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Abstract: In the present work, we propose a new inte-
grated mathematical model of neuromuscular activation.
It combines the Izhikevich model of neural activity with
the Williams model of calcium activity inside the muscle
cell and a Hill-type model for the resultant muscle force.
The coupling is done using a heuristic approach. The aim
is to construct a simple model, which has biophysically
meaningful parameters and is applicable to the study
of neuromuscular diseases. Then, we study numerically
the properties of the model solutions with respect to
the main parameters. To that end, we study the effect
of various firing patterns of the motoneuron, variations
in the properties of the end-plate as well as the rates,
corresponding to the calcium dynamics inside the muscle
cell.
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I. INTRODUCTION

The neuromuscular system combines the nervous
system and muscles to work together and permit move-
ment. Neuromuscular diseases are diseases that affect
the normal functioning of the muscles and/or their
control from the nervous system. Such diseases are
caused by autoimmune or genetic disorders as well
as contact with environmental chemical substances or
other influences [1]. Therefore, to model such a dis-
ease one should apply a detailed integrated approach—

modelling of the nervous system, the resulting muscle
activity and the connection between them. The process
of muscle contraction can be modelled as the result
of four consecutive processes—propagation of nerve
impulses, neurotransmitter release and transport in the
neuromuscular junction, the resulting biochemical re-
actions in the muscle, and the generated contraction.
The mechanisms behind neuromuscular activation are
discussed in more detail in a previous work of the
authors [2], so we refer to that article for more infor-
mation. We shall, nevertheless, state the main steps of
the activation process:

1) An impulse travels through the axon of the motor
neuron to its terminal;

2) At the axon terminal there are voltage-gated cal-
cium channels, which open due to the action po-
tential and calcium ions diffuse into the terminal;

3) The calcium presence in the axon terminal opens
the so-called synaptic vesicles to release a neuro-
transmitter, called acetylcholine (ACh);

4) The released ACh diffuses, crosses the synaptic
cleft between the motoneuron and muscle cell and
binds to ACh receptors on the motor end-plate of
the muscle fiber, which contains cation channels.
The cation channels open and sodium ions enter
the muscle fiber, causing potassium ions to exit
the muscle fiber;
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5) The input flux of the sodium ions changes the
membrane potential, causing depolarization or
the so-called end-plate potential (EPP). Once the
membrane potential reaches a threshold value, an
action potential propagates along the sarcolemma;

6) Inside the muscle cell, the sarcoplasmic reticulum
(SR), which is a network of tubules that regulates
calcium concentration, then releases calcium so
that it can bind to contractile filaments (actin
and myosin filaments) in the muscle fiber. The
binding of calcium to the contractile filaments
(CFs) allows them to bind to each other and
further leads to muscle cell contraction.

We are interested here in constructing a mathematical
model, which meets the following goals:

• Relative simplicity, which allows for a mathemat-
ical and/or computational analysis,

• Sufficient flexibility, which allows for simulating
various realistic scenarios of neuromuscular activ-
ity,

• Ability to study the effect of various malfunctions
of the neuromuscular system. To that end, one
must have model parameters that have biophysical
meaning and, furthermore, be directly connected
to the effect of some known problems of the
neuromuscular system.

To the best of our knowledge, such models in the
scientific literature (if any) are very few. The work
of Meredith [3] is a step in the direction we aim,
but it covers only “half” of the complete process. It
lacks the ability of modelling realistic nerve impulses
as well as having a realistic description of the ACh
transport in the neuromuscular junction. It focuses on
what happens after the electrical and chemical signals
have reached the end-plate of the muscle cell. Thus,
our aim is to step on some ideas, proposed in [3], and
extend them in such a way that a more complete (though
sufficiently simplified) model of the process is obtained
as a step towards a successful mathematical modelling
of various neuromuscular diseases and accomplishing
the goals, formulated above. To that end, basically, we
shall consider an implementation of the following more
general scheme, see Figure 1.

This general scheme allows for many possible
choices for the modelling of each individual stage as
well as the coupling between the consecutive stages.
Therefore, we believe that a hierarchy of mathematical
models needs to be constructed by choosing appropriate
models for each stage and coupling them in a suitable
way. Thus, one would indeed obtain a hierarchy of

Fig. 1: General scheme of the process of neuromuscular
activation.

mathematical models with various levels of detailed-
ness, which would hopefully shed light on various
aspects of this very complex, yet, highly important
process and become useful for the study of various
neuromuscular diseases.

Of course, when one undertakes such a goal, one
must start simple. This is the reason for the require-
ments that we posed above for the model we aim to
construct in this article. It should serve as a foundation
for this hierarchy of mathematical models. Various parts
of it should be later gradually improved, complicated,
made more detailed. But, now, we would like to es-
tablish the general setting and a general approach for
obtaining some useful results.

We shall combine the following models:
• Izhikevich model for the action potential [4, 5],
• A model, proposed by Williams [6], of the calcium

dynamics inside the muscle cell,
• Hill-type model for the muscle contraction [7, 8].

The coupling between the nerve impulse and the result-
ing calcium activity is made using a heuristic approach,
following [3].

The model, which we consider, expands the results
in [3], due to the simulation of realistic nerve impulses
and, furthermore, shows a general approach, which can
be extended for taking into account more aspects of the
process.

The present work is structured as follows. In Sec-
tion II, the mathematical model is formulated. Then,
its solutions for various combinations of the model
parameters are studied numerically in Section III. In
particular, in Section III-A different firing patterns are
simulated with the Izhikevich model and their effect
on the model solutions is studied. In Section III-B,
the properties of the end-plate are varied, and in Sec-
tion III-C, the effect of the reaction rates of calcium
binding and unbinding in the muscle cell are studied.
Section IV summarizes the main findings of the article.
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II. MATHEMATICAL MODEL

Let us formulate here the Izhikevich model of neural
impulse [4, 5]:

dv

dt
= 0.04v2 + 5v + 140− u+ I,

du

dt
= a(bv − u),

(1)

with the auxiliary rule that if v = 30mV holds, then,
v ← vreset, u ← u + ureset, i.e. the variables v and
u are reset after each spike (or, equivalently, when
v gets to 30mV) to values vreset and u + ureset,
correspondingly. Here, v means the transmembrane
voltage and u is a recovery variable. The parameters
a, b, ureset, vreset are positive constants and I is the
input current. The result of the latter model is coupled
with the following model of calcium dynamics inside
the muscle cell and a Hill-type model for the muscle
activity. The model was proposed by Williams [6] and
used in a similar context to ours in [3]. It can be
reduced to the following system of 3 ODEs after proper
rescaling of the participating quantities (see [6], [3]).

dc

dt
= (k4fb − k3c)(1− fb) + k1(C − c− fb)

+ k2c(C − S − c− fb),
dfb
dt

= −(k4fb − k3c)(1− fb),

dPs

dt
= k5µs

P0λ(Ps)fb − Ps

µs + k5P0λ(Ps)αfb
,

α =

{
αp, vc ≥ 0,

αm, vc < 0.

(2)

In the latter model, c is the nondimensionalised con-
centration of free calcium ions inside the muscle cell,
fb is the nondimensionalised concentration of bound
CF sites. The concentrations are scaled with the total
amount of CF sites per unit volume. Ps is the resultant
muscle force, k1, k2, k3, k4 are the rates of release of
calcium ions from the SR, binding of calcium ions to
the SR, binding of calcium ions to the CFs, and release
of calcium ions from the CFs, correspondingly; C and
S are the total nondimensionalised amounts of calcium
and SR sites per unit volume. Further, if ls0, lc0 are the
resting lengths of the spring and contractive elements
(in the sense of a Hill model [8]), correspondingly, L
is the muscle length, µs is the stiffness coefficient, and
vc = dPs/dt is the velocity of the contractile element
in Hill’s model, then

λ(Ps) = 1 +A

(
L− ls0 −

Ps

µs
− lc0

)2

.

Models (1) and (2) are coupled via the coefficient k1.
Following [3], the latter is chosen to be

k1 =

M∑
i=1

k10 exp

(
−|t− ti|

τq(i)

)
,

where ti are the times of the peaks of the neural stimuli,
i.e. the peaks in the solution of (1), M is their number,
τq(i) is the decay time parameter for the i-th impulse
(we shall further assume that τq(i) ≡ τq = const), and
k10 is the maximum resultant end-plate potential. In
other words, we stimulate the muscle cell with expo-
nential stimuli at a rate, consistent with the simulated
neural activity. The parameter k2 is taken to be

k2 =

k20, if
∣∣∣∣dk1dt

∣∣∣∣ < tol,

0, otherwise,

where k20 is a positive parameter. In this way, we
manage to couple the activity of the muscle cell with
a realistic description of a neural impulse, which is the
main improvement on the model in [3].

III. PARAMETRIC ANALYSIS

We are interested in studying how varying the dif-
ferent parameters affects the model solutions. It is
important to understand those mechanisms in order to
associate such simulations with various malfunctions
of the neuromuscular system. In particular, we study
consecutively the effects of:

• applying various neural stimuli,
• varying the properties of the end-plate of the

muscle cell,
• varying the properties of the calcium dynamics

inside the muscle cell.
Those are the main factors, which can be accounted for
by the presented mathematical model.

Let us note that the asymptotic behaviour of the
model solutions of (2) in two important limiting cases
was studied in a previous work of the authors [2]. For
convenience of the reader, we state one of the main
propositions in [2] here.

Proposition. Consider the case k1 = const > 0, k2 =
0 in (2). The conditions for the existence and stability
of the equilibrium points, corresponding to the first two
equations,

E1 = (C − 1, 1) and E2 =

(
Ck4

k3 + k4
,
Ck3

k3 + k4

)
in terms of C are given in the table below:
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C 0 < C < 1 1 < C <
k3 + k4

k3
C >

k3 + k4

k3
E1 @ saddle stable
E2 stable stable @

A. Result of various neural stimuli

We conduct numerical experiments with various val-
ues of the model parameters in (1), corresponding
to different firing patterns of the nerve cell and we
simulate the corresponding generated muscle forces,
according to the formulated model.

For the next experiments, we shall fix the following
parameter values, following [3] and [4]:

A = −2.23, b = 0.2, C = 2, I = 10, k3 = 65,

k4 = 45, k5 = 100, k10 = 9.6/M, k20 = 5.9,

L = 2.7, lc0 = 2.6, ls0 = 0.234, M = 20,

µs = 600, P0 = 60.86, S = 6, tol = 5, τq = 0.01.

The ODE systems are solved using the classical fourth
order Runge–Kutta method [9].

First, we study the effect of changing the firing
pattern of the motoneuron. We consider the following
possibilities:

• Regular spiking (RS)—we choose the parameter
values in (1) to be a = 0.02, ureset = 8, vreset =
−65;

• Intrinsically bursting (IB)—we choose parameter
values a = 0.02, ureset = 4, vreset = −55;

• Chattering (CH)—we choose parameter values
a = 0.02, ureset = 2, vreset = −50;

• Fast spiking (FS)—we choose parameter values
a = 0.1, ureset = 2, vreset = −65.

Solving equations (1) and (2) numerically, we obtain the
results in Figures 2–3. Changing the firing pattern has
several well-noticeable effects on the calcium dynamics
inside the muscle cell. First, the higher frequency leads
to a quicker increase and higher values of the calcium
levels inside the muscle cell and, correspondingly, in
the bound calcium sites in the CFs and the resultant
muscle force.

Furthermore, if one has local bursting activity (as in
the CH pattern or the beginning of the IB pattern), this
leads to a quick local increase in the calcium levels
(the higher the frequency, the steeper the increase) and
corresponding quicker increase in fb and Ps.

Lower frequency or long time intervals without stim-
ulus also lead to higher fluctuations in the calcium
levels. One thing that is interesting to note is that the
amplitudes of the fluctuations in c are greater than
those of fb, and the fluctuations in Ps have the least
amplitudes. In some sense, those fluctuations get less

noticeable in each consecutive process. Furthermore,
if the frequency is high enough (like in the case of
fast spiking pattern) the increase in fb and Ps is
(almost) monotonic, even though some oscillations can
be observed in c.

In order to better understand those results, let us
also consider what happens with the coefficients k1 and
k2 as functions of time for the various neural stimuli
(see the results, depicted in Figure 4). That is, we
study the rates of binding and unbinding of calcium
to the SR. As one can see from the first graph, the
different firing patterns lead to substantial differences
in the rates of calcium release from the SR. (Locally)
higher rates of neural spiking lead to higher rates of
calcium release, k1, e.g. CH and FS patterns as well
as the beginning of the IB pattern. The amplitude is
highest for the CH pattern, because it has the highest
(locally) bursting activity. It is also important to note
that higher amplitudes, e.g., in the CH pattern lead to
higher fluctuation in the values of k1 (which, as we have
seen, lead further to higher fluctuation in c and fb).
On the other hand, the FS activity leads to relatively
low fluctuations in k1 and, thus, in calcium levels
inside the muscle cell. Furthermore, the rate of binding
of calcium to the SR is positive only for very short
moments of time for the FS pattern (see Figure 4b).
The time intervals of binding are much larger, when
one considers the other firing patterns.

B. Changes in the end-plate potential

Let us now study numerically the effect of varying
some of the parameters in the model, which could
possibly be associated with a neuromuscular disease,
affecting the end-plate of the muscle cell. In particular,
we are interested in the effect of decreasing the maxi-
mum EPP (associated with such illnesses as Myasthenia
Gravis) as well as variations in τq , associated with
various states of the acetylcholine receptors inside the
neuromuscular junction.

The maximum EPP can be reduced due to vari-
ous diseases of the neuromuscular junction. We shall
thus study here the effect of decreasing the param-
eter k10. We depict the results from the numerical
experiments for regular spiking in Figure 5a. We
compute the values of c and fb, corresponding to
k10 = 1, 5, 10, 20, 40, 80, 100. The last values seem
to be unrealistically large, but we nevertheless choose
them for illustrative purposes, so that we can also show
the asymptotic behaviour of the model solutions. As
one can see, the decrease in k10 leads to a decrease
in the free calcium levels and corresponding values of
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Fig. 2: Spiking patterns.
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Fig. 3: Concentration of free Ca, bound Ca, and gener-
ated muscle force.

fb. It takes significantly longer to reach the maximum
levels of calcium concentration inside the muscle cell.
The effect is much more noticeable for lower values of
k10, than for higher values. The results for the other
firing patterns are qualitatively similar in the following
sense—the decrease in k10 leads to a decrease in the
free calcium levels and corresponding values of fb
in an analogous manner to what we saw for regular
spiking, see Figure 5b, i.e. the difference between the
curves, corresponding to different values of k10 follows
the same trend as for regular spiking. For this reason,
we shall not include results for all firing patterns,
when discussing the change in c and fb in our further
experiments. Naturally, what we said about the effect of
varying the firing pattern itself on c and fb (see III.A)
holds here as well—the higher frequency of the CH
pattern means quicker increase in c and fb, i.e. the
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Fig. 4: Coefficients, corresponding to binding and un-
binding of calcium to the SR.

effect of the various firing patterns for a fixed value
of k10 is as described in III.A. Thus, in the following
experiments we shall only give the results for regular
spiking and state that the rest are qualitatively similar.

Let us further discuss the implications of the different
values of k10 to the resultant muscle force. We compare
the times for reaching the maximal force at each value
of k10 as well as the forces reached for a fixed time
of 0.2 s, see Figure 5c. One can see that the increase
of k10 leads to an increase in the force, which can
be obtained for a fixed time and a corresponding de-
crease in the time, needed for reaching maximal force.
What is important to note is that this effect is most
noticeable for small values of k10 (where the curves

Ps(k10) are steepest). Furthermore, firing patterns with
higher frequencies (fast spiking and chattering from our
examples) mean weaker effect of the variation in k10
(unless k10 is extremely small, e.g., tmaxforce is almost
constant). More precisely, the effect would be noticed
on a much shorter time scale.

Let us consider next the variation in τq . We present in
Figure 6a, again, simulations for regular spiking and the
rest are qualitatively similar. We choose the following
values of τq—0.005, 0.01, 0.02, 0.03, 0.04, 0.05. In
some sense, the effect of lower maximal EPP can be
compensated by higher values of τq and vice-versa.
Furthermore, the increase in τq reduces the fluctuations
in the calcium levels. The intervals of decrease become
shorter and have much lesser amplitude with respect to
the intervals of increase. Again, we also consider the
effect of varying τq on the generated muscle force and
present the results in Figure 6b.

C. Calcium binding properties inside the muscle cell

Let us now discuss the effect of varying the pa-
rameters k3 and k4 on the complete process. As can
be naturally supposed, those parameters have opposite
effects. This can be easily seen from Figure 7a and
Figure 8a—when k3 is increased, the concentration of
free calcium decreases and the bound calcium increases
(because of the higher binding rate), while the effect of
increasing k4 is exactly opposite.

However, it is interesting to pay special attention to
the following. Our numerical experiments so far have
shown that if one varies the properties of the end-plate
or the firing pattern, this could have a serious effect on
the generated muscle force for a fixed period of time
(in our simulations, 0.2) as well as the time, needed
for reaching the maximal force, which can be exerted
by the motor unit. Nevertheless, at least in theory, this
maximal force could be reached if there is a sufficiently
long neural stimulus (for any of the patterns we study
and within the scope of the numerical experiments we
have carried out).

On the other hand as stated in the Proposition from
the Section III, k3 and k4 are the parameters which
control (for C being fixed) the asymptotic behaviour of
the calcium dynamics in the muscle cell when there
is a constant neural stimulus. It was proven that if
C > 1 + k4/k3, then, the point (c, fb) = (C − 1, 1)
is stable, if 1 < C < 1 + k4/k3, then the point
(Ck4/(k3 + k4), Ck3/(k3 + k4)) is stable. The latter
means that if k4 is large or, equivalently, if k3 is
small (in the case of our experiment, where C = 2,
this would mean k4 > k3), then, fb cannot reach its
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Fig. 5: Effect of varying the parameter k10.
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Fig. 6: Effect of varying the parameter τq .

Biomath 11 (2022), 2210119, https://doi.org/10.55630/j.biomath.2022.10.119 7/9

https://doi.org/10.55630/j.biomath.2022.10.119


Zdravka D. Ivanova, Tihomir B. Ivanov, A Simple Integrated Mathematical Model of Neuromuscular Activation

0.05 0.10 0.15 0.20
t

0.2

0.4

0.6

0.8

1.0
c

10

30

50

65

80

100

200

0.05 0.10 0.15 0.20
t

0.2

0.4

0.6

0.8

fb

10

30

50

65

80

100

200

(a) Effect on calcium dynamics

50 100 150 200
k3

10

20

30

40

50

Ps(0.2)

RS

IB

CH

FS

0 50 100 150 200
k3

0.5

1.0

1.5

tmax force

RS

IB

CH

FS

(b) Effect on muscle force

Fig. 7: Effect of varying the parameter k3.
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Fig. 8: Effect of varying the parameter k4.
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maximal value of 1, which leads to the results, depicted
in Figure 7b—for k3 < k4 = 45 and in Figure 8b—for
k4 > k3 = 65, the maximal force cannot be reached,
no matter what the firing pattern of the neuron is. This
is further illustrated by the fact that the muscle force,
obtained for fixed time of 0.2, decreases greatly, when
k4 is increased or k3 is decreased for all firing patterns,
unlike the experiments we have provided from varying
the remaining parameters. In the previous experiments,
the curves were smooth, while here we observe a
discontinuity in the derivative in the first graphs in
Figure 7b and Figure 8b.

IV. CONCLUSION AND DISCUSSION

In the present work, we have proposed a mathe-
matical model of neuromuscular activity, which takes
into account some of the most important biochemical
and biophysical mechanisms, known to be associated
with the process. We have shown how some of the
parameters in the model affect the solutions. Those
parameters could be related to various malfunctions of
the neuromuscular system. In particular, we have shown
what the effects of various spiking patterns as well as
variations in the properties of the end-plate and rates of
calcium binding to the CFs are. Our main focus here
was on presenting (some of) the descriptive capabilities
of the model. It is a step further in modelling the process
with respect to [3], thanks to the coupling with a nerve
impulse model, which allows for the study of realistic
stimuli in the motor unit and the dependence on their
properties, which highly enriches its descriptive abilities
in terms of different spiking patterns, possible effects
of demyelination diseases, etc. Furthermore, we have
carried out numerical experiments, which study in much
more detail the dependencies of the model solutions on
the most important parameters in the model.

We hope that the approach, we propose here, can,
thus, be used to study the effect of underlying mech-
anisms in different diseases. To that end, as a future
work, we aim to classify known neuromuscular diseases
in terms of what they affect and, correspondingly, which
parameters in the model they are related to. Then,
numerical experiments will be carried out, in order
to study some of the mechanisms of those diseases.
The results should be compared to what is known (at
present, mainly qualitative comparison can be done).

Another aspect that should be mentioned is the need
of using some more detailed models in those stages of
the process, which are identified to be crucial from the
corresponding experiments. In particular, a more de-
tailed model of the neuromuscular junction, simulating

the acetylcholine transport should be used to connect
the neural activity to the calcium dynamics inside the
muscle cell (see, e.g. [10]).

In terms of the generated muscle forces, some de-
tailed phenomenological models can also be used. One
can consider, e.g., the model in [11]. Furthermore, a
validation in terms of experimental data of generated
force must be done.
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