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Abstract—A DNA replicon is modeled by a special
type of 2-component link, called a DNA-link, in
which two circles form a double helix around a triv-
ial center core curve. The DNA replication process is
semi-conservative, which is interpreted as a splitting
process of the DNA-link. To split this non-trivial
link, the linking number must become zero, and thus
an unknotting operation is necessary. Some families
of enzymes act as the unknotting operation. The
present paper considers two topological problems;
one is to know how the linking number is reduced
and the other, how the enzymes are allocated at
appropriate places. For the first problem, we suggest
a reduction system of the linking number of a DNA-
link. From this system, the number of repetitions of
the procedure is obtained and this could be reduced
when the DNA is previously relaxed by type I
topoisomerases. For the second problem, we propose
a possible conformation of the DNA-link in which
the unknotting operation does not change the knot
type of the core curve but decreases the writhe. This
conformation could allocate type II topoisomerases
to appropriate places. These models suggest that the
combination of type I and type II topoisomerases
efficiently reduces the linking number and it is
possible to allocate enzymes by the conformation
of DNA strands.

Keywords-DNA; Replication; Link; Topological
model; Replicon
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I. INTRODUCTION

A DNA molecule has a double helical struc-
ture [24] along a curve that causes several topo-
logical problems when it is unwound [4], [1], [23].
During the transcription or replication process,
tangled (catenated) strands occur. As the replica-
tion forks advance, the axial rotation introduces
positive supercoils ahead of each of the replication
forks, while the negatively supercoiled daughter
DNAs are introduced behind the forks [7], [16],
[18], [23]. It is known that topoisomerases are
responsible for reducing stress and supercoils [1],
[2], [16], [17], [22], [23]. Rybenkov et. al. [16]
revealed the ability of the enzyme topoisomerase
type II to simplify DNA topology. It has been
pointed out that there are several topological prob-
lems caused by the double helical structure of
DNA itself (see [23]). In this paper, we focus on
the unwinding process of the double-strand DNA
introducing supercoils and their reduction during
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DNA replication.
In knot theory, a link is a set of embedded

disjoint circles in 3-dimensional space [12], and
its projected image into a plane is called a link
diagram (Section IV-A) [12]. It is known that for
any link diagram, there is a finite sequence of
crossing changes (unknotting operations), which
deforms the link into separated trivial circles called
a trivial link. However, this does not mean that
we can specify the set of crossings that should be
changed to obtain a trivial link (Example IV.1).
Mathematically, if we are given a piece of global
information such as a link diagram in a plane, it is
possible to find such a set, but it is not known how
to find such a set from only local information.

Since each replicon is fixed at substructure of
the nucleus, topologically, it is modeled by a
special 2-component link called a DNA-link (see
Section IV) and also, the semi-conservative repli-
cation is interpreted in terms of the DNA-link; that
is, the DNA-link is deformed into a disjoint union
of trivial circles (Lemma IV.2). An oriented link
is characterized as an algebraic invariant called
the linking number (see Section IV-C for the
definition) which is obtained as the sum of the
total number of full-twists and the writhe of the
core curve (Lemma IV.3). To split the DNA-link
is equivalent to having the linking number zero
(Lemma IV.4). Therefore, the following problem
arises.

P1: How is the linking number of the DNA-link
reduced?

To solve problem P1, we propose a procedure
to reduce the linking number of DNA-link. This
procedure considers the situation that only type II
topoisomerase is used for the reduction. Using this
procedure, we will obtain a formula for the number
of repetitions of the procedure (Proposition V.2),
by this formula, it is at least 11.5. This observation
suggests that a relaxation of the double strand
by type I topoisomerase should accelerate the
reduction of the linking number. The procedure
above focuses only on the numeral calculations,
not the location of unknotting operations. It should
be noted that a random choice of crossings to apply

the unknotting operations does not always reduce
the linking number (see Example 5). Thus the next
problem arises.
P2: How are the enzymes allocated to the right

positions of crossings that need to be changed
to resolve a tangled DNA?

To answer P2, we propose a topological con-
formation of DNA in which the chromatin fibre
forms a zig-zag shaped (juxtaposed) formation
(see Figure 8). This model suggests that a special
local conformation enforces the enzyme to locate
the right crossing.

This paper is organized as such: Section II is a
brief description of DNA replication. Section III
briefly describes topoisomerases type I and II.
Section IV introduces DNA-links and unknotting
operations. Section V introduces a possible pro-
cedure to reduce the linking number and esti-
mate the number of repetitions of the procedure.
Section VI introduces a topological model for
unknotting operations. Section VII discusses the
previously obtained results. Section VIII states the
conclusion.

II. DNA REPLICATION

The DNA replication is done along the loop-
shaped DNA called a replicon [1], [4], [20], the
ends of which are anchored at a substructure of the
nucleus called a nuclear matrix (NM) [14], [15].
A group of replicons forms a replicon domain or
simply domain [20]. Each replicon has a specific
site called a replication origin or simply origin to
unwind (relax) and to separate the double strand
into a pair of single strands. We sometimes write
the double strand DNA as a ds-DNA, and the single
strand DNA as an ss-DNA. The separation occurs
at two branching points called replication forks or
simply forks. It is known that there are several
models of forks whether the forks move or not [4],
[15]. In this paper, ‘ahead of a fork’ means one
side of the fork in which the ds-DNA has not yet
separated into ss-DNAs.

As synthesizing proceeds, it is either continuous
along a single strand, called a leading strand
or discontinuous along with the other, called a
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lagging strand. Along the lagging strand, short
synthesized segments (100 bp to 200 bp) called
Okazaki fragments [13] are constructed. The sep-
arated single strands of their parent DNA are
preserved in its daughter DNAs. This is said to
be semi-conservative [8].

A nucleosome is an essential element of the
chromatin and it is formed with the double strand
DNA (ds-DNA) wrapping around the histone oc-
tamer [1], [20]. The DNA is stored in the nu-
cleus through a compactification involving nucleo-
somes [3], [5], [6]. In the interphase of the eukary-
otic cell cycle, the DNA exists in the format with
nucleosomes called chromatin fibre [3], [5], [11],
[6]. Although a variety of models of organizations
for chromatin fibre has been suggested [3], [5], [6],
[11], [21], the exact conformation of the chromatin
fibre has not yet been settled.

III. TOPOISOMERASES

There are two types of topoisomerases, type I
and type II, and they have several subfamilies such
as types IA and IB [1], [2]. Type I is to release
the rotational stress of single strands while type II
releases the stress of the double strands [1], [7],
[16], [17], [23]. In this section, we briefly describe
type IA, type IB, and type II. The topoisomerase
type IA acts on a ds-DNA to cut one single strand
of it and lets the other single strand pass through
the gap and reseal the gap. This reduces one full-
twist of the ds-DNA. The topoisomerase type IB
acts on a ds-DNA to cut one single strand so that
it creates free ends and let one of the ends rotate
around the other complete strand multiple times
and reseal the gap at the end. This reduces multiple
full-twists of the ds-DNA. The topoisomerase II
acts on a pair of ds-DNAs to capture the pair of
ds-DNA segments and cut one of them to make
a gap, then lets the other ds-DNA pass through
the gap and reseal it. Finally, those ds-DNAs are
released (see Figure 1).

It is observed in [17] that topoisomerase type
II is more efficient than topoisomerase type I to
untangle DNA strands. Note that when the type
II topoisomerase acts on the pair of ds-DNA seg-
ments, these two segments must be close enough

so that the enzyme can capture both segments (see
Figure 1-(a)).

IV. DNA-LINKS

A. Links

A link is a disjoint union of circles embedded
in R3. Each of the circles is called a component.
If the number of components is n, then the link is
called an n-component link. A 1-component link
is called a knot. If a link L can be deformed into a
link L′ without any cut or intersecting in R3, then
L and L′ are in the same link type and L and L′

are said to be equivalent and they have the same
type (see [12] for details). If a knot bounds a disc
in 3-space, then it is said to be trivial. If a link
L is equivalent to a disjoint union of trivial knots,
then the link is said to be trivial.

The image of a link L under the orthogonal
projection from R3 to R2 by omitting the last
coordinate, is a diagram with finite number of
crossings every which is formed by two short
segments; one is higher and the other is lower
with respect to the last coordinate. This is called
crossing information. The image of L under the
orthogonal projection with the crossing informa-
tion is called a link diagram denoted by DL. If
every component of a link L has an orientation,
(oriented), L is called an oriented link.

On a link diagram, there are three elementary
moves Ω1, Ω2 and Ω3, called Reidemeister moves
(see Figure 2).

Lemma IV.1 ([12]). Two diagrams of equivalent
links are deformed into each other by a finite
sequence of Reidemeister moves.

Proof: A proof can be found in [12].

B. Topological semi-conservative scheme

A ds-DNA can be viewed as the boundary
components {S1, S2} of a long thin twisted strip
with the trivial centre circle γ. We assume here,
the centre curve γ is oriented and the components
are parallelly oriented along γ. We write this as
L = L(S1, S2; γ), where S1 and S2 represent the
single strands of the DNA. To define a topological

Biomath 11 (2022), 2203288, https://doi.org/10.55630/j.biomath.2022.03.288 Page 3 of 12

https://doi.org/10.55630/j.biomath.2022.03.288


Abdul Adheem Mohamad, Tsukasa Yashiro, Topological Process of Splitting DNA-Links

(a)

(b)

(c)

(d)

Fig. 1. (a) Topoisomerase II captures the pair of ds-DNA strands. (b) It cuts one of those strands to make a gap. (c) The
other strand passes through the gap. (d) Reseals the gap and releases them.

Ω1 Ω2 Ω3

Fig. 2. Two diagrams of equivalent links are moved to each other by a finite sequence of three moves Ω1, Ω2 and Ω3.

model of a replicon, we assume that the model
satisfies the following conditions.
A1. The core curve γ is unknotted (trivial) and

oriented.
A2. the link L(S1, S2; γ) is an oriented 2-

component link in which S1 and S2 are
parallely oriented along the orientation of
γ and they form a positive double helical
structure around γ.

We call L(S1, S2; γ) satisfying all the assumptions
above, a DNA-link.

Let L0 = L0(S1, S2; γ0) be a DNA-link. After
the DNA is replicated and distributed into two
daughter cells, there are two identical DNA-links
representing daughter DNAs,

L1 = L1(S
′
1, S̄1, γ1), (1)

L2 = L2(S
′
2, S̄2, γ2), (2)

where S′1 and S′2 are single strands (templates) in-
herited from L0. S̄1 and S̄2 represent counterparts
of S1 and S2 respectively and γ1 and γ2 are centre
curves of the strips for L1 and L2 respectively.

The semi-conservative scheme is interpreted in
terms of DNA-link L(S1, S2; γ):

Lemma IV.2 ([10]). The semi-conservative
scheme is interpreted as such: the DNA-link
L0(S1, S2; γ) is deformed into the split 2-
component link {S′1, S′2}, where S′i is obtained
from Si (i = 1, 2) by applying unknotting oper-
ations to L0.

C. Linking number

Let DL be a link diagram of an oriented link L.
At a crossing point of DL, there are two types of
crossings formed by short subarcs of DL; positive
and negative crossings (see Figure 4).

Let L(S1, S2) be an oriented link with link
components S1 and S2. Let C(DL) be the set of
crossings of the diagram DL. The linking number
is defined by

Lk(S1, S2) =
1

2

∑
c∈C(DL)

ε(c)d(c)

where c is a crossing of the link diagram, ε(c) is
the sign ±1 according to the diagrams in Figure 4,
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L(S1, S2; γ) S′

1 S′

2

Fig. 3. The semi-conservative scheme is topologically interpreted as splitting the DNA-link.

+1 −1

K2 K1
K2K1

Fig. 4. Crossings with signs

and also

d(c) =


1 if the crossing c consists of

distinct components,
0 otherwise.

Let K be a knot and let DK be a knot diagram.
The total sum of signs w(DK):

w(DK) =
∑

c∈C(DK)

ε(c)

is called a writhe of K.

Note IV.1. The linking number does not depend
on the choice of the diagram of L (see [12]). If a
2-component link is split, then the linking number
between the components is of course zero but the
converse is not always true (see [12]). The writhe
depends on the choice of diagram (see [12]).

White proved in [25] the following formula of
the linking number Lk(S1, S2):

Lemma IV.3 (White [25]). For a DNA modeled by
the DNA-link L(S1, S2; γ), the following formula
of the linking number holds:

Lk(S1, S2) = Tw(S1, S2) + Wr(γ), (3)

where Tw(S1, S2) is the number of full-twists of
the curves {S1, S2} along the centre curve γ and
Wr(γ) is the writhe of γ.

Proof: A proof can be found in [25].
The following is easily verified (see [9]).

Corollary IV.1. Suppose that a DNA-link
L(S1, S2; γ) has a trivial γ. Then Lk(S1, S2) = 0
if and only if L(S1, S2; γ) is split.

Therefore, the splitting process of the DNA-link
is equivalent to that making the linking number
zero.

Lemma IV.4. The semi-conservative scheme is
interpreted to make the linking number of the
DNA-link zero.

Proof: Combining Lemma IV.2 and Corol-
lary IV.1, the result follows.

We understand that the contribution to the
writhe from the conformation of DNA of a degree
higher than the nucleosomes should be considered.
However, as this paper focuses on an individual
replicon, and for sake of simplicity, we ignore the
contribution from the conformation of a degree
higher than the nucleosomes.

D. Unknotting operations

There is an operation to exchange the over arc
and the under arc, called an unknotting operation
(see Figure 5-(a)).
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Lemma IV.5 (Proposition 4.4.1 [12]). For any
knot diagram of a non-trivial knot, it is deformed
into a knot diagram of a trivial knot by applying
a finite number of unknotting operations.

Proof: A proof of this lemma can be found
in [12].

Note that this lemma gives a guarantee to mod-
ify every knot into a trivial knot by applying a
finite number of unknotting operations. However,
it should be emphasized that Lemma IV.5 does
not say which crossings should be changed to
obtain the trivial knot. It should be noted that a
random choice of a sequence of the deformation
does not work. For instance, as we can see in
the diagram in Figure 5-(b), it is a trivial knot
but even one crossing change creates a non-trivial
knot. Conversely, if a non-trivial knot is given,
if we choose a wrong sequence of crossings to
exchange, then we cannot reach a trivial knot. This
observation suggests that the conformation of a
supercoil must have a certain format and size to
allocate the enzymes to the right place.

Example IV.1. The diagram (b) in Figure 5 is
a diagram of a trivial knot γ with loops and
some crossings. If we change the crossing at the
top, then we obtain a non-trivial knot (the figure-
eight knot). On the other hand, if we change two
crossings at the bottom (Figure 5(c)), then it keeps
the triviality and decreases the writhe by 4.

As we can see in the proof of Proposition 4.4.1
in [12], if a link diagram is given, then there is a
way to specify the set of crossings to be changed
to obtain a diagram of a trivial link. However,
we do not know how to detect such a set of
crossings from only local information such as a
set of crossings.

V. A REDUCTION PROCESS

We make the following assumption.
A3 The number of unwound full twists is equal

to the number of crossings in the positive
supercoil ahead of the fork.

The semi-conservative scheme implies that the
DNA-link must be deformed into a trivial link. By

Corollary IV.1, to split a DNA-link, the linking
number must be zero. We define the following
procedure to reduce the linking number consisting
of the following steps.

S1 Unwind n full twists at a specified point of
the DNA-link to create a pair of forks.

S2 Create positive n crossings (supercoil) in
front of each fork.

S3 Apply the unknotting operations on the n
crossings of the supercoil to obtain −n
crossings.

S4 If the linking number is not zero, then go
back to S1.

To determine the number n, it is natural that n
is proportional to the initial twisting number Tw0.
So,

n = cTw0, 0 < c < 1 (4)

We start the process with the initial linking number
Lk0:

Lk0 = Tw0 + Wr0, (5)

where Wr0 is the initial writhe of γ. Following
the steps from S1 to S4, we obtain the following
sequence of values Twk and Wrk, k = 0, 1, . . ..

Tw1 = Tw0 − cTw0 = Tw0(1− c) (6)

Wr1 = Wr0 − cTw0 (7)

Lk1 = Tw1 + Wr1 (8)

= Tw0(1− c) + Wr0 − cTw0 (9)

= Lk0 − 2cTw0 (10)

If the procedure ends at this stage; that is, Lk1 = 0,
then the number n is half of Lk0. This is almost
half of Tw0. However, this is not possible with-
out changing Tw0 because, to form a crossing
in which two segments of double strand DNA
become very close, a DNA segment with a certain
length must necessarily be bent. This implies that
the number of unwound twists becomes much
larger than the possible number of crossings in-
troduced ahead of the fork.
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Wr = 2Wr = 2 Wr = 0 Wr = −2

Unknotting Operation(a)

(c)(b)

Fig. 5. We cannot change the randomly selected crossings to obtain a required knot type. (a) The unknotting operation. (b)
The unknotting operation at the top crossing leads to a non-trivial knot. (c) The uknotting operations at the bottom crossings
keep decreasing the writhe and keep the triviality of γ.

A. The number of repetitions

Next, we consider how many times we have to
repeat the procedure.

We assume that the number of crossings un-
wound in each cycle is the same as the number
of nucleosomes existing ahead of the fork. This
assumption will be justified in Section VI. Then
we have the identity:

n = cTw0 =
Tw0

l
, (11)

where l is the number of full twists within the
DNA around a nucleosome and its linker DNA.
Note that if the nucleosomes are distributed uni-
formly along a replicon, then Tw0

l is the number
of nucleosomes in the replicon. We denote this by
τ0.

Although, a recent study in [19] shows that the
writhe contributed to each nucleosome is −1.26,
for sake of generality, here we use α > 0 as the
contribution of writhe for each nucleosome. Thus
the initial writhe for the replicon is

Wr0 = −ατ0 = −αcTw0 (12)

Proposition V.1. Let L be a DNA-link with the
initial twists Tw0 and the initial writhe Wr0. If
the reduction process is applied to L k times, then
the linking number Lkk is given by the following.

Lkk = Tw0

[
2 (1− c)k − (1 + αc)

]
, (13)

where α is the writhe contribution to each nucle-
osome, and c is the rate of unwond full twists to
Tw0.

Proof: After applying the unknotting opera-
tions to the chromatin fibre at the first stage, the
number of full-twists Tw1 is given by

Tw1 = Tw0 − τ0
= Tw0 − cTw0

= Tw0 (1− c)

The number of nucleosomes τ1 at the second stage
is given by

τ1 = cTw1 = cTw0 (1− c)

After applying the unknotting operations to the
chromatin fibre at the second stage,

Tw2 = Tw1 − τ1
= Tw0 (1− c)− cTw0 (1− c)
= Tw0 (1− c)2

At the kth stage,

Twk = Tw0 (1− c)k , (14)

whrere k is the number of repetition of the defor-
mation cycles.

On the other hand, the initial writhe Wr0 is
given by the following.

Wr0 = −ατ0 = −αcTw0
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For further stages,

Wr1 = Wr0 − τ0
= −αcTw0 − cTw0

= cTw0(−α− 1) (15)

Wr2 = Wr1 − τ1
= cTw0(−α− 1)− τ1
= cTw0 (−α− 1− (1− c)) (16)

Wr3 = cTw0

(
−α− 1− (1− c)− (1− c)2

)
(17)

...

Wrk = cTw0 (−α− 1− (1− c)− · · ·

− (1− c)k−1
)

(18)

Applying the formula of a geometric series, we
obtain the following.

Wrk = −cTw0

(
α+

1− (1− c)k

1− (1− c)

)
= −Tw0 (1 + αc) + Tw0 (1− c)k (19)

Therefore, the sum of (14) and (19) is the linking
number after applying the procedure k times.

Lkk = Twk + Wrk

= 2Tw0 (1− c)k − Tw0 (1 + αc)

= Tw0

[
2 (1− c)k − (1 + αc)

]
(20)

Proposition V.2. Suppose that the reduction sys-
tem is applied to a DNA-link multiple times to
obtain the linking number zero. The number of the
repetitions k is given by

k =
ln
(
1+αc
2

)
ln (1− c)

(21)

Proof: Suppose Lkk = 0, we obtain

Tw0

[
2 (1− c)k − (1 + αc)

]
= 0

2 (1− c)k = (1 + αc)

k ln (1− c) = ln

(
1 + αc

2

)
k =

ln
(
1+αc
2

)
ln (1− c)

(22)

Since the number α is a constant, k is deter-
mined by the parameter c, which is given by Tw0.

We consider the nucleosome in which the DNA
wraps around the histone core as a unit of the
bending. The diameter of the histone core is about
6.4 nm, and the diameter of DNA is 2 nm [1], [20].
The DNA wraps around a histone core about 1.8
times [1], [20] and each nucleosome is associated
with a linker DNA. The total length is 197 bp.
Therefore, we obtain:

l =
197

10.5
≈ 18.8 (23)

The number of unwound full twists depends on
the parameter l; that represents the relaxation of
the ds-DNA. A recent study in [19] shows that the
writhe contributed to each nucleosome is −1.26.
Substituting (23) and α = 1.26 to the formula (21)
of k, we obtain k ≈ 11.5.

This implies that if we apply the reduction pro-
cess on the core curve of the DNA-link, then we
need to repeat the process 11.5 times. The linking
number Lkk in (20) is a function of c = 1/l which
is determined by the relaxation of the double
strand DNA done by type I topoisomerase. In fact,
from the formula (21) with α = 1.26, if a DNA-
link is relaxed so that l = 3.26, then k = 1.

VI. TOPOLOGICAL MODEL

A. ε-crossings

Let γ be an oriented knot. Let x, y ∈ γ be two
distinct points, and let ε > 0 be some number.

Let B(x; r) denote an open 3-ball in R3, cen-
tered at the point x and with radius r. Suppose
that there is a point z ∈ R3 \ γ such that
x, y ∈ B(z; ε/2). If γ ∩ B(z; ε/2) is a pair of
line segments e1 and e2 such that x ∈ e1 and
y ∈ e2, then we say e1 and e2 form an ε-crossing.
The ε-crossing has a sign + or − according to the
orientation (see left two diagrams in Figure 6). We
do not admit the exact parallel cases (the middle
two diagrams in Figure 6) as the ε-crossings. A
loop is a simple sub-arc of a knot, from an ε-
crossing to itself (see Figure 6-(c)).
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−

B(z; ε)
z

α

+

(a) ε-crossings (b)

+ −

(c) loops (d)

E

Fig. 6. Singed ε-crossings and loops.

Suppose that the boundary of a disc E, ∂E is
the union of portion of α \ B(z; ε) and a simple
arc on ∂B(z; ε) (see Figure 6-(d)), then we say
the loop α based at an ε-crossing bounds a disc
E.

Note that we have the following fact.

Lemma VI.1. Let γ be an oriented knot. Let α be
a loop of γ based at an ε-crossing. If α bounds
an embedded disc E in R3, and the interior of
E does not meet γ, then applying an unknotting
operation at the ε-crossing does not change the
knot type of γ.

Proof: Without loss of generality, we can
assume the ε-crossing of the oriented loop is pos-
itive. Since the loop α with the ε-crossing bounds
a disc E in R3, the loop can be deformed into the
diagram shown in the left diagram of Figure 6-
(c). Then we can apply the reversed Reidemeister
move I to remove the ε-crossing and apply the
Reidemeister move I to create a loop based at
the negative ε-crossing (see the right diagram of
Figure 6-(c)). The resulting diagram is equivalent
to that obtained by a crossing change at the ε-
crossing. Since the move does not change the knot
type (see [12] for details), the unknotting operation
at the ε-crossing does not change the knot type.

B. A modeling policy

As Example IV.1 demonstrates, it is not easy
to deform a non-trivial knot into a trivial knot.
Therefore, it is natural to assume that the center
curve γ remains trivial during the replication. We
assume the following.

A4 The imaginary core curve γ keeps its trivi-
ality during the replication process.

Note that although the core curve itself is trivial,
it may have a certain complexity.

C. Elementary twists

In order to solve the problem P2, a special type
of conformation of DNA needs to be introduced
so that the conformation allocates the enzymes to
the suitable positions.

Suppose a short segment of DNA is U-shaped
(see Figure 7 (a)) and one end is fixed while
the other side is rotated around the axial curve.
This rotational stress will introduce a loop, based
at ε-crossing (Figure 7 (b)) so that the writhe
is increased by 1. Then apply the unknotting
operation at the crossing (Figure 7). Here the
writhe is decreased by −1. Then the segment
returns to the initial position. During the move,
the segment is fully twisted twice around the axis.
This deformation will be called an elementary
twist.

The chromatin fibre has a sequence of nucleo-
somes [20]. We suppose that the chromatine fibre
has a zig-zag shape (juxtapositioned) shown as the
diagram in Figure 8 (see also [17]). Then near a
nucleosome, it has a U-shape region. We can apply
the elementary twist around each nucleosome so
that the obtained ε-crossings near nucleosomes
is changed (see Figure 8 (c) and (d)). In this
conformation, as each ε-crossing is close enough
to the histone core, we can assume the following.

Supposition 1. The loop based at the ε-crossing
near the histone core bounds an embedded disc
E in R3 and the interior of E does not meet the
DNA strand.

This means that the histone core plays the
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(a)

(b)

(c)

operation
Unknotting

Fig. 7. (a) The U -shaped string is twisted around the axial curve. (b) A positive loop is created. (c) Applying unknotting
operations to the crossing, the negative crossing is obtained.

(a)

(c)

(b)

Topo II

(d)

Fig. 8. Schematic diagrams showing the unknotting operation done by Topo II at crossings near the nucleosomes.

E

Fig. 9. The loop around the histone octamer with a ε-crossing close enough to the histone octamer is supposed to bound an
embedded disc E.
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role of a disc E in Lemma VI.1. Therefore, by
Lemma VI.1, the unknotting operation at the ε-
crossing does not change the knot type of γ. We
call this process an unknotting process of a DNA-
link (replicon).

The process follows the steps below.
S1 Unwinding n full-twists at the replication

fork will introduce a positive supercoil with n
crossings ahead of the fork (see Figure 8c)).

S2 When the number of the crossings reaches the
maximum, activate the type II topoisomerases
to the crossings.

S3 Continue the move to return the conformation
to the original shape.

This unknotting process keeps γ trivial. As dis-
cussed in Section V, the number of repetitions of
the deformation above depends on the numbers l
and α. Using this process in the reduction process
explained in Section V, the assumption that the
number of crossings unwound in each cycle is the
same as the number of nucleosomes existing ahead
of the fork, is justified.

VII. DISCUSSION

To solve problem P1, a schematic procedure
of reducing the linking number of DNA is con-
sidered. The procedure gives the formula (13)
in Proposition V.1 to obtain the reduced linking
number. On the other hand, Proposition V.2 gives
the formula (21), and it implies that if only the
unknotting operations, namely, the type II topoi-
somerase, is used, the number of repetitions is
about 11.5. Although it is difficult to say whether
this number is large or small, the formula (21)
depends on two parameters α and c = 1/l, which
may vary under the relaxation of the double strand
DNA [1]. This suggests that if the ds-DNA is
relaxed in prior, then the number of repetitions
could be much smaller. For instance, the authors
proposed in [10] the reduction of Tw with type
I topoisomerase, in which Tw is reduced to 20 %
of the initial twists by the end of the first stage.
This gives l′ = l/5; that is, c′ = 5c. Assuming the
same contribution of writhe from the nucleosome,
α = 1.26, substituting c′ and α = 1.26, to (21),

the number of repetitions is about 1.3. Combining
type I and II topoisomerases to simplify DNA has
been pointed out in researches [2], [7], [22], [26]
from different viewpoints.

Next, in order to solve P2, we proposed a
model of a mechanism to allocate type II topoi-
somerases to suitable crossings. As we have seen
in Example IV.1, we cannot randomly choose the
set of crossings to apply unknotting operations
to deform a non-trivial knot into a trivial knot.
Therefore, it is natural to assume that the model
does not change the triviality of the core curve
of a DNA-link. The model has zig-zag shaped
(juxtaposed) nucleosomes in which the axial ro-
tation introduces a trivial loop with a crossing
near each of the nucleosomes. For this crossing,
the unknotting operation reduces the writhe, but it
does not change the triviality of the core curve.
Also, this guarantees that the core curve is always
trivial during the replication process.

VIII. CONCLUSION

From the observation of the proposed procedure,
we obtained 11.5 as the necessary number of rep-
etitions to make the DNA-link split. This number
is parametrized by two parameters, α and c = 1/l,
and c will be changed by relaxation of double
strand DNA by type I topoisomerase. Therefore,
a combination of two types of topoisomerases
efficiently reduce the linking number. As we have
seen in Example IV.1, specifying the location of
topoisomerase II is an essential issue to make
the linking number zero. Our model provides the
mechanism that allocates enzymes to the right
position and the action of type II topoisomerase
does not change the knot type of the core curve.
From the arguments about the procedure and the
model, we can conclude that the linking number
is efficiently reduced when two types of topoiso-
merases are combined, and it is possible to allocate
type II topoisomerase to the appropriate places by
the conformation of DNA.

In this research, we have not considered the
reduction process of the negative supercoils behind
the forks. This should be done in further study.
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