(t) is given
by:

s(t) = s0e
−νt, t ∈ R+, (52)

for any initial value s(0) = s0 > 0. Hence,
function s is monotone decreasing, exponentially
approaching zero at t −→∞.

Proposition 1. Let functions s = s(t), x = x(t)
satisfy the system of ODE’s (51) for t ∈ R+. Then
the following identity relation holds true in R+:

γs+ lnx = lnx(∞), γ = k/ν. (53)

wherein x(∞) = x∞ = x(t)|t−→∞ is the ordinate
of the horizontal asymptote of growth function x.

Proof: Dynamical system (51) implies the
identity: x′ = kxs = −kx(s′/ν), which can be
written as:

γs′ + x′/x = 0, γ = k/ν. (54)

The integration of (54) yields γs + lnx =
const = c. This equation shows that, while func-
tion s decreases with time, function x increases,
however, the latter increase is bounded by the
constant c in the equation.

The constant c has an important geometric
meaning. Indeed, boundary values s(∞), x(∞)
satisfy identity (53), so that

γs(∞) + lnx(∞) = c, γ = k/ν. (55)

Using that for t −→ ∞ function s = s0e
−νt

approaches zero for any positive s0, ν, symbol-
ically s(∞) = s∞ = s|t−→∞ = 0, expression (52)
implies lnx(∞) = c. This proves identity (53).

The asymptote of the growth function. The
constant c = lnx(∞) from identity (53) deter-
mines the value of the horizontal asymptote x =
x(∞) of growth function x(t). As traditionally
done in the literature on Gompertz model, we fix
the value for the asymptote as x(∞) = x|t−→∞ =
1. This choice of the asymptote leads to the value
of c in expression (53) as

c = lnx(∞) = ln 1 = 0. (56)
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Fixing c = 0, identity (53) becomes:

γs+ lnx = 0, γ = k/ν. (57)

In what follows we shall consider the solution to
(51) as an ordered 2-tuple (pair) (s, x), satisfying
identity (57) in R+. Under the choice c = 0
relation (57) guarantees that the growth solution
x approaches the asymptote x = 1 at t −→∞.

Initial value problem. We shall next consider
the system of ODE’s (51) as initial value problem
involving an initial tuple (s(0), x(0)) = (s0, x0)
for the solutions. Identity (57) is satisfied by
solution (s, x) for all t ≥ 0 including t = 0 and
t = ∞. Hence, when considering system (51) as
an initial value problem, we shall naturally assume
that the initial tuple (s0, x0) satisfies identity (57),
i.e.:

γs0 + lnx0 = 0, γ = k/ν. (58)

Relation (58) restricts the range of x0 in the
interval x0 ∈ (0, 1). Indeed, if x0 ≥ 1, then
(58) implies s0 ≤ 0, which makes no practical
sense. So, the choice c = 0 scales the total
evolution of the (monotonically increasing) growth
function x in the range x ∈ [x0, 1). In contrast, the
monotonically decreasing decay function s ranges
in the interval (0, s0], thereby the value s0 can be
greater than one, s0 > 1.

Identity (57) implies the following practically
useful relations:

ks+ ν lnx = 0, (59)

or, equivalently, using notation δ = 1/γ = ν/k:

s = −δ lnx = lnx−δ,

x = e−γs,
(60)

in particular. at t = 0;

s0 = −δ lnx0 = lnx0
−δ,

x0 = e−γs0 ,
(61)

to be used in the calculations to follow. In particu-
lar, for s0 = 1 we need to have, according to (61):
x0 = e−γ .

We now formulate the following:

Proposition 2. Let initial value pair (s0, x0) sat-
isfy

0 < x0 < 1, s0 = −δ lnx0, δ = ν/k, (62)

then:
1) solution (s, x) to initial value problem (51)–

(62) satisfies in R+ = [0,∞) relation (57): γs +
lnx = 0;

2) solution x to system (51) satisfies the au-
tonomous differential equation:

x′ = νx(− lnx); (63)

3) solution x to initial value problem (51)–(62),
can be presented in the form

x = x0
e−νt . (64)

Proof:
1) Using initial values (62) the integration of

relation (54) under the choice c = 0 yields (57)
together with x∞ = 1.

2) Substituting (59): ks = −ν lnx, in differen-
tial equation x′ = kxs yields:

x′ = kxs = x(ks) = x(−ν lnx)

= νx(− lnx),= νx ln(1/x),
(65)

which is the familiar Gompertz differential equa-
tion (63).

3) Using expressions (60), (52), solution x =
x(t) can be obtained from relation (57), as follows:

lnx = −γs = −γ(s0e
−νt)

= (−γs0)e−νt = (lnx0)e
−νt

= lnx0
e−νt ,

(66)

resp. for x we obtain (64). This proves the propo-
sition.

Using part 3 of Proposition 2 we can present
the solution tuple (s, x) to initial value problem
(51)–(62) in the form

(s, x) =
(
s0e
−νt, x0

e−νt
)
. (67)
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Change rates. To obtain an explicit algebraic
expression for the absolute growth rate of species
X we write:

x′ = kxs = (ks)x = (−ν lnx)x

= −νlnx0 e
−νt exp(lnx0 e

−νt),
(68)

which is positive due to lnx0 < 0.

For the boundary values of function x′ we have:

x′(0) = kx0s0 = x0(−ν lnx0) > 0,

x′(∞) = kx(∞)s(∞) = 0.

For the logarithmic (relative) growth rate rx =
rx(t) of Gompertz growth function x we obtain:

rx = (lnx)′ = x′/x

= −ν lnx0 e
−νt = lnx0

−νe−νt .
(69)

For the boundary values of rx = x′/x we have:

rx(0) = −ν lnx0 e
0 = ln(1/x0)

ν ,

rx(∞) = −ν lnx∞ e−∞ = 0.
(70)

To obtain the absolute change (decay) rate of
species S we write

s′ = −νs = −νs0e−νt. (71)

The boundary values of function s′ are s′(0) =
−νs0, s′(∞) = 0.

The logarithmic (relative) change rate rs =
rs(t) of species S is constant (and so are the
boundary values of rs):

rs =
s′

s
= −ν. (72)

Inflection points. Consider next the existence
of a possible inflection point t∗ for the Gompertz
growth function x.

For the second derivative x′′ = x′′(t) of growth
function x we have:

x′′ = (x′)′ = (kxs)′ = k(x′s+ s′x)

= k ((kxs)s+ (−νs)x)

= kxs(ks− ν) = k2xs(s− ν/k).

(73)

Expression (73) reduces the solution of equation
x′′(t∗) = 0 for t∗ to equation

s(t∗) = ν/k = δ, (74)

showing that the value of the decay function s at
the inflection point t∗ is equal to the rate parameter
ratio δ = ν/k.

Using (52), equation (74) reads: s(t∗) =
s0e
−νt∗ = δ, hence

e−νt
∗

= δ/s0 = 1/(γs0), (75)

thus we obtain

t∗ = (1/ν) ln(γs0) = ln(γs0)
1

ν . (76)

Expressed via x0, the inflection time moment t∗

can be obtained when substituting γs0 in (76) by
ln(1/x0):

t∗ = ln(ln
1

x0
)

1

ν . (77)

To compute the value x(t∗) we can use relations
(74):

x(t∗) = e−γs(t
∗) = e−γδ = e−1 = 1/e. (78)

Expression (76) implies: in order to have t∗ >
0, that is to exist an inflection point for growth
function x on R+, it is necessary relation 1 <
γs0 to take place. In terms of x0 this reads (using
γs0 = − lnx0): 1 < ln(1/x0), equivalently:

x0 < 1/e. (79)

The condition for existence of inflection point
s(t∗) = δ < s0 is equivalent to 0 < x0 < 1/e =
x(t∗).

Lag time (phase). To compute the so-called lag
time interval of growth function x for the classic
Gompertz model, we need the slope of function
x at the inflection point, that is x′(t∗). Denote
the intersection of the tangent line to the graph
of x through the inflection point t∗, x(t∗) with the
abscissa and the asymptote x = x∞ = 1, resp. by
(ta, 0) and (tb, 1). The length of interval [ta, t

∗] on
the abscissa is the lag time, whereas the length of
the interval [t∗, tb] is the log time.
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Substituting x(t∗) = 1/e, resp. lnx′(t∗) = −1,
in expression x′ = ksx = −νx lnx, we obtain

x′(t∗) = ν/e. (80)

The lag time L = t∗ − ta is equal to the ratio

L = x(t∗)/x′(t∗) = 1/ν, (81)

observing the triangle below its vertex point
(t∗, x(t∗)).

We summarize the results obtained on the ex-
pressions for solution rates, inflection points and
lag/log times in the following

Proposition 3. 1. Solution tuple (s, x) to Gom-
pertz initial value problem (51)–(62) is character-
ized by the following properties:

1a. Solution (s, x) is given by (67):

(s, x) =
(
s0e
−νt, x0

e−νt
)
,

thereby γs = − lnx, in particular: γs0 = − lnx0,
γ = k/ν = 1/δ.

The boundary values of Gompertz growth/decay
functions s, x are:
s(0) = lnx0

−δ, s(∞) = 0;
x(0) = e−γs0 , x(∞) = 1.

1b. The absolute change rates of species S,X
are given by expressions (71), (68):

s′ = −νs0e−νt;

x′ = −ν lnx0 e
−νt x0

e−νt .

The boundary values of functions s′, x′, are:
s′(0) = −νs0, s′(∞) = 0;
x′(0) = −νx0 lnx0 > 0, x′(∞) = 0.

1c. The logarithmic change rates of functions
s, x are given by (72), (69):

rs = (ln s)′ = s′

s = −ν,

rx = (lnx)′ = x′/x = lnx0
−νe−νt .

For the boundary values of the logarithmic
change rates of Gompertz growth/decay functions
s, x we have:

rs(0) = rs(∞) = −ν;

rx(0) = ln(1/x0)
ν , rx(∞) == 0.

2a. The inflection point t∗ of Gompertz growth
function x is given by (77):

t∗ = ln

(
ln

1

x0

) 1

ν

.

The values of the growth/decay functions at
inflection point t∗ are, cf. (74), (78):

s(t∗) = δ = ν/k, x(t∗) = e−1.

For the existence of inflection point in [0,∞),
the necessary and sufficient condition is s0 > δ,
resp.: 0 < x0 < 1/e.

2b. The lag time L is given by the ratio (81):

L = x(t∗)/x′(t∗) = 1/ν.

Remarks on the logistic and Gompertz mod-
els. 1) The inflection point of the growing species
X in the Gompertz model is lower than those in
the logistic model, 1/e < 1/2. As a consequence,
the Gompertzian growth curve has a shorter lag
time, resp. longer lag (ageing, mortality) time,
than the logistic growth curve. In both models
the growing species X reproduces by a doubling
mechanism, being constrained by species S which
declines with time until vanishing. The inhibiting
decay mechanism of species S is different in the
two growth-decay models. In the logistic case
species S is consumed by X as nutritional (food)
resource (S charges X); thereby X is the solely
species using S. In contrast, in the Gompertz
model species S serves as a catalyst for X; thereby
S charges some “other” species as well. The
catalytic vs. the resource-charging role of species
S turns out to be decisive in the distinction of the
two models. 2) Both the logistic and the Gompertz
models make use of just one rate parameter, which
is not so obvious in the Gompertz model. The
parameter k in the Gompertz model participates
only in the identity relation and its role there
is to determine the value of s0, resp. the limit
value (one) of the upper asymptote of the growth
function. Without loss of generality the parameter
k can be set to one, se e.g. [32]. The decisive role
of the rate parameter ν is noticed by many authors,
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using for ν names such as “relative maturity rate”,
“mortality rate”, etc.

IV. A NEW MODEL BASED ON A MODIFIED

(HYBRID) GOMPERTZ-LIKE REACTION

NETWORK

In this section we propose and mathematically
analyse a growth-decay model induced by a reac-
tion network that is close to Gompertz network
(50) but borrows some features of the one-step
exponential decay 1-SERD model.

Consider the following reaction network involv-
ing two species S and X:

S
ν−→ X, S +X

k−→ 2X + S, (82)

wherein ν, k are positive rate parameters.

Denoting the mass-related quantitative (numer-
ical) characteristics of species S,X , resp. by s, x,
under the assumption of mass action kinetics, reac-
tion network (82) induces the following dynamical
system of two reaction equations:

s′ = −νs, x′ = kxs+ νs, (83)

where ν, k are positive rate parameters.

Proposition 4. If functions s = s(t), x = x(t)
satisfy the system of ODE’s (83) on R+ = [0,∞),
then the following identity relation holds true on
R+:

γs+ ln(x+ 1/γ) = ln(x∞ + 1/γ), (84)

wherein γ = k/ν and x∞ = x(∞) = x(t)|t−→∞.

Proof: System (83) implies the relation:

s′

ν
+

x′

kx+ ν
= 0,

or
γs′ +

x′

x+ ν/k
= 0.

After integration, the above relation leads to the
following identity

γs+ ln(x+ 1/γ) = const = c, γ = k/ν. (85)

As in the classic Gompertz model, solution s
to system (83) satisfies the autonomous ordinary

differential equation s′ = −νs, with solution (13)
(or (52)). Hence function s is monotone decreas-
ing, approaching zero: s(∞) = s∞ = 0. Passing to
limit t −→ ∞ in identity (85), using s(∞) = 0,
we obtain const = c = ln(x(∞) + 1/γ), hence
(84).

Identity (84) suggests that while function s
monotonically decays, function x monotonically
grows remaining bounded from above by x(∞),
so the line x = x(∞) is a horizontal asymptote
for the growth function x = x(t).

We have the freedom to choose the boundary
value x(∞) for x at t =∞; so, as done tradition-
ally, we set

x∞ = x(∞) = 1.

Using boundary values s∞ = 0, x∞ = 1, we
obtain relation (84) in the form

γs+ ln(x+ 1/γ) = ln(1 + 1/γ),

or, using notation δ == 1/γ = ν/k:

γs+ ln(x+ δ) = ln(1 + δ),

equivalently

γs+ ln
x+ δ

1 + δ
= 0. (86)

Remark. Introducing the “deviated” growth
function xδ:

xδ =
x+ δ

1 + δ
,

in relation (86), we obtain γs+ lnxδ = 0, which
formally matches the corresponding identity (57)
for the classic Gompertz model: γs + lnx = 0.
This similarity takes place for a number of results
to follow. In fact it is possible to rewrite most
of the classical Gompertz results from Section 3
replacing function x by xδ, then performing a
reverse transformation: x = xδ(1 + δ)− δ.

From relation (86) we can obtain expressions
for s in terms of x and for x in terms of s. Here
are given some practically useful relations:

s = δ ln
1 + δ

x+ δ
= ln

(
x+ δ

1 + δ

)−δ
, (87)
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γs = ln

(
1 + δ

x+ δ

)
, (88)

eγs =
1 + δ

x+ δ
, (89)

x = (1 + δ)e−γs − δ. (90)

In the special case t = 0 we have the following
relations for the initial pair (s0, x0), assuring the
limit condition x∞ = 1:

s0 = ln

(
1 + δ

x0 + δ

)δ
= ln

(
x0 + δ

1 + δ

)−δ
; (91)

γs0 = ln

(
1 + δ

x0 + δ

)
; (92)

eγs0 =
1 + δ

x0 + δ
; (93)

x0 = (1 + δ)e−γs0 − δ. (94)

Substituting s from (87) in the differential equa-
tion for growth function x in dynamical system
(83), leads to the following autonomous differen-
tial equation:

x′ = kxs+ νs = k(x+ δ)s

= k(x+ δ) ln
(

1+δ
x+δ

)δ
.

(95)

To deduce an explicit solution for growth func-
tion x, we first use relation (89) to write:

1 + δ

x+ δ
= eγs = eγs0e

−νt
= (eγs0)e

−νt
. (96)

We then substitute the term eγs0 in (96), using
the expression (93), to get

1 + δ

x+ δ
= (eγs0)e

−νt
=

(
1 + δ

x0 + δ

)e−νt
. (97)

Relation (97) implies an explicit expression for
growth function x = x(t):

x(t) = (1 + δ)

(
x0 + δ

1 + δ

)e−νt
− δ. (98)

Based on the above considerations, we formu-
late the following

Proposition 5. Let initial value tuple (s0, x0) be
such that

0 < x0 < 1, s0 = ln
(

1+δ
x0+δ

)δ
> 0,

δ = 1/γ = ν/k,
(99)

then
i) solution (s, x) to initial value problem (83)–

(99) satisfy on R+ = [0,∞) relation (84); in
particular relations (87), (90):

s = ln

(
x+ δ

1 + δ

)−δ
;

x = (1 + δ)e−γs − δ.

ii) the growth function x satisfies the au-
tonomous ordinary differential equation (95);

x′ = k(x+ δ) ln

(
1 + δ

x+ δ

)δ
;

iii) the solution x to equation (95) with initial
value x(0) = x0, resp. system (83)–(99) can be
presented in the explicit form (98):

x(t) = (1 + δ)

(
x0 + δ

1 + δ

)e−νt
− δ.

Change rates. To obtain an explicit algebraic
expression for the absolute growth rate of species
X we use expressions (95) and (98) to obtain:

x′ = k(x+ δ) ln
(

1+δ
x+δ

)δ
= k(1 + δ)

(
x0+δ
1+δ

)e−νt
ln
(

1+δ
x0+δ

)e−νt
.

(100)

For the boundary values of function x′ we have:

x′(0) = kx0s0 = x0(−ν lnx0) > 0

x′(∞) = kx(∞)s(∞) = 0.
(101)
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For the relative (logarithmic) growth rate rx =
rx(t) of growth function x we obtain:

rx = (lnx)′ = x′/x

= −ν lnx0 e
−νt = lnx0

−νe−νt .
(102)

For the boundary values of rx = x′/x we have:

rx(0) = −ν lnx0 e
0 = ln(1/x0)

ν ,

rx(∞) = −ν lnx∞ e−∞ = 0.
(103)

The expressions for the absolute and logarithmic
change (decay) rates of decay species S are the
same as those for the classic Gompertz model, cf.
(71), (72).

Inflection points. To calculate the inflection
points of the growth function x (if any) we need
to obtain an expression for the second derivative
x′′ of x:

x′′ = (x′)′ = (ksx+ νs)′ = (ksx)′ + (νs)′

= k(s′x+ sx′) + νs′

= k(−νsx+ s(ksx+ νs))− ν2s
= ks(−νx+ ksx+ νs− ν2/k)

= ks (ks(x+ ν/k)− ν(x+ ν/k))

= ks(x+ δ)(ks− ν)

= k2s(x+ δ)(s− δ).
(104)

According to expression (104) equation x′′(t) =
0 is equivalent to equation s(t)− δ = 0, or s(t) =
δ. Let time instant t∗ solve the latter equations,
then

s0 > s(t∗) = δ (105)

is a necessary condition for the existence of an
inflection point. Indeed, if (105): s0 > δ, then
the monotone decreasing function s(t) equals to
δ at time instant t∗: s(t∗) = δ. In other words, for
s0 > δ then there exists time moment t∗, such that
the pair t∗, x(t∗) is an inflection point for growth
function x, such that s(t∗) = δ, resp. x′′(t∗) = 0.

Expression (104) reduces the solution of equa-
tion x′′(t∗) = 0 for t∗ to equation

s(t∗) = ν/k = δ, (106)

saying that the value of the decay function s
at inflection time instant t∗ is equal to the rate
parameter ratio δ = ν/k.

Using (52), we have s(t∗) = s0e
−νt∗ = δ, hence

e−νt
∗

= δ/s0 = 1/(γs0), (107)

thus we obtain

t∗ = (1/ν) ln(γs0) = ln(γs0)
1

ν . (108)

Let us now “translate” formulae (105), (108) in
terms of growth function x. Expressed via x0, the
inflection time instant (108) can be obtained when
substituting γs0 in (108) by ln((1 + δ)/(x0 + δ)):

t∗ = ln(ln
1 + δ

x0 + δ
)

1

ν . (109)

Knowing the s-value s(t∗) = δ, we compute the
x-value x(t∗) using expression (90):

x(t∗) = (1 + δ)e−γs(t
∗) − δ

= (1 + δ)e−γδ − δ
= (1 + δ)e−1 − δ
= (1− (e− 1)δ)/e,

thus finally we have:

x(t∗) =
1− (e− 1)δ

e
. (110)

From (110) we obtain a necessary and sufficient
condition for the existence of inflection:

1

e
> x(t∗) =

1− (e− 1)δ

e
> x0 > 0. (111)

Relation (111) implies a necessary condition for
the existence of inflection: x(t∗) > 0, namely:

δ <
1

e− 1
= e ≈ 0.58197671, (112)

resp.
ν < e k. (113)

Using (111) we obtain a second necessary
condition for the existence of inflection: 1/e >
x(t∗) > x0, namely:

1− (e− 1)δ > ex0, (114)
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resp.

δ <
1− ex0
e− 1

= e(1− ex0), (115)

resp.
ν < e(1− ex0)k. (116)

Practically, the necessary and sufficient condi-
tion (111) for the existence of inflection point can
be tested by verifying the two necessary conditions
(112), (115), resp. (113), (116).

Inequality (112) implies the following restric-
tion on the initial value x0 for existence of inflec-
tion point:

x0 < 1/e. (117)

Remarks. i) Restriction (117) says that for
the existence of inflection initial value x0 should
be below the inflection value for the classical
Gompertz model, i.e. 1/e.

ii) Note that in the classic Gompertz case the
growth function may have no inflection only when
x0 > 1/e. In contrast, the hybrid Gompertz growth
function may have no inflection for any initial
values x0 ∈ (0, 1), even for initial values satisfying
(117).

iii) Depending on the values of the rate param-
eters ν, k, the inflection point can be arbitrarily
close to the classic Gompertz value 1/e, as well
as to initial value x0 no matter how small x0 is. In
the latter case the inflection point can be arbitrarily
close to zero (providing x0 itself is sufficiently
small). This possibility makes the shape of the
graph of x extremely flexible, which makes a
considerable difference with the classic Gompertz
case. Under suitable choice of the initial conditions
and rate parameters the hybrid model can be close
to the one-step exponential decal model.

iv) Inequality (112) implies

δ <
1− ex0
e− 1

<
1

e− 1
. (118)

The “rough” inequality (118) can be used when
x0 is close to 0.

Lag time (lag phase). To compute the lag time
of growth function x for the hybrid Gompertz
model, we need the value of slope of function

x at inflection time moment t∗, that is x′(t∗).
Denote the intersection of the tangent line through
the inflection point (t∗, x(t∗)) with the abscissa
and the asymptote x = x∞, resp. by (ta, 0) and
(tb, 1). The width (length) of interval [ta, t

∗] is by
definition the lag time.

To compute the slope x′(x∗) of growth function
x at inflection time moment t∗, we substitute the
value: x∗ = x(t∗) from (110), resp. x∗ + δ =
(1 + δ)/e, in the expression for the slope x′ to
obtain:

x′(t∗) = k(x∗ + δ) ln
(

1+δ
x∗+δ

)δ
= kδ

e (1− δ) ln
(
e1+δ1+δ

)
= ν

e (1− δ).

(119)

As in the classical Gompertz case, we define the
lag time (phase) L as the length of the segment on
the abscissa between inflection moment t∗ and the
intersection point of the abscissa and the tangent
with slope x′(t∗). Hence, for the lag time L we
obtain:

L =
x∗

x′(t∗)
=

1

ν

(
1− eδ

1 + δ

)
. (120)

We summarize the obtained results as follows.

Proposition 6. 1. Solution pair (s, x) to initial
value hybrid Gompertz problem (83), (s(0) =
s0, x(0) = x0), is characterized by the following
properties:

1a. The absolute change rate of species X is
given by: (100):

x′ = k(1 + δ)

(
x0 + δ

1 + δ

)e−νt
ln

(
1 + δ

x0 + δ

)e−νt
.

1b. For the boundary values of function x′ we
have expression (101):

x′(0) = kx0s0 = x0(−ν lnx0) > 0

x′(∞) = kx(∞)s(∞) = 0.

1c. The logarithmic change rate rx = rx(t) of
the hybrid Gompertz growth function x is given by
expression (102):

rx = (lnx)′ = x′/x = −ν lnx0 e
−νt.
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For the boundary values of the logarithmic
change rates of the hybrid Gompertz growth func-
tion x we have (103):

rx(0) = −ν lnx0 e
0 = ln(1/x0)

ν ,

rx(∞) = −ν lnx∞ e−∞ = 0.
(121)

2a. The inflection time moment t∗ of the hybrid
Gompertz growth function x is given by (109):

t∗ = ln(ln
1 + δ

x0 + δ
)

1

ν .

The values of the growth/decay functions at
inflection point t∗ are (74): s(t∗) = δ = ν/k,
resp. (110):

x(t∗) =
1− (e− 1)δ

e
.

The slope of the tangent line through the inflec-
tion point is given by (119):

x′(t∗) =
ν

e
(1− δ).

For the existence of inflection point in [0,∞),
the necessary and sufficient condition is (111):

1

e
> x(t∗) =

1− (e− 1)δ

e
> x0 > 0.

2b. The lag time L is given by the ratio (120):

L =
x∗

x′(t∗)
=

1

ν

(
1− eδ

1 + δ

)
.

Finally, the following proposition holds true:

Proposition 7. The hybrid Gompertz function (98)
is a generalization of the classical Gompertz func-
tion (64).

Proof: The classical Gompertz function (64)
is obtained from the hybrid Gompertz function
(98) for the special case k −→ ∞, resp. δ =
ν/k −→ 0, while keeping the rate parameter ν
fixed.

V. CONCLUDING REMARKS

Biological growth functions are usually pre-
sented in the mathematical literature by means
of their explicit expressions or as solutions to
differential equations [11]–[18]. However, biolog-
ical growth models are usually related to de-
cay processes/functions, which becomes especially
transparent when the models are based on reaction
equations. Using chemical reaction network the-
ory, one can easily observe close relations between
various growth/decay processes, as well as be-
tween existing growth-decay models, e.g. classes
of biochemical systems [25]–[27], [29]–[31].

In the present work we propose an elemen-
tary introduction in the reaction network approach
based on mass action kinetics. To this end we dis-
cuss in some detail several familiar examples, such
as the one- and two-step exponential (radioactive)
decay, the logistic and the Gompertz models.

We focus on the simultaneous analysis of the
growth and the decay functions using the iden-
tity relation between the two functions naturally
induced by the reaction equations.

The power of the reaction network approach is
fully revealed in Section 3 when applied to the
analysis of the classical Gompertz model. There
we propose a revision of the model based on the
reaction network inducing the original Gompertz
model, which we call “Gompertz reaction net-
work” in honour of the author of the well-known
growth model and his seminal paper [9].

Our final goal in this work is the modification
of the Gompertz reaction network in a natural
way, using fully the dynamical features of the
one-step (first-order) exponential decay reaction.
In this way we obtain a hybrid of the one-step
exponential and the classic Gompertz model in
a natural way, performing a small modification
in the Gompertz reaction network. The growth
function of the obtained new hybrid Gompertz-
like model possesses one additional degree of free-
dom (one more rate parameter) and is thus more
flexible when applied to modelling and numeri-
cal simulation of measurement and experimental
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data sets. More specifically, the ordinate (height)
of the inflection point of the hybrid model can
largely vary, whereas the resp. height of the classic
Gompertz model is fixed (at 1/e). The presented
generalization of the Gompertz model possesses
some common features with the Richards model in
direction of improved flexibility when simulating
measurement data sets [24], [34].
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