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Abstract—Filamentous fungi grow efficient nutrient
transportation networks which are highly resilient to
attacks by grazers. Understanding them may benefit the
design of human-built networks, where such properties
are sought after. We recently developed a mathematical
model that improved previous 2-dimensional studies by
representing the space in a 3-dimensional face-centered
cubic lattice. While the model focused on structural aspects
(hyphal orientation, branching, and fusion), these are
closely tied to functional aspects, that is, the handling of
nutrients. In this paper, we refine our previous model by
modelling the hyphal network as a set of cylindrical tubes
connecting spherical junction points, and calculating the
exact local hyphal surface area. In further development of
the model, this will allow the refinement and incorporation
of existing nutrient consumption models—in particular,
how nutrients are used for turgor maintenance at a
particular network location.

Keywords-Fungal networks; Mathematical biology;
Mathematical modelling

I. INTRODUCTION

Fungi, like all kingdoms of life, are economically
and ecologically critical. Fungi have two modes of
growth, and a number of mathematical models have
been developed to better understand and control their
growth. In yeasts, a minority of fungi, cells separate after
they divide. In filamentous fungi cells do not physically
separate and are kept together in filaments called hyphae.
These hyphae extend at their tips and branch, forming a
network, the mycelium, that penetrates the environment

and absorbs resources. In this paper, we focus on the
mathematical modelling of filamentous fungi.

A large body of research has been devoted to mod-
elling filamentous fungi, as covered by Prosser in the
late 70s [10], summarized by Kotov and Reshetnikov
in 1990 [9], or reviewed more recently by Davidson
in 2007 [3]. Models can be intuitively divided based
on the scale they focus on, since fungi can cover
hectares due to indeterminate growth1 while their basic
machinery operates on the micrometer scale [3]. In
this paper, we focus on the micrometer scale, which
is of particular interest when attempting to understand
how the function and structure of fungi give rise to
specific patterns of growth. Models at this scale can be
further divided into three types [1]: macroscopic models,
focusing on quantities at the colony-level (e.g., over-
all growth rate, biomass density), microscopic models,
explicitly representing every hypha, and intermediate
models which represent quantities over several hyphae
and are classically reaction-diffusion models. In order to
precisely understand the complex coupling of structure
and function in fungi, the most accurate mathematical
abstraction is offered by microscopic models.

1In some cells, including most animal cells, division terminates
after a fixed number of times. In contrast, the division of the cells
in a fungal mycelium is indeterminate, as they can divide an infinite
number of times if resources permit.
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A. Contribution of the paper

Boswell and colleagues developed a model at the
micrometer scale in which hyphae are explicitly repre-
sented [2]. This model was two-dimensional, and thus
created only planar fungal networks (i.e. there cannot be
a hypha on ‘top’ of another). We recently introduced a
three-dimensional model to better reproduce the structure
of fungi [4].

The move to a three-dimensional model makes it
particularly challenging to compute the surface area of
the mycelium, and the cost of turgor maintenance. Fungi
work to generate osmotic forces, consuming resources to
generate turgor pressure, and drive water uptake and the
bulk flow of cytoplasm towards the growing hyphal tips
[7], [8].

Hyphae regulate local osmotic pressure (and thereby
water uptake) by transporting ions from the environment
into the hypha or vice versa. The cost of ion transporta-
tion will be a function of the osmotic pressure gradient
and the surface area exposed to this gradient. Thus the
local turgor maintenance cost depends on the available
hyphal surface area.

This cost needs to be taken into account to determine
which hyphae have a surplus of nutrients available for
growth or branching. The key contribution of this paper
lies in calculating the exact local hyphal surface area
in the model, which improves on both [2] and [4] and
can be further used to increase the accuracy of fungal
network models.

B. Organization of the paper

In Section II, we explain how the physical space is
discretized in our model. As our focus is on the cost of
turgor maintenance, we refer the interested reader to [2],
[4] for the rules detailing the orientation, branching, and
fusion of hyphae in the model.

Having described a discretization of space, in Sec-
tion III we fix the remaining free parameters (e.g., lattice
width) and choose our coordinate systems. We see that
the lattice width is restricted by the cross-section radius
of the hyphae. Our hyphae are constructed by connecting
cylinders and spheres. In Section IV we compute the
surface area of these hyphae by determining how much
of the surface of the spheres is not covered by cylinders,
and how much of the surface of the cylinders is not
covered by other cylinders.

II. DISCRETIZED SPACE

Dividing the space into chunks involves two ques-
tions: dimensionality and degrees of freedom. Firstly,

(a) (b)

Fig. 1. The plane is discretized into elements of equal size. The
elements can be square (left), allowing the hypha to change direction
by 90◦, or hexagonal (right), allowing a change of 60◦.

the dimensionality asks whether the fungus should be
modelled as spreading in a slice of soil (2 dimensions), or
spreading as it naturally does in a volume (3 dimensions).
Limiting a model to two dimensions means that hyphae
cannot be overlapping, thereby forcing the structure to
be artificially planar. Therefore, we investigate the 3-
dimensional case, which allows for overlapping hyphae.
Secondly, the degrees of freedom must be sufficient so
that an extending hypha can change direction with a
realistic angle. As illustrated in Figure 1(a), if the cells
were square then the hyphae can extend to the cell in
front (angle of 0◦), the cell on the right or on the left
(angle of 90◦). Thus, the hyphae would either keep its
direction or change it by 90◦. An angle of 60◦ was
suggested as a more accurate description [2], leading to
the hexagonal cells depicted in Figure 1(b). In fact, 60◦ is
the smallest allowable angle in a uniform discretization
of 2D (or 3D) space.

Obtaining an angle of 60◦ between neighbours is
straightforward in two dimensions: the hexagonal grid
shown in Figure 1(b) is the only space-filling config-
uration of equal-sized cells that achieves this. In three
dimensions, there are several arrangements that produce
60◦ angles between neighbours. Such arrangements fall
under two schemes: Hexagonal Close Packing (HCP)
and Face Centred Cubic (FCC) arrangement [5], [6]. Of
these, FCC is the only viable candidate (Figure 2(a)),
since the asymmetry in HCP can prevent a hypha from
growing straight ahead, which is its most common di-
rection (Figure 2(b)). FCC is an extension from the 2D
hexagonal grid, in which horizontal hexagonal layers
are stacked on top of each other but displaced slightly
to allow for a tight packing. This extension can be
intuitively understood by induction.
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(a) (b)

Fig. 2. The local neighbourhood in a Face Centered Cubic (FCC)
arrangement is symmetric along each edge between the central cell
and a neighbour (a). This is not the case for the local neighbourhood
in a Hexagonal Close Packing (HCP) arrangement, which is symmet-
ric only along some edges between the central cell and a neighbour
(b). As a consequence, a fungal tip that grew onto the central cell
from the right below (red line) would not be able to grow exactly
straight ahead.

Fig. 3. Construction of a Face Centred Cubic arrangement by
induction.

III. DISCRETIZATION IN 3D

Assume there is a discrete model simulating the
growth of a mycelium in three dimensions. The model
must take into account the amount of resource needed
for hyphal wall maintenance for each discrete point in
the lattice to determine where excess resource permits
growth. In the FCC lattice chosen in Section II, each
vertex of the lattice is assigned the part of the hyphal sur-
face that lies within its Voronoi cell. Therefore, knowing
the cost of hyphal wall maintenance requires computing
the surface area represented by each vertex of the FCC
lattice. Formally, given a subgraph G of an FCC lattice
with a sphere of radius r at each vertex and a cylinder of
radius r and length ∆x at each edge, we want to compute
the external surface area of the union of all these shapes.

A. Notation

From here on, we will use spherical (θ ∈ (−π, π], φ ∈
[−π/2, π/2]) coordinates, where θ represents the angle
between a vector and the positive x axis and φ represents
the angle between a vector and the positive side of the
x, y plane; and cylindrical coordinates (θ ∈ (−π, π], z ∈
R), where θ is the same as before and z represents the
height above the x, y plane.

B. Adequately discretizing the space

In order to ‘charge’ maintenance costs to individual
vertices, the hyphal surface area needs to be computed
for the Voronoi cells associated with these vertices. This
puts restrictions on the size of the spheres and cylinders
that are put at vertices and edges, respectively. If their
radius r is too large in relation to the Voronoi cell size
∆x, a fraction of a hypha’s surface area may be assigned
to a cell that it does not logically belong to (see Figure 4).

Therefore, ∆x should be chosen such that a hypha
between two vertices, say vi and vj , falls entirely within
the boundary between the associated pair of Voronoi
cells and does not ‘invade’ other cells.

Theorem 1. Hypha connecting two vertices vi and vj
falls entirely within the associated Voronoi cells when

r ≤
(√

3/4/3
)

∆x.

Proof: The intersection of a hypha (represented by
a cylinder) with the boundary face between vi and vj is
a circle of diameter 2r. The centre of this circle is at the
intersection of edge eij and the boundary face. Without
loss of generality, pick any diameter of the circle and put
two vertices, vk and v`, as close as possible to either end
of the diameter (see Figure 5), but at distance ≥ ∆x from
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Fig. 4. An example case when ∆x is too small in relation to r: when
∆x = 2r, the highlighted surface area is assigned to the Voronoi cell
indicated by the dotted line, but it logically belongs to the Voronoi
cells of the two vertices that lie within the hypha.

vi

vj

vkv`

Fig. 5. The cylinder between vi and vj needs to fit through
the boundary between their Voronoi cells, which runs between the
centroids of 4vivjvk and 4vivjv`.

vi and vj . This maximally constrains the boundary size,
which is the distance between the centroids of 4vjvivk
and 4vivjv`.

C. From two to three dimensions

In 2 dimensions the surface area (i.e., surface length
since it is 1-dimensional) within a particular hexagonal
Voronoi cell vi with a set Hi of edges occupied by
hyphae is equal to ∆x+ πr when |Hi| = 1, or

{ 2 · |Hi| ·
∆x

2︸ ︷︷ ︸
surface length

+ max(max
j

(∠Hi[j], Hi[j + 1]− π), 0) · r︸ ︷︷ ︸
arc of the circle

−
|Hi|∑
k=1

2r cot

(
∠Hi[k], Hi[k − 1]

2

)
︸ ︷︷ ︸

overlap between hyphae

}

(1)

where Hi is a clockwise ordered circular list, i.e. Hi[0] =
Hi[|Hi|]. This is illustrated in Figure 6.

πr/3

2r/
√

3

Fig. 6. Total hyphal surface length consists of the cylinder (associ-
ated with edges) surface length (2|Hi|∆x/2 = 2∆x) and the portion
of the sphere (associated with a vertex; the dashed circle) not covered
by cylinders (πr/3), less the overlap between cylinders (2r/√3).

In three dimensions, the first term of (1) needs to be
adjusted only to account for the extra dimension: 2 ·
|Hi|·πr∆x

2 . The second and third term generalise to three
dimensions, although a one-pass scan (as in (1)) does not
suffice anymore. The method we will use for both the
portion of the sphere to be added and the portion of the
overlapping cylinders to be subtracted are similar. For a
generic sphere (cylinder), construct the refinement of all
overlaps with (other) cylinders. Then for every one of the
212 possible neighbourhoods, mark the appropriate areas
in the refinement as ‘exposed’. Store the resulting areas
in a lookup table with the neighbourhood (represented
as a binary string) as lookup key. The second and third
terms of (1) are to be replaced by lookups in these tables.
The construction of the refinements used to create these
lookup tables is detailed in the next section.

IV. AREA CALCULATION

In Section III, we described a discrete model simu-
lating the growth of a mycelium in three dimensions. In
order to compute the surface area contained in a Voronoi
cell in the lattice, we required ‘maps’ of which parts
of the surface of a central sphere is covered by which
neighbours’ cylinder, and of which part of the surface of
a neighbour’s cylinder is covered by other neighbours’
cylinders. In this section, we describe these ‘maps’ and
compute the required areas.

A. Central Sphere

For every hypha that is connected to a vertex vi,
a hemisphere of that vertex’s sphere is covered, and
therefore removed from the surface area. What remains
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c

1

4

3

5

2

6

Fig. 7. Vertex labelling congruent with directions ϑk; opposite
directions (−ϑk) omitted.

Fig. 8. area: πr2

Fig. 9. area: πr2/3

is a hemisphere, lune, spherical triangle or spherical
quadrangle (e.g.,Figure 7–Figure 10).

Each neighbour vj divides vi’s sphere into two hemi-
spheres along a circular boundary that is perpendicular
to eij . The refinement of all divisions associated with a
neighbour of vi is constructed as follows.

Fig. 10. area: πr2/12

The six directions ϑk along which neighbours are
placed are numbered in Figure 7. We denote the direction
opposite of ϑk (mirrored in c) as −ϑk.

The intersection of the boundaries corresponding to
neighbours vj and vj′ are given by ±(ϑj × ϑj′).1. These
intersections lie along one of seven directions ϕk:

ϕ1 := ϑ3 × ϑ1 = ϑ5 × ϑ1 = ϑ5 × ϑ3

ϕ2 := ϑ1 × ϑ2 = ϑ1 × ϑ6 = ϑ2 × ϑ6

ϕ3 := ϑ4 × ϑ1

ϕ4 := ϑ5 × ϑ4 = ϑ6 × ϑ5 = ϑ6 × ϑ4

ϕ5 := ϑ3 × ϑ2 = ϑ4 × ϑ2 = ϑ4 × ϑ3

ϕ6 := ϑ3 × ϑ6

ϕ7 := ϑ2 × ϑ5

The actual refinement is constructed by connecting
the intersection points ϕk along the associated circular
boundaries, to produce a polygonal partition of the
sphere’s surface area.

Theorem 2. The partition of the surface area of vi’s
sphere as induced by its neighbours’ cylinders consists
of 24 triangles of equal size.

Proof: We first observe that the partition will consist
of polygonal regions, where each polygon vertex is an
intersection point ϕk.

At ±ϕ3, ±ϕ6 and ±ϕ7, we have the intersection of
two circles, producing four π/2 angles each, 24 such
angles total. (These angles can be calculated explicitly
or derived from symmetry of the lattice.) Each pair of

1Alternatively, the intersections could also be derived from the
convex hull of the neighbour positions (each ϕk corresponds to the
centre of one of its faces), or from the Voronoi Diagramme of the
neighbour directions on the sphere (each ϕk corresponds to one of
the Voronoi Diagramme’s vertices). The refinement is the Delaunay
Triangulation of the ϕk.
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these intersection points is separated by a circle, so
that each polygon in the partition has at most one of
these intersections as a vertex (and therefore at most one
interior angle of extent π/2). Therefore the partition has
at least 24 polygons.

At each of ±ϕ1, ±ϕ2, ±ϕ4 and ±ϕ5, three circles
intersect, producing six angles of extent π/3, 48 such
angles total.

In total, the intersection points are responsible for 72
angles, which are the interior angles of the polygons in
the partition. This gives an upper bound of 24 polygons,
which is achieved when every one is a triangle. This,
combined with our earlier observation that we have at
least 24 polygons, tells us that the partition consists of
exactly 24 triangles.

Finally, since the area of a spherical triangle is entirely
determined by its angles, which are π/2, π/3, π/3 for
each triangle, every triangle has the same area.

To determine the topology, we notice that each cylin-
der directly touches six intersection points. For any of the
remaining eight points, say, φ, either (a) every triangle
with φ as a vertex is covered, or (b) none of them are.
Which case applies for a given vertex is geometrically
obvious. Using this, we determine the topology of the re-
finement, and create Figure 12. This figure also encodes
the relationships between a neighbour and the areas of
the sphere it covers: each neighbour lies at the center of
a circle that its cylinder would cover, e.g. ϑ2 lies at the
centre of the circle through ϕ2, ϕ7, −ϕ5, −ϑ5, −ϕ2, −ϕ7,
ϕ5 and ϑ5. A cylinder in direction ϑ2 would cover all
areas inside this circle, and a cylinder in the opposite
direction (−ϑ2) would cover all areas outside this circle.

B. Hyphal Cylinder

The cylinder that is put at every hypha eij not only
covers part of the surface of the spheres belonging to
the cells it connects, but it also covers (and is covered
by) parts of the surface of other cylinders connected to
these cells. The cylinder associated with another hypha
eik, j 6= k connected to one end of the cylinder intersects
it along an elliptical boundary ζk that is defined by the
plane through eij × eik, eik × eij and eij + eik. As was
done for the central sphere, the refinement of all divisions
associated with an edge eik needs to be constructed.

Cutting the cylinder associated with ϑ1 along the plane
θ = 0, we see that these intersections between the
cylinder associated with eij and those associated with
eik, j 6= k correspond to sine waves (Figure 11).

Specifically, if a hypha ϑi has coordinates (θ, φ), the
intersection of its cylinder with that of ϑ1 will have the
form

ζi = tan (average {φ, π/2}) cos (x− θ)
x ∈ [θ − π/2, θ + π/2]

(2)

which follows immediately from converting to ϑ1’s
cylindrical coordinates.

The refinement of these boundaries is a subdivision
of the cylinder into 30 triangles and 6 quadrangles, of
11 different sizes. These sizes can be calculated as sums
of definite integrals over the sine waves associated with
the edges. The symmetrical nature of the lattice supports
that areas which appear equal actually are equal. The
only feature of this diagram not geometrically clear is
that the 3-way intersections marked ◦ are true; i.e., they
are not just three 2-way intersections very close together.

It suffices to verify one 3-way intersection. This is
because the diagram will look identical no matter which
hypha we use as a base, up to relabelling—by replacing
ϑ1 by ϑ′3, ϑ′4 or ϑ6, respectively, the other three inter-
sections marked with ◦ can be positioned at the •.

We see that the leftmost ◦ is a true 3-way intersection,
since when x = 0, the three curves have the value

ϑ3 : tan (π/6) sin (π/2) =
√

1/3

ϑ4 : tan (π/4) sin
(

cos−1
(√

2/3

))
=
√

1/3

ϑ6 : tan (π/3) sin
(

cos−1
(√

8/9

))
=
√

1/3

All intersection points lie along one of 26 directions.
Below are the coordinate specifications for the intersec-
tion points in the interval

θ ∈
[
cos−1

(√
2/3

)
, cos−1

(
−
√

1/3

)]

(in cylindrical coordinates), the top left quarter of Fig-
ure 13. The remaining directions follow by symmetry
(vertical planes of symmetry along ϑ4 and ϕ3).
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1

2

3

4 5 6

7

8
9

10

11

ζ−1

ζ4

ζ3

ζ5

ζ2

ζ6
ζ−4

ζ−5

ζ−3

ζ−6

ζ−2

•

◦◦ ◦

3
5
ϕ2

6
ϕ4

−4ϕ

−3
6
ϕ4

−2ϕ
−4
−3ϕ

−5
6
ϕ2

−3ϕ
−2
−3ϕ

−5
−6ϕ

Fig. 11. The cylinder associated with ϑ1, when cut in two along the vertical plane θ = 0, illustrates that the area calculation consists entirely
of intersections of areas below a sine wave. The 11 areas numbered in red are the only ones for which the area needs to be calculated. The
others follow by symmetry. Like in Figure 12, intersection points i

jϕ are labelled. To distinguish the labels from those used in Figure 12,
the intersection is labelled using the indices of two of the arcs that cross (ζi, ζj).

i
j
ϕ:
(
θ , z

)
−5
−6ϕ ∼ −ϕ5:

(
cos−1

(
−
√

1/3

)
,
√

2
)

−2
−3ϕ:

(
cos−1

(
−
√

1/3

)
,
√

2/9

)
−5
2
ϕ = −5

4
ϕ = 2

4
ϕ ∼ −ϕ6:

(
cos−1

(√
2/3

)
, 1

)
−3
6
ϕ:
(

cos−1
(√

2/3

)
, 1/3

)
−2
6
ϕ = 2

−6ϕ = 2
−2ϕ = 6

−6ϕ = −ϕ2:
(

cos−1 (1/3) , 0
)

−4
4
ϕ = −ϕ3:

(
cos−1

(
−
√

1/3

)
, 0

)
−6
=4
ϕ = −6

−3ϕ = 4
−3ϕ ∼ −ϑ5:

(
π/2 ,

√
1/3

)
2
−3ϕ:

(
cos−1

(√
1/3

)
,
√

2/9

)
4
−2ϕ:

(
cos−1

(
−
√

2/27

)
, 1/3

)

The actual refinement is constructed by connecting
the intersection points along the associated circular
boundaries. By a similar process to the one used to
create Figure 12, we can determine the topology of
the refinement, and create Figure 13. This figure also
encodes the relationships between a neighbour eik and
the areas of eij’s cylinder it covers: each neighbour lies
at the center of a circle that it covers, e.g. ϑ2 lies at

the centre of the circle through ϑ′5, ϕ1, ϑ5, ϕ′1, ϕ16, ϕ20

and ϕ22. A cylinder in direction ϑ2 would cover all areas
inside this circle. Unlike with the sphere, a cylinder in the
opposite direction (ϑ′2) would not cover all areas outside
this circle; rather, ϑ′2 has its own circle (through ϑ3, ϕ1,
ϕ13, ϕ18, ϑ′3, ϕ17, ϕ11 and ϕ′1).
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ϕ1

ϕ1

ϕ1

ϕ1

ϕ1

ϕ1

−ϕ1

−ϕ4

ϕ4

−ϕ5

ϕ5
ϕ2

−ϕ2

ϕ7

−ϕ7

ϕ6

−ϕ6 −ϕ3

ϕ3

−ϑ2−ϑ6

−ϑ4

−ϑ1

−ϑ3−ϑ5

ϑ1

ϑ3 ϑ5
ϑ2 ϑ6

ϑ4

Fig. 12. Topology of the refinement of hemisphere intersections
(ϕk) induced by the 11 neighbours (ϑk in blue) of the central cell.
−ϑk or −ϕk denote ϑk or ϕk reflected in the origin, respectively.
It has been projected from ϕ1 onto the plane θ = π/2, and rotated
counterclockwise by π/2 to emphasise the symmetry.

V. CONCLUSION

We have computed the surface area for paths in a FCC
lattice, which model hyphae growing in a mycelium.
This improves on earlier models in that it is 3D and can
therefore model non-planar mycelia, the typical case in
nature. By using a hexagonal lattice rather than a cubic
one, we allow our hyphae to grow in straight lines or
to change direction by as little as 60◦, giving a real-
istic range of motion while still being computationally
feasible.
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