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Abstract—In this paper we will examine self-accelerating
in terms of convergence speed and the corresponding index
of efficiency in the sense of Ostrowski–Traub of certain
standard and most commonly used in practice multipoint
iterative methods using several initial approximations for
numerical solution of nonlinear equations due to optimal in
the sense of the Kung–Traub algorithm of order 4, 8 and
16. Some hypothetical iterative procedures generated by
algorithms from order of convergence 32 and 64 are also
studied (the receipt and publication of which is a matter
of time, having in mind the increased interest in such
optimal algorithms). The corresponding model theorems
for their convergence speed and efficiency index have been
formulated and proved.

Keywords-solving nonlinear equations; order of conver-
gence; optimal algorithm; efficiency index

I. INTRODUCTION

One of the most basic problems in scientific and
engineering applications is to find the solution of a
nonlinear equation

f(x) = 0. (1)

In literature, it is known that the computational effi-
ciency of a method is measured by the concept of the
efficiency index p

1

n , where p is the order of convergence

and n is the whole number of functional evaluations per
iteration. Subsequently, the maximum efficiency index
for Newton’s iteration with two functional evaluations is
2

1

2 ≈ 1.414 [30].
According to the conjecture of Kung and Traub [13],

the maximum convergence order of a scheme (without
memory) including n evaluations per step is 2n−1.

By taking into account the optimality concept, many
authors have tried to build iterative procedures of optimal
order of convergence p = 4, p = 8, p = 16.

The recent results of M. Petkovic [20] and M. Petkovic
and L. Petkovic [22], Bi, Wu and Ren [2], Geum and
Kim [7], Thurkal and Petkovic [29], Wang and Liu
[31], Kou, Wang and Sun [12], Chun and Neta [3],
Soleymani and Soleymani [24], Soleymani [25], Bi, Ren
and Wu [1], Sargolzaei and Soleymani [26], Soleymani
and Mousavi [27], Soleymani and Sharifi [28], Igna-
tova, Kyurkchiev and Iliev [10], M. Petkovic, Neta,
L. Petkovic and Dzunic [21] are presented for optimal
multipoint methods for solving nonlinear equations. For
other results see Dzunic and M. Petkovic [6].

M. Petkovic [20] gives a useful detailed review about
computational efficiency of many methods in the sense
of Kung–Traub hypothesis.

For other nontrivial methods for solving nonlinear
equations see, Kyurkchiev and Iliev [14] and Iliev and
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Kyurkchiev [11].
In many natural science tasks, from purely physical

considerations, the user of numerical algorithms for
solving nonlinear equation (1) knows a set of initial
approximations

x01, x
0
2, . . . , x

0
k

for the root ξ of equation (1).
As an example, regula falsi methods and modifications

of Euler–Chebyshev method and Halley method with
a lower order of convergence use two or three initial
approximations for the root ξ.

In [16], refined conditions of convergence for the
difference analogue of Halley method (using three initial
approximations) for solving nonlinear equation are given
(see, also [32]).

An efficient modification of a finite–difference ana-
logue of Halley method is proposed in [9].

Naturally arises the task of designing and testing
multipoint variants of the classical procedures in the light
of the achievements over the past five years important
theoretical results related to obtaining optimal in the
sense of Kung–Traub algorithms.

In this sense the task of detailed refinement of the
self-accelerating multipoint methods using several initial
approximations become very actual.

II. MAIN RESULTS

A. Optimal algorithm in the sense of Kung–Traub with
order of convergence p = 4

We consider the following nonstationary iterative
scheme based on the 4-point iteration function in combi-
nation with an optimal algorithm in the sense of Kung–
Traub with order of convergence p = 4:

x2n+1 = ϕ1(x2n, x2n−1, x2n−2, x2n−3),

x2n+2 = ϕ2(x2n+1).
(2)

It is known that for the error εi = xi − ξ, i =
−3,−2,−1, 0, 1, 2 . . . ; [30] is valid

ε2n+1 ∼ C1(ξ)ε2nε2n−1ε2n−2ε2n−3, (3)

ε2n+2 ∼ C2(ξ)ε
4
2n+1. (4)

Let
K9 = max {|C1(ξ))|, |C2(ξ)|} ,

d2n−1 = K
1

3

9 |ε2n−1|,

d2n = K
1

3

9 |ε2n|,

and let 0 < d < 1, and x−3, x−2, x−1 and x0 be chosen
so that the following inequalities

d−3 = K
1

3

9 |x−3 − ξ| ≤ d < 1,

d−2 = K
1

3

9 |x−2 − ξ| ≤ d < 1,

d−1 = K
1

3

9 |x−1 − ξ| ≤ d < 1,

d0 = K
1

3

9 |x0 − ξ| ≤ d < 1

hold true.
From (3) and (4), we have

d2n+1 = K
1

3

9 |ε2n+1|

≤ K
1

3

9 K9|ε2n||ε2n−1||ε2n−2||ε2n−3|

= K
1

3

9 |ε2n−1|K
1

3

9 |ε2n|K
1

3

9 |ε2n−2|K
1

3

9 |ε2n−3|

= d2nd2n−1d2n−2d2n−3,

d2n+2 = K
1

3

9 |ε2n+2| ≤ K
1

3

9 K9ε
4
2n+1

=

(
K

1

3

9 ε2n+1

)4

= d42n+1.

(5)

Evidently, from (5), we find

d1 ≤ d4, d2 ≤ d16, d3 ≤ d22, d4 ≤ d88,
d5 ≤ d130, d6 ≤ d520, d7 ≤ d760, d8 ≤ d3040,
d9 ≤ d4450, d10 ≤ d17800.

Our results concerning the order of convergence gener-
ated by (2) are summarized in the following theorem.
Theorem A. Assume that the initial approximations
x0, x−1, x−2, x−3 are chosen so that d−3 ≤ d, d−2 ≤
d, d−1 ≤ d < 1 and d0 ≤ d < 1. Then for the error of
the sequences {x2n+1}∞n=0 and {x2n+2}∞n=0 determined
by (2), we have

d2n−1 ≤ dτ2n−1 ,
d2n ≤ dτ2n ,

(6)

where

τm+4 = 5τm+2 + 5τm, m = 1, 2, . . . (7)

and the order of convergence of the iteration (2) is

τ =
5 + 3

√
5

2
.

Proof. It is well known that the recursion:

γi+1 =
n∑
j=1

Ajγi−j+1, i = n− 1, n− 2, . . . ,
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(for any initial conditions) corresponds to the character-
istic polynomial:

ρn =
n∑
j=1

Ajρ
n−j .

In our case, for the recursion

τm+4 = 5τm+2 + 5τm,

the characteristic polynomial is of the type

ρ2 − 5ρ− 5 = 0. (8)

Equation (8) has the roots:

ρ1 =
5 + 3

√
5

2
, ρ2 =

5− 3
√
5

2
.

From the general iterative theory [30], (see, also [8])
it follows that the order of convergence of the iteration
procedure, defined by (2) is given by the only real root
of equation (8) with magnitude greater than 1. On the
other hand,

|ε2n+1| ≤ K
− 1

3

9 d2n+1, |ε2n+2| ≤ K
− 1

3

9 d2n+2,

and consequently we can conclude that the order of
convergence of iteration (2) is

τ =
5 + 3

√
5

2
≈ 5.8541...

Thus, the theorem is proven.

B. Optimal algorithm in the sense of Kung–Traub with
order of convergence p = 8

We consider the following nonstationary iterative
scheme based on the 4-point iteration function in combi-
nation with an optimal algorithm in the sense of Kung–
Traub with order of convergence p = 8:

x2n+1 = ϕ1(x2n, x2n−1, x2n−2, x2n−3),

x2n+2 = ϕ3(x2n+1).
(9)

For the error εi = xi − ξ, i = −3,−2,−1, 0, 1, 2 . . . ;
[30], [23] is valid

ε2n+1 ∼ C1(ξ)ε2nε2n−1ε2n−2ε2n−3, (10)

ε2n+2 ∼ C3(ξ)ε
8
2n+1. (11)

Let
K10 = max {|C1(ξ))|, |C3(ξ)|} ,

d2n−1 = K
3

17

10 |ε2n−1|,

d2n = K
7

17

10 |ε2n|,

and let d > 0, and x−3, x−2, x−1 and x0 be chosen so
that the following inequalities

d−3 = K
3

17

10 |x−3 − ξ| ≤ d < 1,

d−2 = K
7

17

10 |x−2 − ξ| ≤ d < 1,

d−1 = K
3

17

10 |x−1 − ξ| ≤ d < 1,

d0 = K
7

17

10 |x0 − ξ| ≤ d < 1

hold true.
From (10) and (11), we have

d2n+1 = K
3

17

10 |ε2n+1|

≤ K
3

17

10K10|ε2n||ε2n−1||ε2n−2||ε2n−3|

= K
3

17

10K
3

17
+ 7

17
+ 7

17

10 |ε2n||ε2n−1||ε2n−2||ε2n−3|

= d2nd2n−1d2n−2d2n−3,

d2n+2 = K
7

17

10 |ε2n+2|

≤ K
7

17

10K10ε
8
2n+1 =

(
K

3

17

10 ε2n+1

)8

= d82n+1.

(12)

From (12), we find

d1 ≤ d4, d2 ≤ d32, d3 ≤ d38, d4 ≤ d304,
d5 ≤ d378, d6 ≤ d3024, d7 ≤ d3744, d8 ≤ d29952,
d9 ≤ d37098, d10 ≤ d296784.

Our results concerning the order of convergence gener-
ated by (9) are summarized in the following theorem.
Theorem B. Assume that the initial approximations
x0, x−1, x−2, x−3 are chosen so that d−3 ≤ d, d−2 ≤
d, d−1 ≤ d < 1 and d0 ≤ d < 1. Then for the error of
the sequences {x2n+1}∞n=0 and {x2n+2}∞n=0 determined
by (9), we have

d2n−1 ≤ dτ2n−1 ,
d2n ≤ dτ2n ,

(13)

where

τm+4 = 9τm+2 + 9τm, m = 1, 2, . . . (14)

and the order of convergence of the iteration (9) is

τ =
3
(
3 +
√
13
)

2
.

Proof. In our case, for the recursion

τm+4 = 9τm+2 + 9τm,
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the characteristic polynomial is of the type

ρ2 − 9ρ− 9 = 0. (15)

Equation (15) has the roots:

ρ1 =
3
(
3 +
√
13
)

2
,

3
(
3−
√
13
)

2
.

From the general iterative theory it follows that the order
of convergence of the iteration procedure, defined by
(9) is given by the only real root of equation (15) with
magnitude greater than 1. On the other hand,

|ε2n+1| ≤ K
− 3

17

10 d2n+1, |ε2n+2| ≤ K
− 7

17

10 d2n+2,

and consequently we can conclude that the order of
convergence of iteration (9) is

τ =
3
(
3 +
√
13
)

2
≈ 9.9083...

Thus, the theorem is proven.

C. Optimal algorithm in the sense of Kung–Traub with
order of convergence p = 16

We consider the following nonstationary iterative
scheme based on the 4-point iteration function in combi-
nation with an optimal algorithm in the sense of Kung–
Traub with order of convergence p = 16:

x2n+1 = ϕ1(x2n, x2n−1, x2n−2, x2n−3),

x2n+2 = ϕ4(x2n+1).
(16)

It is known that for the error εi = xi − ξ, i =
−3,−2,−1, 0, 1, 2 . . . ; [30] is valid

ε2n+1 ∼ C1(ξ)ε2nε2n−1ε2n−2ε2n−3, (17)

ε2n+2 ∼ C4(ξ)ε
16
2n+1. (18)

Let
K11 = max {|C1(ξ))|, |C4(ξ)|} ,

d2n−1 = K
1

11

11 |ε2n−1|,

d2n = K
5

11

11 |ε2n|,
and let d > 0, and x−3, x−2, x−1 and x0 be chosen so
that the following inequalities

d−3 = K
1

11

11 |x−3 − ξ| ≤ d < 1,

d−2 = K
5

11

11 |x−2 − ξ| ≤ d < 1,

d−1 = K
1

11

11 |x−1 − ξ| ≤ d < 1,

d0 = K
5

11

11 |x0 − ξ| ≤ d < 1

hold true.
From (17) and (18), we have

d2n+1 = K
1

11

11 |ε2n+1|

≤ K
1

11

11K11|ε2n||ε2n−1||ε2n−2||ε2n−3|

= K
1

11

11K
1

11
+ 1

11
+ 1

11

11 |ε2n|ε2n−1||ε2n−2|ε2n−3|

= d2nd2n−1d2n−2d2n−3,

d2n+2 = K
5

11

11 |ε2n+2|

≤ K
5

11

11K11ε
16
2n+1 =

(
K

1

11

11 ε2n+1

)16

= d162n+1.

(19)

From (19), we find

d1 ≤ d4, d2 ≤ d64, d3 ≤ d70, d4 ≤ d1120,
d5 ≤ d1258, d6 ≤ d20128, d7 ≤ d22576, d8 ≤ d361216,
d9 ≤ d405178, d10 ≤ d6482848.

Our results concerning the order of convergence gener-
ated by (19) are summarized in the following theorem.
Theorem C. Assume that the initial approximations
x0, x−1, x−2, x−3 are chosen so that d−3 ≤ d, d−2 ≤
d, d−1 ≤ d < 1 and d0 ≤ d < 1. Then for the error of
the sequences {x2n+1}∞n=0 and {x2n+2}∞n=0 determined
by (16), we have

d2n−1 ≤ dτ2n−1 ,
d2n ≤ dτ2n ,

(20)

where

τm+4 = 17τm+2 + 17τm, m = 1, 2, . . . (21)

and the order of convergence of the iteration (16) is

τ =

(
17 +

√
357

)
2

.

Proof. In our case, for the recursion

τm+4 = 17τm+2 + 17τm,

the characteristic polynomial is of the type

ρ2 − 17ρ− 17 = 0. (22)

Equation (22) has the roots:

ρ1 =

(
17 +

√
357

)
2

,

(
17−

√
357

)
2

.

From the general iterative theory it follows that the order
of convergence of the iteration procedure, defined by
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(16) is given by the only real root of equation (22) with
magnitude greater than 1. On the other hand,

|ε2n+1| ≤ K
− 1

11

11 d2n+1, |ε2n+2| ≤ K
− 5

11

11 d2n+2,

and consequently we can conclude that the order of
convergence of iteration (16) is

τ =

(
17 +

√
357

)
2

≈ 17.9472...

Thus, the theorem is proven.

D. Optimal algorithm in the sense of Kung–Traub with
order of convergence p = 32

We consider the following nonstationary iterative
scheme based on the 4-point iteration function in combi-
nation with an optimal algorithm in the sense of Kung–
Traub with order of convergence p = 32:

x2n+1 = ϕ1(x2n, x2n−1, x2n−2, x2n−3),

x2n+2 = ϕ5(x2n+1).
(23)

For the error εi = xi − ξ, i = −3,−2,−1, 0, 1, 2 . . . ;
[30] is valid

ε2n+1 ∼ C1(ξ)ε2nε2n−1ε2n−2ε2n−3, (24)

ε2n+2 ∼ C5(ξ)ε
16
2n+1. (25)

Let
K12 = max {|C1(ξ))|, |C5(ξ)|} ,

d2n−1 = K
3

65

12 |ε2n−1|,

d2n = K
31

65

12 |ε2n|,

and let d > 0, and x−3, x−2, x−1 and x0 be chosen so
that the following inequalities

d−3 = K
3

65

12 |x−3 − ξ| ≤ d < 1,

d−2 = K
31

65

12 |x−2 − ξ| ≤ d < 1,

d−1 = K
3

65

12 |x−1 − ξ| ≤ d < 1,

d0 = K
31

65

12 |x0 − ξ| ≤ d < 1

hold true.

From (24) and (25), we have

d2n+1 = K
3

65

12 |ε2n+1|

≤ K
1

12

12K12|ε2n||ε2n−1||ε2n−2||ε2n−3|

= K
3

65

12K
3

65
+ 31

65
+ 31

65

12 |ε2n|ε2n−1||ε2n−2|ε2n−3|

= d2nd2n−1d2n−2d2n−3,

d2n+2 = K
31

65

12 |ε2n+2|

≤ K
31

65

12K12ε
32
2n+1 =

(
K

3

65

12 ε2n+1

)32

= d322n+1.

(26)

Evidently, from (26), we find

d1 ≤ d4, d2 ≤ d128, d3 ≤ d134, d4 ≤ d4288,
d5 ≤ d4554, d6 ≤ d145728, d7 ≤ d154704,
d8 ≤ d4950528, d9 ≤ d5255514, d10 ≤ d168176448.

Our results concerning the order of convergence gener-
ated by (23) are summarized in the following theorem.
Theorem D. Assume that the initial approximations
x0, x−1, x−2, x−3 are chosen so that d−3 ≤ d, d−2 ≤
d, d−1 ≤ d < 1 and d0 ≤ d < 1. Then for the error of
the sequences {x2n+1}∞n=0 and {x2n+2}∞n=0 determined
by (23), we have

d2n−1 ≤ dτ2n−1 ,
d2n ≤ dτ2n ,

(27)

where

τm+4 = 33τm+2 + 33τm, m = 1, 2, . . . (28)

and the order of convergence of the iteration (23) is

τ =

(
33 +

√
1221

)
2

.

Proof. In our case, for the recursion

τm+4 = 33τm+2 + 33τm,

characteristic polynomial is of the type

ρ2 − 33ρ− 33 = 0. (29)

Equation (29) has the roots:

ρ1 =

(
33 +

√
1221

)
2

,

(
33−

√
1221

)
2

.

From the general iterative theory it follows that the order
of convergence of the iteration procedure, defined by
(23) is given by the only real root of equation (22) with
magnitude greater than 1. On the other hand,

|ε2n+1| ≤ K
− 3

65

12 d2n+1, |ε2n+2| ≤ K
− 31

65

12 d2n+2,
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and consequently we can conclude that the order of
convergence of iteration (23) is

τ =

(
33 +

√
1221

)
2

≈ 33.9714...

Thus, the theorem is proven.

III. CONCLUSION

If in the literature in terms of optimal Kung–Traub
algorithm of order 64 appeared, we have shown that the
acceleration in the light of our considerations is:

τ =

(
65 +

√
4485

)
2

≈ 65.9851...

Intensively working scientific groups in this branch of
numerical analysis should directed theirs efforts to make
new interval numerical algorithms which are based on
recently arised schemes which are optimal in the sense
of Kung–Traub.

For methodical construction of numerical algorithms
with result verification see Markov [17], [18] and his
coauthors [4], [5], [19], [15].
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