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Abstract—The theoretical study of the stability of the
numerical solution of a differential system may be com-
plicated or even not feasible when the system is large
and nonlinear. Here it is shown that such a study can
be experimentally done by using stochastic arithmetic and
its discrete approach known as the CESTAC method.

The CESTAC method has been first proposed since more
than forty years by M. La Porte and J. Vignes as an exper-
imental statistical method to estimate the accuracy on the
result of numerical program [10], [14]. Later an abstract
formalization of the theory called Stochastic Arithmetic
has been developed and many of its algebraic properties
have been studied [2], [4], [5]. Here a brief presentation
of stochastic arithmetic, of its main properties and of
the different software existing for its implementation are
given. Then it is demonstrated that the use of stochastic
arithmetic in the solver of a differential system can easily
reveal whether the computed solution is stable or not.
Moreover the stability can be studied with respect to the
coefficients of the system or with respect to the initial
conditions. At the end it is also pointed out that the same
method can be used to detect instabilities due to the used
solver. Some examples taken from the biological literature
are given [1], [6], [7].

Keywords-Stochastic arithmetic, CESTAC method, sta-
bility of differential biological models.

I. INTRODUCTION

The detection of instabilities in the numerical solution
of differential systems is generally not an easy thing to

do. Actually instabilities have two main sources. The
theoretical differential system can be stiff or inherently
unstable and the numerical method used to solve it
can also be unstable. A common example of this last
situation is the numerical solution of a stiff system using
an explicit method and a too large step.

The classical approach to know whether a differential
system is stable or not is the computation of its Jacobian
and of its eigenvalues, see for example [12]. This is
generally not so easy and requires most of the time
manual calculation or the use of a computer algebra
system. In the same manner the use of an explicit method
to solve a differential system is rather simple but may
lead to numerical instabilities if the step happen to be
too large even if the method has an automatic calculation
of the step. On the contrary an implicit method may
not have this step restriction but requires at each step
the solution of a system of equations which is non
linear when the differential system is non linear. And
this is the case for most biological models. Here it
is shown that a simple method called the CESTAC
method can be easily used to investigate the sensitivity
of the computed solution to the coefficients and initial
conditions of a differential system and to detect possible
instabilities. Various numerical examples coming from
the modelisation of bacterial growth are presented.

The structure of this paper is as follows. First stochas-
tic arithmetic and the CESTAC method are shortly
recalled. Then a software called CADNA which imple-
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ments the CESTAC method is presented and the use of
this software to investigate the stability of the solution
of a differential system is detailed. Its efficiency is
illustrated on several biological models.

II. STOCHASTIC ARITHMETIC AND THE CESTAC
METHOD

A. Stochastic Arithmetic

Stochastic arithmetic is a model for exact computation
on imprecise data. It can be summed-up as follows.

Let us assume that an imprecise data can be rep-
resented as a Gaussian distribution with known mean
value m and known standard deviation σ, σ ≥ 0. In the
following such an imprecise data is called a stochastic
number. Thus the set of stochastic numbers denoted S is
the set of Gaussian random variables.

One of the main properties of a Gaussian distribution
and hence of a stochastic number is:

For X = (m,σ) the confidence interval of m
with a probability P = (1 − η) is defined as
[m− λησ,m+ λησ] where λη is such that

P (X ∈ [m− λησ,m+ λησ]) = 1− η, (1)

It is well known that for η = 0.05, that is P = 1− η =
0.95, we have λη = 1.96. Consequently the number of
significant decimal digits on m is the integer part of:

Cη,X = log10

(
|m|
λησ

)
, (2)

provided that |m|/(λησ) ≥ 10, otherwise we assume
Cη,X = 0.

The ratio λησ/|m| is called the relative error of the
stochastic number X . This characteristic is analogous to
the relative error of an approximate number.

The arithmetic operations on stochastic numbers are
defined as the operations on independent Gaussian dis-
tributions. They are denoted s+, s−, s∗, s/ in [8] and [9]
but here the simpler notations +,−, ×, / are preferred.
They are:

X1 +X2
def
=
(
m1 +m2,

√
σ21 + σ22

)
X1 −X2

def
=
(
m1 −m2,

√
σ12 + σ22

)
X1×X2

def
=
(
m1m2,

√
m2

2σ12 +m1
2σ22 + σ21 σ

2
2

)
X1/X2

def
=

(
m1/m2,

√(
σ1

m2

)2
+
(
m1σ2

m2
2

)2
+
(
σ1σ2

m2
2

)2)
(3)

The first three formulae including stochastic multiplica-
tion are exact. The formula for the division is only exact
to the first order terms in σ/m and must be considered
as an approximation. Actually it is well known that the
distribution of the ratio of two Gaussian variables with
expected value 0 and variance 1 is not Gaussian but
follows a Cauchy law which has no mean value and no
standard deviation but is symmetric and has a mode and
a median. More details on stochastic arithmetic can be
found in [2], [4], [5], [11], [13].

B. The CESTAC method

When one wants to develop a software to estimate
the accuracy of a numerically computed result a first
possibility is to use formulae (3) instead of standard
floating point operations. This can be easily done as
many programming languages such as C++ or Fortran
90 allow the overloading (re-definition) of the floating
point operations.

Another approach used in the CESTAC method, see
[3], [14], [9] is to discretize the theoretical Gaussian
distributions with Gaussian random samples and to use
their empirical mean values and standard deviations
instead of the theoretical ones. This is done in the
CESTAC method in the case of rounding errors coming
from the floating point operators.

The idea of the CESTAC method is that each result
of a floating point operator (assignment, arithmetic op-
erator) which is not an exact floating point value, is
always bounded by two floating point values R− and
R+ obtained by rounding up or down the exact result,
each of them being representative of the exact result.
The random rounding mode consists, at the level of
each floating point operation or assignment, in choosing
as a result, randomly with an equal probability, either
R− or R+. Thus when a code is performed N times
in a synchronous parallel way with the use of this
random rounding mode, N samples Rk, k = 1..., N
of each computed results are obtained, and then from
these samples, the accuracy of the mean value R of
these samples, considered as the computed result, may
be estimated.

Hence a probabilistic model of the round-off error on
a computed result obtained with the random rounding
mode has been developed, see [9]. In this model it is
shown that under two simple hypotheses which generally
hold in real life problems, each sample obtained by the
CESTAC method may be modelled by a random variable
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Z defined by:

Z ' r +
nb∑
i=1

ui(d)2
−pzi, zi ∈]− 1,+1[ (4)

where r is the unknown exact result, p is the length of the
mantissa in the floating point representation of numbers,
ui(d) are constants, nb is the number of arithmetic
operations and zi are independent centred and equi-
distributed variables.

As a consequence: E(Z) ' r, the distribution of Z
is quasi-Gaussian and the estimation of the accuracy on
R can be done with the Student test which provides a
confidence interval for R.

Hence the number of decimal significant digits CR of
R can be estimated by:

CR = log10

(√
N
∣∣R∣∣

τησ

)
(5)

where

R =
1

N

N∑
k=1

Rk, σ2 =
1

N − 1

(
Rk −R

)2
τη is the value of the Student distribution for N − 1
degrees of freedom and a probability level 1− η.

From a theoretical point of view the vector of the N
empirical values representing a floating point result used
in the CESTAC method is called a discrete stochastic
number. In the same manner the CESTAC method is
said to use a discrete stochastic arithmetic (DSA).

It must be noted that the CESTAC method differs from
a simple Monte Carlo method where a Gaussian noise
would be added to the data and the program would be
run several times. In contrast in the CESTAC method
a Gaussian noise is actually added to the data but also
after each arithmetic operation N results are computed
being rounded randomly up or down. Moreover the
runs are done in such a way that at each test the
same branching is performed in all runs. Thus after
each arithmetic operation or each test the theoretically
computed stochastic number appears as a vector of N
empirical values really representing the same theoretical
value. Hence, the number of decimal significant digits of
any intermediate result can be computed using formula
(5) in the same manner as the one(s) of the final result(s).
This would not be the case in a simple Monte Carlo
method.

C. The Cadna software

The Cadna software implements the so-called discrete
stochastic arithmetic, which is nothing else than the
CESTAC method to which have been added comparison
operators, the notion of non-significant result and some
more complementary features. It can be freely down-
loaded from [8]. Two versions exist, one in Fortran 90
and one in C++. They have been developed as libraries
to be added to an already existing code.

In this software, new types for single precision and
double precision stochastic numbers have been defined
and all arithmetic operators and tests have been over-
loaded so that computing with stochastic numbers is as
easy as computing with real numbers. Thus, any Fortran
90 or C++ code working with real numbers can be almost
instantly converted in a code working with stochastic
numbers, i.e. numbers with their errors. It has been
theoretically and experimentally shown that formula (5)
is correct to one digit with N = 3, consequently in the
Cadna software all stochastic numbers are represented
as three samples with Gaussian distribution.

Another feature of the Cadna software is that stochas-
tic numbers represent imprecise numbers where the error
is due not only to rounding in floating point arithmetic
but also to the data which may also be imprecise. Thus in
this software it is possible to introduce errors in the data
so that an imprecise data is represented by a stochastic
number with a known mean value and a known standard
deviation. This possibility is used in the experimental
investigation of the stability of the numerical solution
of differential systems especially those coming from the
modelisation of biological reactions.

III. APPLICATION TO SOME BIOLOGICAL MODELS

Many biological models are represented as nonlinear
differential systems. Studying their stability may be
difficult, see for example [6]. But the use of the Cadna
software leads to an immediate answer to the question:
“Is the computed solution stable around this special value
of this particular parameter?”

Of course this is not the answer to the more general
question “What is the domain of stability of the system?”
but as is shown below, it can easily help to analyse the
sensitivity of the solution to some parameter or to initial
conditions.

As illustrations of the efficiency of the CESTAC
method to experimentally investigate the stability of
computed solutions, several biological model solutions
have been computed using a fourth order Runge-Kutta
method together with the Cadna software.
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Errors have been introduced in the initial conditions
and in some parameters to see the effect of imprecise
data on the computed solution. The results are reported
in the corresponding figures. In these figures the so-
lutions computed with discrete stochastic numbers are
represented as three curves corresponding to the three
samples as explained above.

A. First model

The model is taken from [7] for cyclodextrin-glucano-
transferase production by immobilised cells of Bacillus
circulans ATCC21783. The differential system is:

dx
dt = (µ(s)− γ)x
ds
dt = −µ(s) x

yx/s

dp
dt = (αµ(s) + β)x

(6)

with initial conditions s0, x0, p0. In this system x is the
biomass concentration, s is the substrate concentration
and p is the product concentration. µ(s) is the Andrews
function: µ(s) = µmax

s
Ks+s+Kis2

.
The experiments have been done with the coefficients:

α = 1.11, β = 0.07, γ = 0.06, µmax = 2, yx/s =
26.3, Ks = 0.8, Ki = 0.12, s0 = 2, x0 = 0.2, p0 = 0

This system has been successively solved with some
tolerances introduced on the initial condition for the
substrate (s0 = 2 ± 0.2), then for the biomass con-
centration (x0 = 0.2 ± 0.1), then on the coefficient
µmax (µmax = 2 ± 0.3) and on the coefficient yx/s
(yx/s = 26 ± 1). At last the system has been solved
using a too large step (h = 0.9) so that the numerical
integrating method is unstable.

The results are reported in figures 1 to 5.
A simple observation of these figures shows that errors

on the initial conditions or on the coefficients cause two
kinds of modifications on the solution. One kind is an
increase or decrease of the limit of the product as in
figures (1) and (4), the other kind is a modification of
the delay after which the biomass and product begin
a fast increasing as in figures (2) and (3). Another
conclusion is that the system is much more sensitive
to the initial substrate concentration than to the initial
biomass concentration.

B. Second model

The model is taken from Alt and Markov [1] for E.
Coli + Glucose.

In this model the microbial population is subdivided
into two subgroups:

i) micro-organisms in lag and stationary phase are
classified into one subclass with biomass denoted x. It

is assumed that micro-organisms in that class experience
unfavourable growth conditions and are not able to
immediately produce anything;

ii) active (viable) micro-organisms in log phase, de-
noted y, possessing a complete set of active enzymes.

Bacteria in dying state are modelled by decay terms
and need not be assigned to a special subgroup.

The system of equations is here:

ds/dt = −k1xs− βys,
dx/dt = −k1xs+ k2y − kdx2,
dy/dt = k1xs− k2y + βys,

(7)

with the initial conditions

s(0) = s0, x(0) = x0, y(0) = y0.

The terms participating in this system have the fol-
lowing meaning:
k1xs models the consumption of s by bacteria x

and the transition of (fasting) bacteria x into (viable,
active) bacteria y; βys models the consume of s by
bacteria y and the increase of bacteria biomass y due
to nutrition and reproduction; k2y models the random
transitions of bacteria from class y into class x; kdx2

models competition and decay of (starving) bacteria x.
This system has been solved with the following coef-

ficients and initial conditions:
k1 = 0.23, k2 = 0.85, kd = 0.3, β = 1.0, s0 =

2.0, x0 = 0.25, y0 = 0.
To study the stability of the solution with respect to

the initial conditions, some relative errors have been
successively introduced into them. They were: 5% on
s0 and 25% on x0. The results are given in figure (6)
and (7). These two figures clearly show that the solution
is much more sensitive to an error on the initial amount
of substrate than to the initial amount of biomass. In fact
a 25% relative error on the biomass perturbs the solution
less that a 5% error on the initial substrate. This remark
goes in the same direction as the corresponding one for
the first model.

C. Third model

The model is taken from [6] for 1,2-dichloroethane
(DCA) biodegradation by Klebsiella oxytoca va 8391 im-
mobilized on granulated carbon. The differential system
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is:

dx1/dt = (µ1(s)−D)x1 + kimxim
dxim/dt = (µim(s)− kim)xim
ds/dt = −( 1γµ1(s) + β1)x1 − ( 1γµim(s) + βim)xim
+D(sin − s)− kLa(1− µ2(s))s
dp/dt = ( 1γµ1(s) + β1)x1
+( 1γµim(s) + βim)xim −Dp

(8)
with:

µ1(s) = m1s
ks+s+s2/ki

µim(s) = mims
ks+s+s2/ki

µ2(s) = m2s
k+s

(9)

with initial conditions x1(0), xim(0), s(0), p(0).
The signification and values of the coefficients of this

system can be found in [6]. This model differs from the
classical bioreactor models as a phase with immobilised
cells has been added to the normal free cells. These cells
are attached to carrier particles and can grow and detach
from the solid surface to leak into the liquid. In this
model x1, xim, s, p respectively represent the free cells,
the immobilised cells, the substrate and the product. A
detailed theoretical study of the stability of this model
has been developed in the cited paper.

Two experiments are reported here. The solutions have
been computed with the coefficients proposed by the
authors and initial conditions: x1(0) = 0.02, xim(0) =
9, s(0) = 0.25, p(0) = 0, which satisfy the theoretical
stability conditions.

In the first experiment relative errors have been simul-
taneously introduced in the initial conditions: 10% on
x1(0), 50% on xim(0) and 40% on s(0), i.e. the initial
values have been N times (N = 3) randomly generated
in the intervals x1(0)±10%, xim(0)±50%, s(0)±40%.

The second experiment has been done with the same
coefficients but with 100% simultaneous relative errors
in the initial conditions s(0), x1(0) and xim(0). The
results are shown in figures (8) and (9).

It must be noted that the concentrations of free cells
and of immobilized cells are of different order, close to
0.3 kg/m3 for the free cells and close to 200 kg/m3

for the immobilised cells. This is why in the figures the
concentrations of immobilised cells have been scaled by
a factor 0.001.

In the second experiment the Cadna software detects
several instabilities as some multiplications and divisions
have non-significant results. Anyhow the corresponding
figure (9) shows that the asymptotes of all components
do not depend on the initial conditions. Indeed this fact

which can probably be proved has been numerically ex-
perimented by running the program with many different
initial conditions and the asymptotes are always identical
provided that xim(0) 6= 0 and that s(0) satisfies the
stability condition:

s0 ≤ Dsin − β1x1(0)− βimxim(0)
as explained in [6].

IV. CONCLUSION

Stochastic arithmetic has been proved to be an in-
teresting method for the estimation of the error on
a computed result when the data are inaccurate and
the arithmetic operators introduce round-off errors. In
this paper it has been experimentally shown on sev-
eral bioreactor models that the CESTAC method and
the corresponding Cadna software which are based on
stochastic arithmetic can provide an easy alternative to
theoretical studies when one wants to know whether the
computed solution of a differential system is correct
and stable or not. Of course the Cadna software does
not lead to the domain of stability of the system but
only to the knowledge of the stability of a particular
solution computed with a particular numerical method.
But in many cases the interest is not in the whole
domain of stability but only in the solution of a particular
model of a real experimental bioreactor. As presented
on the models taken from the classical literature, the
Cadna software is particularly efficient in the detection
of the coefficients or initial values, a small variation of
which introduces a large variation in the solution. In
the same idea, the coefficients which have a very little
influence on the solution can be detected as well. This
gives a precious information to the biologists who make
the real experiments on the necessity of knowing some
coefficients with a very good accuracy whereas some
others can be only roughly known.
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V. FIGURES
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 0

 20

 40

 60

 80

 100

 120

 0  5  10  15  20

Time, (h)

CGTase Beschkov Model, Yxs=26 +- 1

Biomass
Substrate

Product

Fig. 4: Sensitivity of system (6) to YX/S = 26± 1

 0

 20

 40

 60

 80

 100

 120

 0  5  10  15  20

Time, (h)

CGTase Beschkov Model, step=0.9

Biomass
Substrate

Product

Fig. 5: Solution of system (6) with integrating step h =
0.9

 0

 0.5

 1

 1.5

 2

 2.5

 0  2  4  6  8  10  12  14

Time, (h)

S. Markov model, relat. err. on initial substrate: 5%

Substrate
Biomass log phase
Biomass lag phase

Fig. 6: Sensitivity of system (7) to s0 = 2± 5%

Biomath 2 (2013), 1312291, http://dx.doi.org/10.11145/j.biomath.2013.12.291 Page 6 of 7

http://dx.doi.org/10.11145/j.biomath.2013.12.291


R Alt et al., Stochastic Arithmetic as a Tool to Study the Stability...

 0

 0.5

 1

 1.5

 2

 2.5

 0  2  4  6  8  10  12  14

Time, (h)

S. Markov model, relat. err. on initial log phase: 25%

Substrate
Biomass log phase
Biomass lag phase

Fig. 7: Sensitivity of system (7) to x0 = 0.25± 25%

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  20  40  60  80  100  120  140  160

Time, (h)

N. Dimitrova model relat err on init cond:s0=0.25+-10%, x0=0.02+-50%, Xim0=9+-40%

Free cells
0.001*Immobilised cells

Substrate
Product

Fig. 8: Sensitivity of (8) to x1(0), xim(0), s(0)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0  20  40  60  80  100  120  140  160

Time, (h)

N. Dimitrova model relat err on init cond:s0=0.25+-100%, x0=0.02+-100%, Xim0=9+-100%

Free cells
0.001*Immobilised cells

Substrate

Fig. 9: Sensitivity of (8) to 100% errors on initial
conditions

REFERENCES

[1] R. Alt, S. Markov, Theoretical and computational studies of
some bioreactor models, Computers and Mathematics with
Applications 64 (2012), 350–360.

[2] R. Alt, J.-L. Lamotte, S. Markov, Stochastic Arithmetic, theory
and experiments, Serdica J. Computing 4 (2010), 101–110.

[3] R. Alt, J. Vignes, Stochastic arithmetic as a model of granular
computing. In W. Pedrycz, A. Skowron, and V Kreinovitch,
editors, Handbook of Granular Computing, chapter 2. Wiley
and sons, 2008. http://dx.doi.org/10.1002/9780470724163

[4] R. Alt, J.-L. Lamotte, S. Markov, Numerical study of algebraic
problems using stochastic arithmetic, In I. Lirkov, S. Margenov,
J. Wasniewski (Eds.), Large-Scale Scientific Computing, LNCS
4818, Springer (2008), 123–130.
http://dx.doi.org/10.1007/978-3-540-78827-0 12

[5] R. Alt, J.-L. Lamotte, S. Markov, Abstract structures in stochas-
tic arithmetic, In B. Bouchon-Meunier, R. R. Yager (Eds.), Proc.
11-th Conference on Information Processing and Management
of Uncertainties in Knowledge-based Systems (IPMU’06), Edit.
EDK, Paris, 2006, 794–801.

[6] M. Borisov, N. Dimitrova, V. Beschkov, Stability Analysis of a
Biorector Model for Biodegradation of Xenobiotics.Computers
and Mathematics with Applications, vol. 64, No. 3, 2012, 361–
373. http://dx.doi.org/10.1016/j.camwa.2012.02.067

[7] N. Burhan, Ts. Sapundzhiev, V. Beschkov, Mathematical mod-
elling of cyclodextrin-glucanotransferase production by batch
cultivation. Biochemical Engineering Journal 24, 2005, 73–77

[8] http://www-pequan.lip6.fr/cadna//

[9] J.M. Chesneaux, Study of the computing accuracy by using a
probabilistic approach, Contribution to Comp. Arith.and Self
validating methods, C.Ullrich Ed, IMACS, N.J.,1990, 19–30.

[10] M. La Porte, J. Vignes, Etude statistique des erreurs dans
l’arithmétique des ordinateurs, application au contrôle des
résultats d’algorithmes numériques, Numer. Math., 23, 1974,
63–72

[11] S. Markov, R. Alt, J.L. Lamotte, Stochastic arithmetic: S-spaces
and some applications, Numer. Algo. 37 (1–4), 2004, 275–284.
http://dx.doi.org/10.1023/B:NUMA.0000049474.51465.41

[12] L. Markus, H.Y. Yamabe, Globals stability criteria for differen-
tial systems, Osaka Math. J. 12, 1960, 305–317.

[13] S. Markov, R. Alt, Stochastic arithmetic, addition and multipli-
cation by scalars, Appl. Numer. Math, 50, 2004, 475–488.

[14] J. Vignes, A stochastic arithmetic for reliable scientific compu-
tation, Math. and Comp. in Sim. 35, 1993, 233–261.

Biomath 2 (2013), 1312291, http://dx.doi.org/10.11145/j.biomath.2013.12.291 Page 7 of 7

http://dx.doi.org/10.1002/9780470724163
http://dx.doi.org/10.1007/978-3-540-78827-0_12
http://dx.doi.org/10.1016/j.camwa.2012.02.067
http://www-pequan.lip6.fr/cadna//
http://dx.doi.org/10.1023/B:NUMA.0000049474.51465.41
http://dx.doi.org/10.11145/j.biomath.2013.12.291

	Introduction
	Stochastic arithmetic and the CESTAC method
	Stochastic Arithmetic
	The CESTAC method
	The Cadna software

	Application to some biological models
	First model
	Second model
	Third model

	Conclusion
	figures
	References

