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Abstract—We present a class of deterministic continuum
models for spatially heterogeneous biofilm communities.
The prototype is a single-species biofilm growth model,
which is formulated as a highly non-linear system of
reaction-diffusion equations for the biomass density and
the concentration of the growth controlling substrate.
While the substrate concentration satisfies a standard
semi-linear reaction-diffusion equation the equation for the
biomass density comprises two non-linear diffusion effects:
a porous medium-type degeneracy and super diffusion.

When further biofilm processes are taken into account
equations for several substrates and multiple biomass com-
ponents have to be included in the model. The structure
of these multi-component extensions is essentially different
from the mono-species case, since the diffusion operator
for the biomass components depends on the total biomass
in the system and the equations are strongly coupled.

We present the prototype biofilm growth model and give
an overview of its multi-component extensions. Moreover,
we summarize analytical results that were obtained for
these models.

Keywords-biofilm; antibiotic disinfection; probiotic con-
trol; quorum-sensing; degenerate reaction-diffusion sys-
tems;

I. INTRODUCTION

The dominant mode of microbial life in aquatic
ecosystems are biofilm communities rather than plank-
tonic cultures ([1]). Biofilms are dense aggregations of
microbial cells encased in a slimy extracellular matrix

forming on biotic or abiotic surfaces (called substrata) in
aqueous surroundings. Such multicellular communities
are a very successful life form and able to tolerate
harmful environmental impacts that would eradicate free
floating individual cells ([3], [17]). Whenever environ-
mental conditions allow for bacterial growth, microbial
cells can attach to a substratum and switch to a sessile
life form. They start to grow and divide and produce
a gel-like layer of extracellular polymeric substances
(EPS) often forming complex spatial structures. The self-
produced EPS yields protection and allows survival in
hostile environments. For instance, the mechanisms of
antibiotic resistance in biofilm cultures are essentially
different from those of free swimming cells, which
makes it difficult to eradicate bacterial biofilm infections.
The EPS retards diffusion of antibiotics and the antibiotic
agents fail to penetrate into the inner cores of the biofilm
([3], [17], [4]).

Biofilms play a significant role in various fields.
They are beneficially used in environmental engineering
technologies for groundwater protection and wastewater
treatment. However, in most occurrences biofilm forma-
tions have negative effects. If they form on implants
and natural surfaces in the human body they can pro-
voke bacterial infections such as dental caries and otitis
media ([3]). Biofilm contamination can lead to health
risks in food processing environments, and biofouling of
industrial equipment or ships can cause severe economic
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defects for the industry ([4], [21]).
Mathematical models of biofilms have been studied

for several decades. They range from traditional one-
dimensional models that describe biofilms as homo-
geneous flat layers, to more recent two- and three-
dimensional biofilm models that account for the spa-
tial heterogeneity of biofilm communities. A variety of
mathematical modeling concepts has been suggested,
including discrete stochastic particle based models and
deterministic continuum models, that are based on the
description of the mechanical properties of biofilms ([7],
[21]). We are concerned with the latter, where biofilm
and liquid surroundings are assumed to be continua,
and its time evolution is governed by systems of de-
terministic PDEs. The first continuum model [22] was
a one-dimensional biofilm growth model and essentially
based on the assumption that biofilms are homogeneous
flat layers. Such models serve well for engineering
applications on the macro-scale (larger than 1cm) are,
however, not capable to predict the often highly irreg-
ular spatial structure of microbial populations and the
behavior of biofilms on the meso-scale (between 50µm
and 1mm), the actual length scale of mature biofilms
([7]). Biofilms can form mushroom-like caps and contain
clusters and channels, where substrates can circulate.
Cells in different regions of the biofilm live in diverse
micro-environments and exhibit differing behavior ([3]).

To capture the spatial heterogeneity of biofilms a
higher dimensional biofilm growth model was proposed
in [6], which is based on the interpretation of a biofilm as
a continuous, spatially structured microbial population.
The essential difficulty is to model the spatial spreading
mechanism of biomass and to reproduce the growth
characteristics of biofilms that have been observed in
experiments ([6]):

• Biofilm and aqueous surroundings are separated by
a sharp interface.

• The biomass density is bounded by a known max-
imum value.

• Spatial spreading only takes place where the local
biomass density approaches values close to its max-
imum possible value, while it does not occur in
regions where the biomass density is low.

The mathematical model [6] is formulated as system
of highly non-linear reaction-diffusion equations for the
biomass density and the concentration of a growth lim-
iting nutrient, and is the prototype of the biofilm models
we consider. While the substrate concentration satisfies
a standard semi-linear reaction-diffusion equation the

governing equation for the biomass density exhibits
two non-linear diffusion effects. The biomass diffusion
coefficient degenerates like the porous medium equation
and shows super diffusion, which causes difficulties in
the mathematical analysis of the model. It was shown
by numerical experiments that the model is capable of
predicting the heterogeneous spatial structure of biofilms
and is in good agreement with experimental findings
([6]). In [10] and [9] the model was studied analytically.
In particular, the well-posedness of the model and the
existence of a compact global attractor was shown.

The prototype single-species single-substrate model
was extended to model biofilms which consist of several
types of biomass and account for multiple dissolved
substrates. The model introduced in [4] describes the
diffusive resistance of biofilms against the penetration
by antibiotics. In [13] an amensalistic biofilm control
system was modelled, where a beneficial biofilm controls
the growth of a pathogenic biofilm. The structure of
these multi-species models differs essentially from
the mono-species model, and the analytical results
for the prototype model could not all be carried
over to the more involved multi-species case. In both
articles, existence proofs for the solutions were given,
and numerical studies presented, but the question of
uniqueness of solutions remained unanswered in [4] and
[13]. Recently, another multi-component biofilm model
was proposed in [11], which describes quorum-sensing
in growing biofilm communities. Quorum-sensing is a
cell-cell communication mechanism used by bacteria
to coordinate behavior in groups. The model behavior
was studied by numerical experiments in [11] and
[21], analytical questions were addressed in [21].
Compared to the multicomponent biofilm models [4]
and [13], the particularity of the quorum-sensing model
is, that adding the governing equations for the involved
biomass components we recover exactly the mono-
species biofilm growth model. Taking advantage of the
known results for the prototype model the existence and
uniqueness of solutions and the continuous dependence
of solutions on initial data could be established in
[21]. It is the first uniqueness result for multi-species
reaction-diffusion models of biofilms that extend the
single-species model [6].

In Section II we introduce the prototype biofilm
growth model. Multicomponent extensions are addressed
in Section III. In Section IV we give an overview of
the analytical results obtained for these models. For
numerical simulations and further details we refer to [6],
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[10], [13], [4], [21] and [8]. In [8] also extensions in
other directions of the prototype biofilm growth model
are discussed, e.g., models that take the effect of hydro-
dynamics into account.

II. PROTOTYPE BIOFILM GROWTH MODEL

The multi-dimensional biofilm growth model proposed
in [6] is formulated as a non-linear reaction-diffusion
system for the biomass density and the concentration
of the growth controlling nutrient in a bounded domain
Ω ⊂ Rn, n = 1, 2, 3, where the boundary of the
domain ∂Ω is piecewise smooth. In dimensionless form
the substrate concentration S is scaled with respect
to the bulk concentration, and the biomass density is
normalized with respect to the maximal bound for the
cell density. Consequently, the dependent model variable
M represents the volume fraction occupied by biomass.
The EPS is implicitly taken into account, in the sense
that the biomass volume fraction M describes the sum
of biomass and EPS assuming that their volume ratio is
constant. Both unknown functions depend on the spatial
variable x ∈ Ω and time t ≥ 0, and satisfy the parabolic
system

∂tS = dS∆S − k1
SM

k2 + S
, (1)

∂tM = dO · (D(M)OM) + k3
SM

k2 + S
− k4M,

M |∂Ω = 0, S|∂Ω = 1,

M |t=0 = M0, S|t=0 = S0,

where the constants d, dS and k2 are positive, the con-
stants k1, k3 and k4 are non-negative. Furthermore, ∂t
denotes the partial derivative with respect to time t > 0,
∆ the Laplace operator and O the gradient with respect
to the spatial variable x ∈ Ω and · the inner product in
Rn.

The solid region occupied by the biofilm as well as
the liquid surroundings are assumed to be continua. The
actual biofilm is described by the region

Ω1(t) := {x ∈ Ω | M(x, t) > 0},

and the liquid area by

Ω2(t) := {x ∈ Ω | M(x, t) = 0}.

The substratum, on which the biofilm grows, is part of
the boundary ∂Ω.

The constants in System (1) have the following
meaning, for further details and their typical values in
applications we refer to [6].

Fig. 1. Biofilm Domain

dS substrate diffusion coefficient
d biomass motility constant
k1 maximum specific consumption rate
k2 Monod half saturation constant
k3 maximum specific growth rate
k4 biomass decay rate
a, b biomass spreading parameters

Biomass is produced due to the consumption of nutri-
ents, which is described the Monod reaction functions

−k1
SM

k2 + S
and k3

SM

k2 + S
.

Natural cell death is also included in the model and
given by the lysis rate k4 in the equation for the biomass
fraction.

While the nutrient is dissolved in the domain and
the substrate concentration satisfies a standard semi-
linear reaction-diffusion equation, the spatial spreading
of biomass is determined by the density-dependent dif-
fusion coefficient

D(M) =
Ma

(1−M)b
a, b ≥ 1.

The biomass motility constant d is small compared to the
diffusion coefficient dS of the dissolved substrate, which
reflects that the cells are to some extent immobilized
in the EPS matrix. Accumulation of biomass leads
to spatial expansion of the biofilm. We observe that
the biomass diffusion coefficient vanishes when the
total biomass approaches zero and blows up when
the biomass density tends to its maximum value. The
polynomial degeneracy Ma is well-known from the
porous medium equation and guarantees that spatial
spreading is negligible for low values of M . Moreover,
it yields the separation of biofilm and liquid phase, that
is, a finite speed of interface propagation. Spreading
of biomass takes place when and where the biomass
fraction takes values close to its maximal value. When
M = 1 instantaneous spreading occurs, which is known
as the effect of super diffusion. This singularity at
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M = 1 of the biomass diffusion coefficient ensures the
maximal bound for the biomass density.

It was shown in numerical experiments that the model
(1) is in good agreement with experimental findings
and is capable to reproduce the irregular, heterogeneous
spatial structure of biofilms observed on the mesoscale
([6], [10]). More precisely, the simulations show that the
biofilm develops a rather regular, homogeneous structure
if nutrients are nowhere limited in the system. On the
other hand, when the nutrient supply is not symmetric
and nutrients become limited the colonies grow in the
direction of higher nutrient concentrations, which can
lead to cluster and channel morphologies and mushroom-
shaped architectures.

III. MULTICOMPONENT BIOFILM MODELS

The prototype biofilm growth model (1) was extended
to incorporate further biofilm processes. It requires to
distinguish different types of biomass and dissolved
substrates and to include governing equations for these
multiple biomass fractions and dissolved substrates in
the model. The pattern of the multi-component biofilm
models is essentially different from the prototype model,
the equations for the biomass components are strongly
coupled through the diffusion operators. In this section
we discuss multi-component biofilm models, that were
proposed and studied in [4], [5], [11], [13], [21].

A. Antibiotic Disinfection of Biofilms

The first multi-species multi-substrate generalization
of the prototype model (1) was suggested in [5]. In [4]
existence results for the solutions were established and
numerical simulations presented. The model describes
a growing biofilm community and its disinfection by
antimicrobial agents. Bacteria in biofilm populations
are better protected than free floating cells and behave
essentially different under antibiotic treatment. The EPS
retards diffusion of antimicrobial agents into the biofilm,
cells in the outer layers are attacked first while bacteria
in the inner cores are well protected and continue to
grow.

The dependent model variables are:

S nutrient concentration
B concentration of the antimicrobial agent
X volume fraction occupied by active biomass
Y volume fraction occupied by inert biomass

The dissolved nutrient S controls the growth of the
biomass, and the antimicrobial agent B regulates the

disinfection process. As previously, the EPS is implic-
itly taken into account, and the total biomass fraction
M := X+Y is normalized with respect to the maximum
bound for the cell density. In dimensionless form the
model is represented by the parabolic system

∂tS = dS∆S − k1
SX

k2 + S
, (2)

∂tB = dB∆B − ζ1BX,

∂tX = dO · (D(M)OX)

+ k3
SX

k2 + S
− k4X − ζ2BX,

∂tY = dO · (D(M)OY ) + ζ2BX,

with non-negative and bounded initial and boundary data

X|∂Ω = 0, Y |∂Ω = 0, S|∂Ω = Sr, B|∂Ω = Br,

X|t=0 = X0, Y |t=0 = Y0, S|t=0 = S0, B|t=0 = B0,

where we use the same notations as in (1). The
additional constants ζ1, ζ2 and dB in (2) are positive
and have the following meaning:

dB diffusion coefficient of antibiotics
ζ1 antibiotics consumption rate
ζ2 inert biomass production rate

Apart from the diffusion of the dissolved substrates
and the death, growth and spatial spreading of biomass
the disinfection mechanism is included in the model.
During this process antibiotic agents are consumed and
active biomass is directly converted into inert biomass,
which is determined by the disinfection parameters ζ1

and ζ2. Like in the mono-species model, the production
of active biomass due to the consumption of nutrients is
described by Monod reaction functions. In the absence
of antimicrobial agents and inert biomass, the model
reduces to the single species biofilm growth model (1).

In [4] numerical simulations were presented to illus-
trate the model behavior and to analyze the efficiency
of different disinfection strategies. The numerical exper-
iments show that cells in the outer layers of the biofilm
are attacked first while cells in the inner scores remain
protected and survive longer.

B. Amensalistic Biofilm Control System

The model of an amensalistic biofilm control system
[13] extends the single-species probiotic model [14] and
possesses a similar structure as the model of antibiotic
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disinfection. In [13] existence results for the solutions
were established and numerical simulations presented.

The model describes how a beneficial biofilm con-
trols the growth of a pathogenic biofilm community by
alternating the environmental conditions. The probiotic
biofilm modifies the local concentration of protonated
lactic acids, which decreases the pH concentration and
deteriorates the growth conditions for the pathogens,
while the controlling bacteria are more tolerant to these
changes. The dependent model variables are:

C concentration of protonated lactic acids
P concentration of hydrogen ions
X volume fraction occupied by pathogens
Y volume fraction occupied by probiotics
Z volume fraction occupied by inert biomass

In dimensionless form the model is represented by the
parabolic system

∂tC = dC∆C + α1X(ζ1 − C) + α2Y (ζ1 − C), (3)

∂tP = dP∆P + α3C(ζ2 − P ),

∂tX = dO · (D(M)OX) + µ1ψ1(C,P )X,

∂tY = dO · (D(M)OY ) + µ2ψ2(C,P )Y,

∂tZ = dO · (D(M)OZ)−min{0, µ1ψ1(C,P )X}
−min{0, µ2ψ2(C,P )Y },

with non-negative and bounded initial and boundary data

C|∂Ω = Cr, P |∂Ω = Pr,

X|∂Ω = 0, Y |∂Ω = 0, Z|∂Ω = 0,

C|t=0 = C0, P |t=0 = P0,

X|t=0 = X0, Y |t=0 = Y0, Z|t=0 = Z0,

where we use the same notations as in (1). The constants
dC , dP , α1, α2, α3, µi and ζi, i = 1, 2, are positive and
have the following meaning:

dC diffusion coefficient of protonated lactic acids
dP diffusion coefficient of hydrogen ions
α1 acid production rate by pathogens
α2 acid production rate by probiotics
α3 hydrogen ions production rate
µ1 maximum growth rate of pathogens
µ2 maximum growth rate of probiotics
ζ1 acid saturation level
ζ2 hydrogen ion saturation level
ζ1
i pathogen growth kinetics, i = 1, . . . , 4
ζ2
i probiotics growth kinetics, i = 1, . . . , 4

Inert probiotics and pathogens are not distinguished in
the model. As previously, the EPS is implicitly taken into
account, and the total biomass fraction M := X+Y +Z
is normalized with respect to the maximum bound for the
cell density. Protonated lactic acids C are produced by
both bacterial species until a saturation level is reached.
The hydrogen ion concentration P is related to the local
pH value by pH = − logP. It increases, facilitated by
the protonated lactic acids, until a threshold value is
archived.

The growth and inhibition functions ψ1 and ψ2 are
piecewise linear such that they are positive if C and
P are small, and negative if C or P becomes large.
Between the growth and inhibition range there is an
extended neutral range. More precisely, the functions ψi
are given by

ψi(C,P ) = min

{
1− C

hi1(C)
, 1− P

hi2(P )

}
, i = 1, 2,

where hi1 and hi2 are defined as

hi1(C) = ζi1h(ζi1 − C) + Ch(C − ζi1)h(ζi2 − C)

+ h(C − ζi2),

hi2(P ) = ζi3h(ζi3 − P ) + Ph(P − ζi3)h(ζi4 − P )

+ h(P − ζi4),

for i = 1, 2. Moreover, the function h is given by

h(s) :=


1 s > 0,
1
2 s = 0,

0 s < 0,

s ∈ R,

and the constants ζ1
j and ζ2

j , j = 1, . . . , 4, are positive
with ζi1 < ζi2, ζ

i
3 < ζi4, i = 1, 2. For the probiotic

strategy to be effective we require that ζ2
j ≥ ζ1

j ,
j = 1, . . . , 4 ([13]).

The mechanism of probiotic control is different from
traditional antibiotic control strategies of biofilms, where
the inner layers of the film are protected by the outer
layers and the antibiotics fail to fully penetrate the
biofilm. The numerical experiments for the probiotic
biofilm model in [13] show that pathogens in the core of
the biofilm, close to the substratum, are eradicated first.

C. Quorum-Sensing in Patchy Biofilm Communities

A model for quorum-sensing in growing biofilm com-
munities was proposed and studied by numerical simu-
lations in [11]. It extends the prototype biofilm growth
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model (1) and combines it with the model for quorum-
sensing in planktonic cultures in [16]. Analytical aspects
of the quorum-sensing model [11] were addressed in
[21].

Quorum-sensing is a cell-cell communication mech-
anism used by bacteria to coordinate gene expression
and behavior in groups. Bacteria constantly produce low
amounts of signaling molecules that are released into
the environment. Accumulation of autoinducers triggers
a response by the cells and since the producing cells
respond to their own signals the molecules are also called
autoinducers ([16], [12]). When the concentration of
autoinducers locally passes a certain threshold, the cells
are rapidly induced, and switch from a so-called down-
regulated to an up-regulated state. In an up-regulated
state they typically produce the signaling molecule at a
highly increased rate ([11]).

The dependent model variables are:

S concentration of growth controlling substrate
A concentration of autoinducers
X volume fraction occupied by down-regulated cells
Y volume fraction occupied by up-regulated cells

In dimensionless form the model is represented by the
parabolic system

∂tS = dS∆S − k1
SM

k2 + S
, (4)

∂tA = dA∆A− γA+ αX + (α+ β)Y,

∂tX = dO · (D(M)OX) + k3
XS

k2 + S
− k4X

− k5|A|mX + k5|Y |,

∂tY = dO · (D(M)OY ) + k3
Y S

k2 + S
− k4Y

+ k5|A|mX − k5|Y |,

with non-negative and bounded initial and boundary data

S|∂Ω = 1, A|∂Ω = 0, X|∂Ω = 1, Y |∂Ω = 0,

S|t=0 = S0, A|t=0 = A0, X|t=0 = X0, Y |t=0 = Y0,

where we use the same notations as in (1) and |·| denotes
the absolute value. The constants dA and γ are positive,
m ≥ 1, and α, β and k5 are non-negative. Moreover, we
require that α+ β > γ.

Apart from the constants in the prototype model (1)
the constants in (4) have the following meaning:

dA diffusion coefficient of autoinducers
k5 up-regulation rate
α autoinducer production rate of

down-regulated cells
β increased autoinducer production rate of

up-regulated cells
γ abiotic decay rate of autoinducers
m polymerization exponent

The total biomass density M = X + Y is normalized
with respect to the maximum bound for the cell density
and the EPS is implicitly taken into account. Assuming
that induction switches the cells between down- and up-
regulated states without changing their growth behavior
we can assume that the spatial spreading of both biomass
fractions is described by the same diffusion operator.
The biomass motility constant d is small compared to
the diffusion coefficients dS and dA of the dissolved
substrates. Like in the mono-species biofilm growth
model, biomass is produced due to the consumption
of nutrients, which is described by the Monod reaction
functions

k3
XS

k2 + S
and k3

Y S

k2 + S

in the equations for the biomass fractions X and Y . Nat-
ural cell death is included in the model and determined
by the lysis rate k4.

If we do not distinguish between down-regulated and
up-regulated cells in the model (4), we recover the
prototype biofilm growth model (1) for the total biomass
M = X + Y and the growth controlling nutrient S.

The autoinducer concentration A is normalized with
respect to the threshold concentration for induction.
Down-regulated cells produce the signaling molecule
at rate α, while up-regulated cells produce it at the
increased rate α+β, where β is one order of magnitude
larger than α. Due to an increase of the autoinducer
concentration A, down-regulated cells are converted into
up-regulated cells at rate k5A

m. In applications, typical
values for the degree of polymerization are 2 < m < 3
([11], [21]). Up-regulated cells are converted back into
down-regulated cells at constant rate k5. If the molecule
concentration A < 1 the latter effect dominates, if
A > 1 up-regulation is super-linear. Moreover, abiotic
decay of signaling molecules is taken into account in
the model and determined by the constant rate γ.

The numerical simulations for the model in [21] indi-
cate that quorum-sensing in spatially structured biofilm
populations does not only depend on the local cell
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density of the population but also on mass transfer
effects. Namely, the location of the cell colonies relative
to each other and on the prescribed boundary conditions
for the substrates.

IV. ANALYTICAL RESULTS

In this section we give an overview of the analytical
results obtained for the prototype biofilm growth model
(1) and the multicomponent models (2), (3) and (4) in
[10], [4], [13], [21].

A. Prototype Biofilm Growth Model

A solution theory for the prototype model (1) was
developed in [10]. In particular, the well-posedness was
established and the existence of a compact global attrac-
tor was shown.

We recall the main results in [10] regarding the well-
posedness of the model (1). The following theorem
yields the existence and regularity results for the solu-
tions (Theorem 3.1, [10]).

Theorem 1. We assume the initial data satisfies

S0 ∈ L∞(Ω) ∩H1(Ω), S0|∂Ω = 1,

M0 ∈ L∞(Ω), F (M0) ∈ H1
0 (Ω),

0 ≤ S0 ≤ 1, 0 ≤M0 in Ω, ‖M0‖L∞(Ω) < 1,

where the function F (v) :=
∫ v

0
za

(1−z)bdz, for 0 ≤ v < 1.
Then, there exists a solution (S,M) satisfying System (1)
in the sense of distributions, and the solution belongs to
the class

M,S ∈ L∞(Ω× (0,∞)) ∩ C([0,∞);L2(Ω)),

F (M), S ∈ L∞((0,∞);H1(Ω)) ∩ C([0,∞);L2(Ω)),

0 ≤ S,M ≤ 1 in Ω× (0,∞), ‖M‖L∞(Ω×(0,∞)) < 1.

Moreover, it was shown that the solutions are L1(Ω)-
Lipschitz continuous with respect to initial data, which
implies its uniqueness. The following result recalls The-
orem 3.2 in [10].

Proposition 1. Let (S,M) and (S̃, M̃) be two solutions
of System (1) corresponding to initial data (S0,M0),
(S̃0, M̃0) respectively, and the initial data satisfy the
assumptions of the previous theorem. Then, the following
estimate holds

‖S(t)− S̃(t)‖L1(Ω) + ‖M(t)− M̃(t)‖L1(Ω)

≤ ect
(
‖S0 − S̃0‖L1(Ω) + ‖M0 − M̃0‖L1(Ω)

)
for t ≥ 0 and some constant c ≥ 0.

We shortly indicate the main ideas of the proofs, for all
details and further results we refer to [10]. The solutions
for the degenerate system (1) are obtained as limits of
the solutions of smooth regular approximations. More
precisely, the non-degenerate auxiliary systems for the
single-species model are given by

∂tS = dS∆S − k1
SM

k2 + S
, (5)

∂tM = dO · (Dε(M)OM) + k3
SM

k2 + S
− k4M,

M |∂Ω = 0, S|∂Ω = 1,

M |t=0 = M0, S|t=0 = S0,

where the diffusion coefficient in the equation for the
biomass fraction in (1) is replaced by the regularized
function

Dε(M) :=


εa M < 0,

(M+ε)a

(1−M)b 0 ≤M ≤ 1− ε,
1
εb M ≥ 1− ε,

M ∈ R,

for small ε > 0.
First, the non-negativity of the approximate solutions

(Sε,Mε) is shown and uniform a-priori L∞(Ω)-bounds
are established for all sufficiently small ε > 0. This is
archived by comparison principles and the construction
of appropriate barrier functions (Proposition 1, [10]).
Once a-priori bounds for the solutions are known the
existence of solutions of the regular auxiliary systems
(5) follows by standard arguments ([15]).

We further remark that the fast diffusion effect pre-
vents the biomass density from attaining the singu-
lar value. More precisely, if the initial data satisfies
‖M0‖L∞(Ω) = 1 − δ for some 0 < δ < 1, then, there
exists 0 < η < 1 such that the solutions of the non-
degenerate approximations (5) satisfy

‖Mε(t)‖L∞(Ω) ≤ 1− η, t ≥ 0,

for all sufficiently small ε > 0 (Proposition 6, [10]).
Having established uniform a-priori bounds we can

pass to the limit ε tends to zero in the distributional
formulation of the equation for the nutrient concentration
in (5) and obtain a solution S of the original degenerate
problem (1). In the governing equation for the biomass
density the passage to the limit in the reaction terms is
also immediate, the difficulty is to justify the limit for
the biomass diffusion terms (see the proof of Theorem
3.1, [10]).

The Lipschitz continuity with respect to initial data in
L1(Ω)-norm can be deduced from Kato’s inequality and
is shown in Proposition 2 and Theorem 3.2, [10].
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B. Multicomponent Biofilm Models

The pattern of the multi-component biofilm models is
essentially different from the prototype model, the equa-
tions are strongly coupled through the diffusion operators
and the analytical results for the single-species model
could not all be carried over. In [4] and [13] the behavior
of solutions was studied in numerical simulations and the
existence of solutions was established, but the question
of uniqueness of solutions remained unanswered in both
cases. The first uniqueness result for multispecies models
was obtained in [21].

1) Antibiotics and Probiotics Model: The following
existence result for solutions of the antibiotics model (2)
was shown in [4] (Theorem 2.3).

Theorem 2. We assume the functions Br and Sr are non-
negative and belong to the class L∞(∂Ω). Moreover, if
the initial data X0, Y0, S0, B0 are non-negative, belong
to L∞(Ω) and satisfy

0 ≤ S0 ≤ 1 in Ω, ‖X0 + Y0‖L∞(Ω) < 1,

then, there exists a global solution of the antibiotics
model, the functions S,B,X and Y belong to the space
L∞(Ω × (0,∞)), are non-negative and satisfy System
(2) in distributional sense.

It was shown in [4] that the limit of solutions of
non-degenerate approximations yields a solution of the
degenerate problem (2). The smooth regular approxima-
tions for the antibiotics model are obtained from the sys-
tem of equations (2) by replacing the diffusion coefficient
D(M) in the equations for the biomass components by
the regularized function Dε(M),

∂tX = dO · (Dε(M)OX) + k3
SX

k2 + S
− k4X − ζ2BX,

∂tY = dO · (Dε(M)OY ) + ζ2BX.

The non-negativity and uniform boundedness of the
solutions (Sε, Bε, Xε, Yε) of the auxiliary systems can be
deduced from comparison principles and by constructing
suitable barrier functions. Once a-priori L∞(Ω)-bounds
are known, the existence of solutions of the regular
approximations follows by standard arguments ([15]).

Using the uniform a-priori bounds for the solutions
of the non-degenerate approximations we can pass to
the limit ε tends to zero in the distributional formulation
of the equations for the dissolved substrates. The
difficulty is to justify the limit for the diffusion terms
in the governing equations for the biomass fractions.
Since the equations are strongly coupled, the proof

requires different arguments than the ones applied for
the single-species model in [10]. For all details and the
proof of Theorem 2 we refer to [4].

The structure of the probiotics model (3) is similar
to the structure of the antibiotics model (2) and the
existence of solutions was shown by similar arguments
(Theorem 3.3, [13]).

Theorem 3. We assume the functions Cr and Pr belong
to the class L∞(∂Ω) and satisfy

0 ≤ Cr ≤ ζ1, 0 ≤ Pr ≤ ζ2.

Moreover, if the initial data C0, P0, X0, Y0, Z0 are non-
negative, belong to L∞(Ω) and satisfy

0 ≤ C0 ≤ ζ1, 0 ≤ P0 ≤ ζ2 in Ω,

‖X0 + Y0 + Z0‖L∞(Ω) < 1,

then, there exists a global solution of the probiotics
model, the functions C,P,X, Y and Z belong to
L∞(Ω × (0,∞)), are non-negative and satisfy System
(3) in distributional sense.

For the proof of Theorem 3 we refer to [13]. Further
analytical results were not obtained for the models (2)
and (3). In particular, the question of uniqueness of
solutions remained unanswered in [4] and [13].

2) Quorum-Sensing Model: A different approach was
developed for the quorum-sensing model (4) in [21],
which led to a uniqueness result for the solutions. The
following theorem states the well-posedness of the model
(Theorem 3.5 and Theorem 3.11, [21]).

Theorem 4. Let the initial data satisfy X0, Y0, A0 ∈
H1

0 (Ω), S0 ∈ H1(Ω) such that S0|∂Ω = 1, and

0 ≤ S0, X0, Y0, A0 ≤ 1 in Ω, ‖X0 + Y0‖L∞(Ω) < 1.

Then, there exists a unique global solution of the
quorum-sensing model (4),

A,S,X, Y ∈ C([0,∞);L2(Ω)) ∩ L∞(Ω× [0,∞)),

A, S ∈ L2((0,∞);H1(Ω)),

D(M)OX, D(M)OY ∈ L2((0,∞);L2(Ω;Rn)),

the functions A,S,X and Y are non-negative and satisfy
System (4) in distributional sense.

The particularity of the quorum-sensing model (4) is
that adding the equations for the biomass fractions X
and Y we recover exactly the prototype biofilm growth
model (1) for the total biomass M = X + Y and the
growth limiting nutrient S. Hence, we may regard M
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and S as known functions, and the problem reduces to
show the well-posedness of the semi-linear degenerate
problem for the biomass fraction X and the signaling
molecule concentration A,

∂tA = dA∆A− γA+ αX + (α+ β)(M −X),

∂tX = dO · (D(M)OX) + k3
XS

k2 + S

− k4X − k5|A|mX + k5|M −X|.

Like for the antibiotics and probiotics model the
existence of solutions was established by considering
non-degenerate approximations, where the diffusion co-
efficient D(M) in the equations for the biomass fractions
in (4) is replaced by the regularized function Dε(M),

∂tX = dO · (Dε(M)OX) + k3
XS

k2 + S
− k4X

− k5|A|mX + k5|Y |,

∂tY = dO · (Dε(M)OY ) + k3
Y S

k2 + S
− k4Y

+ k5|A|mX − k5|Y |.

Moreover, using the results obtained for the solutions
of the single-species model in [10], further regularity
results for the solutions could be established, which led
to a uniqueness result. For further details and the proofs
we refer to [21].

V. CONCLUDING REMARKS

The existence results in the previous section are
formulated assuming homogeneous Dirichlet boundary
conditions for the biomass components. This situation
resembles growing biofilms without substratum, which
are commonly called microbial flocs. Such bacterial
aggregates enclosed in an EPS matrix are used in the
industry for wastewater treatment and also occur in nat-
ural settings ([18]). Boundary conditions of mixed type
are, however, often more appropriate in applications.
Typically, Dirichlet conditions are specified on some part
of the boundary, while Neumann or Robin conditions are
imposed on the other parts. In particular, the substratum,
on which the biofilm grows is impermeable for all
dependent variables, which is described by homogeneous
Neumann boundary values. All existence proofs of the
previous section carry over to these more general situ-
ations as long as homogeneous Dirichlet conditions are
imposed for the biomass fractions on one part of the
boundary (for details see Theorem 4.1, [10]).

On the other hand, if homogeneous Neumann condi-
tions are assumed for all biomass components and con-
stant Dirichlet conditions for the nutrient concentration,

which reflects the situation that no biomass can leave the
system and nutrients are constantly added, it was shown
that the biomass density reaches the singular value in
finite time (Proposition 7 and Proposition 8, [10]).

We finally remark that the solution theory for the
single-species model was also extended to less regular
initial data. It suffices to assume that the total biomass
initially fulfils M0 ∈ L∞(Ω) and 0 ≤ M0 ≤ 1. If
the biomass components satisfy homogeneous Dirichlet
conditions on one part of the boundary, the biomass
spreading mechanism is strong enough to prevent the
solution from attaining the singular value (see Theorem
3.5, [10]).
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