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Abstract—In this paper we propose two nonlinear
models for the control of anthracnose disease. The
first is an ordinary differential equation (ODE)
model which represents the within-host evolution
of the disease. The second includes spatial dif-
fusion of the disease in a bounded domain. We
demonstrate the well-posedness of those models by
verifying the existence of solutions for given initial
conditions and positive invariance of the positive
cone. By considering a quadratic cost functional
and applying a maximum principle, we construct a
feedback optimal control for the ODE model which
is evaluated through numerical simulations with the
scientific software Scilab R©. For the diffusion model
we establish under some conditions the existence of a
unique optimal control with respect to a generalized
version of the cost functional mentioned above. We
also provide a characterization for this optimal
control.

KeyWords— Anthracnose modelling, nonlinear
systems, optimal control. AMS Classification—
49J20, 49J15, 92D30, 92D40.

I. INTRODUCTION

Anthracnose is a phytopathology which at-
tacks a wide range of commercial crops, including
almond, mango, banana, blueberry, cherry, citrus,
coffee, hevea and strawberry. The disease has been
identified in such diverse areas as Ceylon (1923),
Guadeloupe (1925), Sumatra (1929), Indochina
(1930), Costa Rica (1931), Malaysia (1932), Java
(1933), Madagascar (1934), Cameroon (1934),
Colombia (1940), Salvador (1944), Brazil (1946),
Nyassaland (1949), New Caledonia (1954), and
Arabia (1956) [5]. Anthracnose can affect various
parts of the plant, including leaves, fruits, twigs
and roots. Possible symptoms include defoliation,
fruit rot, fruit fall and crown root rot, which can
occur before or after harvest depending on both
pathogen and host [5], [28].

The Anthracnose pathogen belongs to the Col-
letotrichum species (acutatum, capsici, gloeospo-
rioides, kahawae, lindemuthianum, musae, ...).
Colletotrichum is an ascomycete fungus. It can
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Fig. 1. Symptoms of Coffee Berry Disease (CBD) [4]

reproduce either asexually or sexually, but sexual
reproduction is rare in nature [28]. Favourable
growth conditions occur particularly in tropical
zones. Rainfall, wetness and altitude are all con-
ducive to sporulation and conidia spreading [18],
[23]. Sources of inoculum are thought to be leaves,
buds and mummified fruits.

A. Anthracnose pathosystem

The process of infection by Colletotrichum
species can usually be divided into at least
seven steps, depending on various factors includ-
ing growth conditions, host tissues and involved
species. Conidia deposited on the host attach
themselve on its surface. The conidia germinate
after 12–48 hours, and appressoria are produced
[5], [15]. Severals studies on infection chronol-
ogy show that appressoria production can occur
between 3–48 hours following germination under
favourable conditions of wetness and temperature
[18], [28]. The pathogen then penetrates the plant
epidermis, invades plant tissues, produces acevuli
and finally sporulates. The penetration of plant
epidermis is enabled by a narrow penetration peg
that emerges from the appressorium base [7]. In
some marginal cases penetration occurs through
plant tissues’ stomata or wounds. Once the cuticle
is crossed, two infection strategies can be distigu-
ished: intracellular hemibiotrophy and subcuticular
intramural necrotrophy, as shown in Figure 2.
Invasion of the host is led through formation of

hyphae which narrow as the infection progresses.
Colletotrichum produce enzymes that degrade car-
bohydrates, dissolve cell walls, and hydrolyze
cuticle. Some of those enzymes are polyglactur-
onases, pectin lyases and proteases. Some hosts
may employ various biochemical strategies to
counter the pathogen. For example, the peel of
unripe avocados has been found in vitro to contain
a preformed antifungal diene (cis, cis-1-acetoxy-
2-hydroxy-4-oxo-heneicosa-12, 15-diene) that in-
hibits the growth of Colletotrichum gloeospori-
oides when present above a certain concentration
[28].

Fig. 2. Infection strategies. (A)=Apressorium -
(C)=Conidium - (Cu)=Cuticle - (E)=Epidermal -
(ILS)=Internal Light Spot - (M)=Mesophyl cell -
(N)=Necrotrophic - (PH)=Primary Hyphae - (PP)=Penetration
Peg - (ScH)=Subcuticular and Intramural Hyphae -
(SH)=Secondary Hyphae [28]

B. Models in the literature

Most previous mathematical studies on
Colletotrichum-host pathosystem have focused
on forecasting disease onset based on environ-
mental factors affecting host sensitivity. DAN-
NEBERGER et al. in [9] have developed a fore-
casting model for the annual bluegrass anthrac-
nose severity index, using weather elements such
as temperature and wetness. Their model is a
quadratic regression

ASI = a0 + a0,1W + a1,0T + a1,1T ×W + a0,2T
2 + a2,0W

2

where ASI is the anthracnose severity index, T
is the daily average temperature and W is the
average number of hours of leaves’ wetness per
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day. DODD et al. in [10] have studied the relation-
ship between temperature (T ), relative humidity
(H), incubation period (t) and the percentage
(p) of conidia of Colletotrichum gloeosporioides
producing pigmented appressoria on one month
old mangoes. They used the following logistic
model:

ln (p/ (1− p)) = a0 + a0,1H + a1,0T + a0,2H
2 + a2,0T

2 + b ln (t)

DUTHIE in [12] examines the parasite’s response
(R) to the combined effects of temperature (T )
and wetness duration (W ). That response could
be the rate of germination, infection efficiency,
latent period, lesion density, disease incidence or
disease severity. Several models are discussed, the
two principal being

R (T,W ) = f (T )
[
1− exp

(
− [b (W − c)]d

)]
and

R (T,W ) = a
[
1− exp

(
− [f (T ) (W − c)]d

)]
,

where

f (T ) =
e (1 + h)h

h

1+h

(1 + exp (g [T − f ]))
exp

(
g [T − f ]

1 + h

)
and

a > 0, b > 0, W ≥ c ≥ 0, d > 0, e > 0, f ≥ 0, g > 0, h > 0.

MOUEN et al. attempt in [17] to develop a spatio-
temporal model to analyse infection behaviour
with respect to the time, and identify potential
foci for disease inoculum. Logistic regression and
kriging tools are used used. In addition to these
references, there are several other statistical mod-
els in literature [12], [17], [18], [19], [20], [21],
[28].

C. Controlling anthracnose

There are many approaches to controlling
anthracnose diseases. The genetic approach in-
volves selection or synthesis of more resistant cul-
tivars [3], [4], [5], [14], [27]. Several studies have
demonstrated the impact of cultivational practices
on disease dynamics [19], [20], [21], [28]. Other
tactics may be used to reduce predisposition and

enhance resistance, such as pruning old infected
twigs, removing mummified fruits, and shading
[5]. Biological control uses microorganisms or
biological substrates which interact with pathogen
or induce resistance in the host [11]. Finally there
is chemical control, which requires the periodic
application of antifungal compounds [5], [22],
[24]. This seems to be the most reliable method,
though relatively expensive. The best control pol-
icy should schedule different approaches to opti-
mize quality, quantity and cost of production. Note
that inadequate application of treatments could
induce resistance in the pathogen [26].

D. Organization of the paper

The remainder of this paper is organized
as follows. In section II we propose and study a
within-host model of anthracnose. We present that
model and give parameters meaning in subsection
II-A. Throughout subsection II-B we establish
the well-posedness of the within-host model both
in mathematical and epidemiological senses. The
optimal control of the model is surveyed in subsec-
tion II-C and numerical simulations are performed
in the last subsection II-D. We make a similar
study on a spatial version of the model includind
a diffusion term in section III. That last model
is presented in subsection III-A. Studies on its
well-posedness and its optimal control are made
respectively in subsections III-B and III-C. Finally,
in section IV we discuss our modelling and some
realistic generalizations which could be added to
the model.

II. A WITHIN-HOST MODEL

A. Specification of the within-host model

The detrimental effects of Colletotrichum infec-
tion on fruit growth are closely related to its life
cycle. It is mathematically convenient to express
these effects in terms of the effective inhibition
rate (denoted by θ), which is a continuous function
of time. The effective inhibition rate is defined
such that the maximum attainable fruit volume
is reduced by a factor 1 − θ if current infection
conditions are maintained. In addition to θ, the
other time-dependent variables in the model are
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host fruit total volume and infected volume, de-
noted by v and vr respectively. We have on the set
S = R+ \ {1}×R∗+×R+ the following equations
for the time-evolution of the variables (θ, v, vr):


dθ/dt = α (t, θ) (1− θ/ (1− θ

1
u (t)))

dv/dt = β (t, θ) (1− vθ
2
/ ((1− θ) η (t) vmax))

dvr/dt = γ (t, θ) (1− vr/v)
(1)

The parameters in (1) have the following practical
interpretations:

• α, β, γ characterize the effects of environ-
mental and climatic conditions on the rate
of change of inhibition rate, fruit volume,
and infected fruit volume respectively. These
are all positive functions of the time t and
inhibition rate θ.

• γ is an increasing function with respect to θ
and satisfies γ (t, 0) = 0, ∀t ≥ 0.

• u is a measurable control parameter which
takes values in the set [0, 1].

• 1 − θ
1
∈ [0, 1] is the inhibition rate corre-

sponding to epidermis penetration. Once the
epidermis has been penetrated, the inhibition
rate cannot fall below this value, even under
maximum control effort. In the absence of
control effort (u(t) = 0), the inhibition rate
increases towards 1.

• η is a function of time that characterizes the
effects of environmental and climatic condi-
tions on the maximum fruit volume. Its range
is the interval ]0, θ

2
].

• vmax represents the maximum size of the
fruit.

• 1 − θ
2
∈ [0, 1] is the value of inhibition

rate θ that corresponds to a limiting fruit
volume of ηvmax. According to the second
equation in (1), the limiting volume size is
ηvmax (1− θ) /θ

2
≤ vmax. When the volume

is less than this value, it increases (but never
passes the limiting value); while if the volume
exceeds this value, then it decreases. This
limiting value for v is less than ηvmax when
θ > 1− θ

2
(note η ≤ θ2 ≤ 1).

Note that equations (1) are constructed so that
v ≤ vmax and vr ≤ v as long as initial conditions
satisfy these inequailities.

With the definitions

A ≡


−α(t,θ)

(1−θ
1
u(t))

0 0

0 − θ2β(t,θ)
((1−θ)η(t)vmax) 0

0 0 −γ(t,θ)
v

 ,
B ≡

[
α (t, θ) β (t, θ) γ (t, θ)

]T
,

and
X ≡

[
θ v vr

]T
,

then model (1) can be reformulated as

dX/dt = F (t,X) , (2)

where

F (t,X) ≡ A (t,X, u)X +B (t,X) . (3)

As indicated above, model (1) is an exclusively
within-host model, and as such does not include
the effects of spreading from host to host. (In
Section III we propose a diffusion model for
between-host spreading.) Such a model has several
practical advantages. In practice, monitoring of
the spreading of the fungi population is diffi-
cult. Furthermore, conidia sources and spreading
mechanisms are not well-understood, although the
literature generally points to mummified fruits,
leaves and bark as sources of inoculum. Instead of
controlling the host-to-host transmission, an alter-
native control method is to slow down the within-
host fungi evolution process. Such an approach
enables the use of statistical methods, since large
samples of infected hosts may easily be obtained
[15].

B. Well-posedness of the within-host model

In the following discussion, we demonstrate that
model (1) is well-posed both mathematically and
epidemiologically, under the following standard
technical assumptions:

(H1) The control parameter u is measurable.
(H2) The function F is continuous with respect

to the variable X .
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(H3) For every compact subset K ⊂ S, there is
an integrable map MK : R+ → R+ such that for
every X in K and t in R+, ‖F (t,X)‖S ≤MK (t).

Existence of a solution is guaranteed by the fol-
lowing proposition, which follows from a simple
application of the Carathéodory theorem.

Proposition 1. For every initial condition (t0, X0)
in R+×S there is a function X (t0, X0, t) which is
absolutely continuous and satisfies (2) for almost
any time t ∈ R+.

Uniqueness and smoothness of the solution may
be established using the Cauchy-Lipschitz Theo-
rem, based on properties (H2) and (H3) of the
function F .

Next we will etablish positive invariance of the
set S, and the positive invariance of a bounded
subset BS. These results are needed to show
consistency of the biological interpretation of the
solution, as explained below. With the definitions

A1 ≡

−
α(t,θ)

(1−θ1u(t))
0 0

0 − θ2
((1−θ)η(t)vmax) 0

0 0 − 1
v

 ,

A2 ≡

α (t, θ) 0 0
0 β (t, θ) 0
0 0 γ (t, θ)

 ,
B1 ≡

[
1 1 1

]T
,

and X as defined above, then model (1) can be
reformulated as

dX/dt = A2 (A1X +B1) . (4)

Theorem 2. The set S is positively invariant for
the system (4).

Proof: A solution to (4) satisfies for every
time t ≥ 0,

X (t) = exp

[∫ t

0
A2 (s) ·A1 (s) ds

]
X (0)

+

∫ t

0
exp

[∫ t

s
A2 (ξ)A1 (ξ) dξ

]
A2 (s)B1ds

Since −A2 (s)A1 (s) is a M−matrix for every
time s ≥ 0, exp

[∫ t
s A2 (ξ)A1 (ξ) dξ

]
is a positive

matrix. Moreover, since B1 is nonnegtive, one can
conclude that X remain nonnegative when X (0)
is taken nonnegative.

Theorem 3. Let BS be the subset of S defined
such as

BS =
{

(θ, v, vr) ∈ R3; 0 ≤ θ < 1, 0 < v ≤ vmax, 0 ≤ vr ≤ v
}

Then BS is positively invariant for system (4).

Proof: We will show that at each point of the
boundary of BS, the system (4) returns into BS.
We prove this by showing that the scalar product
of the system time derivative with the normal
vector n at each boundary point is nonpositive.
It has been already shown that positive orthant is
positively invariant. Let

F1 ≡ {(θ, v, vr) ∈ BS; θ = 1}
F2 ≡ {(θ, v, vr) ∈ BS; v = vmax}
F3 ≡ {(θ, v, vr) ∈ BS; vr = v}

For all points on F1, n can be choosen as (1, 0, 0).
Since the control u takes its value in [0, 1] which
also contains θ1, dθ

dt is negative and the result is
obtained. For all points on F2, n can be choosen
as (0, 1, 0). Thanks to definition of θ2 and η, dvdt is
negative and the result is obtained. For all points
on F3, n can be choosen as (0,−1, 1). dvrdt is zero,
and consequently F3 is positively invariant.

The invariance of the set F3 is biologically
plausible, since once the fruit is totally rotten it
remain definitely in that state, the fruit is lost. The
set BS is also reasonable for biological reasons:
the inhibition rate is bounded, the rotten volume is
no larger than the total volume, and fungus attack
reduces the size of a mature fruit.

C. Optimal control of the within-host model
In this subsection we apply control to

model (1), which we repeat here for convenience:
dθ/dt = α (t, θ) (1− θ/ (1− θ

1
u (t)))

dv/dt = β (t, θ) (1− vθ
2
/ ((1− θ) η (t) vmax))

dvr/dt = γ (t, θ) (1− vr/v)
(5)
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For the control problem we focus on the first
equation. This equation is controllable in ]0, 1[
since θ is continuous and 1− θ

1
u (t) is an asymp-

totic threshold which can be set easily. Giving a
time T > 0 (for example the annual production
duration) we search for u in L2

loc (R+, [0, 1]) such
that the following functional (previously used in
[1], [13]) is minimized:

JT (u) =

∫ T

0

(
ku2 (t) + θ2 (t)

)
dt+ f (θ (T )) ,

where k > 0 can be interpreted as the cost
ratio related to the use of control effort u. This
functional reflects the fact that reducing inhibition
rate θ will lead to increased fruit production (larger
volumes with a relatively lower level of infection),
while minimizing u will reduce financial and en-
vironmental costs. We use the squares of u and θ
in the integrand because this choice facilitates the
technical calculations required for minimization.

We note in passing that we could had tried to
minimize the more practically relevant expression
: ∫ T

0
(ku (t) + θ (t) + (vmax − v (t)) + vr (t)) dt

+ θ (T ) + (vmax − v (T )) + vr (T )

However, an exact computation of this functional
would require precise expressions for α, β, γ, η in
the system (1). As far as the authors know, there
is no previous study which gives those parameters.
It seemed more advantageous to us to limit the
random choice of parameters, so that we could
perform representative simulations.

We define the set

UK ≡
{
u ∈ C ([0, T ] ; [0, 1]) ;∀t, s ∈ [0, T ] ,

|u (t)− u (s)| ≤ K |t− s|

}
which is nonempty for every K ≥ 0.

Theorem 4. Let K ≥ 0. There is a control u∗ ∈
UK which minimizes the cost JT .

Proof: Since JT ≥ 0 it is bounded below.
Let the infinimum be J∗, and let (un)n∈N be a se-
quence in UK such that (JT (un))n∈N converges to
J∗. The definition of UK implies that (un)n∈N is

bounded and uniformly equicontinuous on [0, T ].
By the Ascoli theorem, there is a subsequence
(unk

) which converges to a control u∗. Since the
cost function is continuous with respect to u it
follows that JT (u∗) = J∗.

Theorem 5. Suppose that α depends only on time.
If there is an optimal control strategy u which
minimizes JT , then u is unique and satisfies

u (t) =

{
1 when 27αθ2

1
θp ≥ 8k

w3(t)−1
θ
1
w3(t) when 27αθ2

1
θp < 8k

(6)

where w3 (t) is the element of
[1,min {3/2, 1/ (1− θ

1
)}] which is the nearest to

the smallest nonnegative solution of the equation
αθ2

1
θpw3 − 2kw + 2k = 0 and
dθ/dt = α (t, θ) (1− θ/ (1− θ

1
u (t)))

dp/dt = α (t) p (t) / (1− θ
1
u (t))− 2θ

θ (0) = θ0, θ (T ) = θT , p(T ) = f
′
(θT )

(7)

Proof: According the maximum principle,
minimizing JT is equivalent to minimizing the
Hamiltonian functional

H (t, θ, u) = ku2 (t) + θ2 (t) + f (θ (T ))

+α (t) p (t) (1− θ
1
u (t)− θ) / (1− θ

1
u (t))

where the adjoint state p is the solution to the
following problem{

dp/dt = α (t) p/ (1− θ
1
u (t))− 2θ

p(T ) = f
′
(θ (T ))

(8)

To simplify the expression, let

w ≡ 1/ (1− θ
1
u) ∈ [1, 1/ (1− θ

1
u)] . (9)

Then the new equivalent functional to minimize is

J1
T (w) =

∫ T
0

(
k
(
w(t)−1
θ1w(t)

)2
+ θ2 (t)

)
dt+ f (θ (T ))

∂wH = 0 if and only if

αθ2
1
θpw3 − 2kw + 2k = 0. (10)

This equation has a unique nonpositive solution
when 27αθ2

1
θp ≥ 8k. It has at least one nonnega-

tive solution when 27αθ2
1
θp < 8k. We can choose

w in the following way:

w (t) =

{ 1
1−θ1

when 27αθ2
1
θp ≥ 8k

w3 (t) when 27αθ2
1
θp < 8k
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where w3 (t) is the element of
[1,min {3/2, 1/ (1− θ

1
)}] that is the nearest

to the smallest nonnegative solution of (10).
It follows from the definition of w in (9) and
algebraic rearrangement that the optimal control
u is given by (6), where (p, θ) is a solution to the
system (7). The uniqueness of u follows from the
uniqueness of the solution of the system (7).

D. Computer simulations of the controlled within-
host model

We performed simulations in order to demon-
strate the practical controllability of the system,
For these simulations we used an inhibition pres-
sure of the form

α (t) = a (t− b)2 (1− cos (2πt/c)) ,

with b and c in [0, 1]. This function reflects the
seasonality of empirically-based severity index
models found in the literature [9], [10], [12].
The particular values used in the simulation were
a = 4, b = 0.75, c = 0.2 and k = 1. We also took
f (θ (T )) = θ (T ), so that p (T ) = f ′ (θ (T )) = 1.
In this case and the shooting method can be used
to numerically estimate the value of p0 which
produces a solution to (8).

Fig1: Optimum control effort over a one-year
period θ0 = 0.2, θ1 = 1− 0.4.

Fig2: Evolution of inhibition rate over a one-year
period with θ0 = 0.2, θ1 = 1− 0.4.

Fig3: Optimum control effort over a one-year
period θ0 = 0.5, θ1 = 1− 0.4.

Fig4: Evolution of inhibition rate over a one-year
period θ0 = 0.5, θ1 = 1− 0.4.

The above figures show how the control strategy
adapts itself in response to inhibition pressure rep-
resented by α. Figures 1-2 correspond to the case
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of low initial effective inhibition rate (θ0 = 0.2,
corresponding to a low initial level of infection),
while Figures 3-4 correspond to the case of high
initial effective inhibition rate (θ0 = 0.5). The
simulations also show in different cases the ef-
fectiveness of the optimal strategy as compared to
taking no control action. Regardless of whether
the initial inhibition rate is above or below the
threshold 1− θ1, the dynamics are sensitive to the
control effort.

III. A DIFFUSION MODEL

In this section, we will model the geographical
spread of the disease via diffusive factors such as
the movement of inoculum through ground water
and wind.

A. Specification of the diffusion model

We include the effect of diffusive factors on the
spread of infection by adding a diffusion term to
the within-host equation for θ from system (1).
Together with boundary conditions, the model is

∂θ/∂t = α (t, x, θ) (1− θ/ (1− θ
1
u (t, x)))

+ div (A (t, x, θ)∇θ) on R∗+ × Ω,
(11)

〈A (t, x, θ)∇θ, n〉 = 0 on R∗+ × ∂Ω,
(12)

θ (0, x) = θ0 (x) ≥ 0 x ∈ Ω, (13)

where Ω is an open bounded subset of R3 with
a continuously differentiable boundary ∂Ω, and
θ

1
∈ [0, 1[. For a given element (t, x, θ), A is a

3×3-matrix (aij (t, x, θ)). The functions α and aij
are assumed to be nonnegative. Since θ depends
on (t, x), the functions α and aij can be identified
with elements of the set C

(
[0, T ] ;H1 (Ω)

)
. The

function u ∈ C
(
[0, T ] ;H1 (Ω)

)
designates the

control, which takes its values in the set [0, 1].
(12) may be interpreted as a dependence of the
flux of inoculum with respect to diffusion factors.
In particular, when A is the identity matrix (14)
could be interpreted as there is no flux between
exterior and interior of the domain Ω.

Practically, time can be subdivided into intervals
on which parameters are approximately constant.

We may thus study the system on each interval
separately, and assume that all parameters are
constant. We also assume that functions α and A
do not depend on θ. This leads to the following
simplified model,

∂θ/∂t = α (x) (1− θ/ (1− θ
1
u (x)))

+ div (A (x)∇θ) on ]0, T [× Ω,
(14)

〈A (x)∇θ, n〉 = 0 on ]0, T [× ∂Ω,
(15)

θ (0, x) = θ0 (x) ≥ 0 x ∈ Ω, (16)

In order to formalize the model, we define the
Hilbert space

E =
{
θ ∈ H2 (Ω) ; θ satisfies (15)

}
provided with the inner product

〈f, g〉E =

∫
U

(fg + 〈∇f,∇g〉+ ∆f.∆g) dx

Define also the linear unbounded operator £ :
D (£) = E ⊂ L2 (Ω)→ L2 (Ω) as

£θ =
αθ

1− θ
1
u
− div (A (x)∇θ)

Then equation (14) takes the following form

∂θ/∂t+ £θ = α. (17)

We also introduce the following condition, which
we will use to ensure that the system has realistic
solutions:

(H4) There exists a constant C > 0 such that
for almost every x ∈ Ω, A (x) is symmetric,
positive definite and

〈v,A (x) v〉 ≥ C 〈v, v〉 , ∀v.

B. Well-posedness of the diffusion model

We are now ready to prove that our model has
been a mathematically and epidemiologically well-
posed. In other words, we show that exists a unique
solution 0 ≤ θ(t, x) ≤ to the system (14)− (16).
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This shall follow from the Hille-Yosida theorem1:
but first we need the following proposition.

Proposition 6. If A (x) is a positive semidefinite
bilinear form for almost every x ∈ Ω, then the
linear operator £ is monotone on E. Moreover, if
A (x) satisfies (H4), then £ is maximal.

Proof:
(ii) To show £ is monotone, we let θ ∈ E and

compute:∫
Ω £θ × θ dx

=
∫

Ω

(
αθ2/ (1− θ

1
u)
)
dx−

∫
Ω div (A (x)∇θ) θdx

= (1/ (1− θ
1
u)) ‖θ

√
α‖2L2(Ω) −

∫
Ω div (A (x)∇θ) θdx

≥ −
∫
∂Ω 〈A (x)∇θ, n (x)〉 θdx+

∫
Ω 〈A (x)∇θ,∇θ〉 dx

≥ 0.

(ii) To show £ is maximal , we let f ∈ L2 (Ω)
and seek θ ∈ E such that θ+£θ = f . Given
ϕ ∈ E, we have∫

Ω
(θ + £θ)× ϕdx

=

∫
Ω
ϕθ (1 + α− θ

1
u) / (1− θ

1
u) dx

−
∫

Ω
div (A (x)∇θ)ϕdx

=

∫
Ω
ϕθ (1 + α− θ

1
u) / (1− θ

1
u)

+

∫
Ω
〈A (x)∇θ,∇ϕ〉 dx

−
∫
∂Ω
〈A (x)∇θ, n (x)〉ϕdx

=

∫
Ω
ϕθ (1 + α− θ

1
u) / (1− θ

1
u)

+

∫
Ω
〈A (x)∇θ,∇ϕ〉 dx

≡ p (θ, ϕ) ,

where p is a symmetric continuous and co-
ercive bilinear form on H1 (Ω). The Lax-
Milgram theorem2 implies that there is a
unique θ ∈ H1 (Ω) such that θ + £θ = f .

1See [6] p 185.
2See [6]

Using regularization methods similar those
used in Theorem 9.26 of [6], it follows that
θ ∈ E.

Given that the linear operator £ is maximal
monotone and θ0 is in E, then by the Hille-
Yosida theorem there is a unique function θ ∈
C1
(
[0, T ] ;L2 (Ω)

)⋂
C ([0, T ] ;E) which satis-

fies (14)− (16), and ∀ (t, x) ∈ [0, T ]×Ω we have

θ (t, x) = (S£ (t) θ0) (x) +
∫ t

0 (S£ (t− s)α) (x) ds,

where S£ (t) is the contraction semigroup gener-
ated by −£.

Now that we have established existence and
uniqueness of the solution θ, we now prove that
0 ≤ θ(t, x) ≤ 1 for all (t, x) in the domain.
assuming that A(x) satisfies the condition (H4).
We define

m ≡ inf
∂Ω
θ0,

M ≡ max

{
sup
∂Ω

θ0, sup
Ω

(1− θ
1
u)

}
,

v ≡ 1/ (1− θ
1
u) .

Note that M ≤ 1 as long as θ0 ≤ 1 and 0 ≤ θ1u ≤
1.

Let E+ designate the set of elements in E
which are nonnegative almost everywhere on Ω.
The following theorem gives sufficient conditions
under which the solution θ of (14) − (16) is
bounded by M ≤ 1 and the positive cone E+

of E is positively invariant.

Theorem 7. If A (x)∇etvα = 0 for every (t, x) ∈
[0, T ]× Ω then for almost every x in Ω,

m ≤ etvαθ (t, x) , t ∈ [0, T ] . (18)

Moreover if A (x)∇v = 0 for every (t, x) ∈
[0, T ]× Ω, then

θ (t, x) ≤M (19)

In particular, (18) and (19) hold when α and u
do not depend on the space variable x.

Proof: Let G ∈ C1 (R) such that
(i) G (s) = 0, ∀s ≤ 0, and
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(ii) 0 < G′ (s) ≤ C, ∀s > 0.

Define

H (s) ≡
∫ s

0
G (σ) dσ, ∀s ∈ R,

ϕ1 (t) ≡
∫

Ω
H
(
m− etvαθ (t, x)

)
dx,

ϕ2 (t) ≡
∫

Ω
H
(
etvα (θ (t, x)− 1/v)

)
dx.

We observe that

ϕ1, ϕ2 ∈ C ([0, T ] ;R)
⋂
C1 (]0, T ] ;R) ,

ϕ1, ϕ2 ≥ 0 on [0, T ] ,

ϕ1 (0) = ϕ2 (0) = 0.

We may also compute

ϕ′1 (t)

= −
∫

Ω
etvαG

(
m− etvαθ

)
(vαθ + ∂θ/∂t) dx

= −
∫

Ω
etvαG

(
m− etvαθ

)
(α−£θ + vαθ) dx

= −
∫

Ω
αG

(
m− etvαθ

)
dx

+

∫
Ω

〈
A (x)∇θ,∇etvαG

(
m− etvαθ

)〉
dx

= −
∫

Ω
αG

(
m− etvαθ

)
dx

−
∫

Ω e
2tvαG′

(
m− etvαθ

)
〈A (x)∇θ,∇θ〉 dx

+
∫

Ω

(
G
(
m− etvαθ

)
− etvαθG′

(
m− etvαθ

))
×
〈
A (x)∇θ,∇etvα

〉
dx

≤ 0.

Since ϕ′1 ≤ 0 on R∗+, ϕ1 is identically zero on R+

and therefore almost everywhere in Ω.

m ≤ etvαθ (t, x)

If A (x)∇v = 0 for every (t, x) ∈ [0, T ]×Ω, then

ϕ′2 (t)

=

∫
Ω
G
(
etvα (θ − 1/v)

)
(−α+ vαθ + ∂θ/∂t) dx

=

∫
Ω
etvαG

(
etvα (θ − 1/v)

)
(−£θ + vαθ) dx

= −
∫

Ω

〈
A (x)∇θ,∇etvαG

(
etvα (θ − 1/v)

)〉
dx

= −
∫

Ω e
2tvαG′

(
etvα (θ − 1/v)

)
〈A (x)∇θ,∇θ〉 dx

−
∫

Ω

(
e2tvα/v2

)
G′
(
etvα (θ − 1/v)

)
〈A (x)∇θ,∇v〉 dx

−
∫

Ω
G
(
etvα (θ − 1/v)

) 〈
A (x)∇θ,∇etvα

〉
dx

−
∫

Ω
etvα (θ − 1/v)G′

(
etvα (θ − 1/v)

)
×
〈
A (x)∇θ,∇etvα

〉
dx

≤ 0.

Since ϕ′2 ≤ 0 on R∗+, ϕ2 is identically zero on R+

and therefore almost everywhere in Ω

θ (t, x) ≤M.

The following theorem proves boundedness of
θ under more general conditions.

Theorem 8. Suppose that v and αv are increasing
functions h and g of the state θ, and there is a
constant K > 0 such that

ag′ (θ) ≤ K
(
1 + ag′ (θ)

)
exp (ag (θ)) , ∀a ≥ 0.

(20)
Then for every time t ∈ [0, T ] and almost every x
in Ω,

m ≤ etvαθ (t, x) (21)

and
θ (t, x) ≤M. (22)

Proof: Let G ∈ C1 (R) such that
(i) G (s) = 0, ∀s ≤ 0, and

(ii) KG (s) ≤ G′ (s) ≤ C, ∀s > 0.
Using (20) and the fact that operator A is

monotone, we have

〈A (x)∇θ,∇v〉 = 〈A (x)∇θ,∇h (θ)〉
= h′ (θ) 〈A (x)∇θ,∇θ〉
≥ 0,
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A (x)∇θ,∇etwα

〉
= 〈A (x)∇θ,∇ exp (tg (θ))〉

= tg′ (θ) exp (tg (θ)) 〈A (x)∇θ,∇θ〉

≥ 0,

and〈
A (x)∇θ,∇etvαG

(
m− etvαθ

)〉
= 〈A (x)∇θ,∇ exp (tg (θ))G (m− θ exp (tg (θ)))〉
= tg′ (θ) exp (tg (θ))G (m− θ exp (tg (θ))) 〈A (x)∇θ,∇θ〉

− exp (2tg (θ)) (1 + tg′ (θ))G′ (m− θ exp (tg (θ))) 〈A (x)∇θ,∇θ〉

≤ (tg′ (θ)−K (1 + tg′ (θ)) exp (tg (θ))) exp (tg (θ))

×G (m− θ exp (tg (θ))) 〈A (x)∇θ,∇θ〉
≤ 0.

Define

H (s) ≡
∫ s

0
G (σ) dσ, ∀s ∈ R,

ϕ1 (t) ≡
∫

Ω
H
(
m− etvαθ (t, x)

)
dx,

ϕ2 (t) ≡
∫

Ω
H
(
etvα (θ (t, x)− 1/w)

)
dx.

Note that as in Theorem 7 we have

ϕ1, ϕ2 ∈ C ([0, T ] ;R)
⋂
C1 (]0, T ] ;R) ,

ϕ1, ϕ2 ≥ 0 on [0, T ] ,

ϕ1 (0) = ϕ2 (0) = 0.

As in Theorem 7 we may compute

ϕ′1 (t)

= −
∫

Ω
etvαG

(
m− etvαθ

)
(wαθ + ∂θ/∂t) dx

= −
∫

Ω
etvαG

(
m− etvαθ

)
(α−£θ + vαθ) dx

= −
∫

Ω
αG

(
m− etvαθ

)
dx

+

∫
Ω

〈
A (x)∇θ,∇etvαG

(
m− etvαθ

)〉
dx

≤
∫

Ω

〈
A (x)∇θ,∇etvαG

(
m− etvαθ

)〉
dx

≤ 0.

Since ϕ′1 ≤ 0 on R∗+, ϕ1 is identically null on
[0, T ] and therefore almost everywhere in Ω

m ≤ etvαθ (t, x) .

We also have

ϕ′2 (t)

=
∫

ΩG
(
etvα (θ − 1/v)

)
(−α+ vαθ + ∂θ/∂t) dx

=
∫

Ω e
tvαG

(
etvα (θ − 1/v)

)
(−£θ + vαθ) dx

= −
∫

Ω

〈
A (x)∇θ,∇etvαG

(
etvα (θ − 1/v)

)〉
dx

= −
∫

Ω e
2tvαG′

(
etvα (θ − 1/v)

)
〈A (x)∇θ,∇θ〉 dx

−
∫

Ω

(
e2tvα/v2

)
G′
(
etvα (θ − 1/v)

)
〈A (x)∇θ,∇v〉 dx

−
∫

ΩG
(
etvα (θ − 1/v)

) 〈
A (x)∇θ,∇etvα

〉
dx

−
∫

Ω e
tvα (θ − 1/w)G′

(
etvα (θ − 1/v)

)
×
〈
A (x)∇θ,∇etvα

〉
dx

≤ 0.

Since ϕ′2 ≤ 0 on [0, T ]\{0}, ϕ2 is identically null
on [0, T ] and therefore almost everywhere in Ω

θ (t, x) ≤M.

Condition (20) of Theorem 8 is satisfied in
particular when g ≥ 0. Using the same arguments
as in the proof of Proposition 6, there is a unique
equilibrium θ∗, for the system (14) − (16). θ∗

is asymptotically stable if and only if all the
eigenvalues of the linear operator £ have non-
negative real parts. Stability of the equilibrium
θ∗ has the advantage that the disease inhibition
is maintained in its neighborhood, which enables
easier control strategies. In particular, the norm of
θ∗ is a decreasing function of the control u.

Proposition 9. The real number λ is not an
eigenvalue of £ if at least one of the following
conditions is satisfied:

(i) α ≥ λ (1− θ
1
u) almost everywhere in Ω

and that inequality is strict on an nonnegli-
gible subset of Ω.

(ii) There exists a real k ≥ 0 such that for every
θ ∈ E∫

Ω
〈A (x)∇θ,∇θ〉 dx ≥ k ‖θ‖H2(Ω) ,

and

(α− λ (1− θ
1
u)) / (1− θ

1
u) > −k

almost everywhere in Ω.
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Proof: Let θ, ϕ ∈ E. Then we may compute∫
Ω

(£θ − λθ)× ϕdx

=

∫
Ω
ϕθ (α− λ (1− θ

1
u)) / (1− θ

1
u) dx

−
∫

Ω
div (A (x)∇θ)ϕdx

=
∫

Ω ϕθ (α− λ (1− θ
1
u)) / (1− θ

1
u) + 〈A (x)∇θ,∇ϕ〉 dx

≡ p1 (θ, ϕ) .

If either of the two conditions of the proposition
is satisfied, we may use the Lax-Milgram theorem
to obtain the desired result.

Corollary 10. The principal spectrum of −£ is
contained in D∗0 ≡ {λ ∈ C∗; Re (λ) ≤ 0}.

Proof: From assumption (H4), £ is max-
imal monotone and S£ is a contraction semi-
group. Since S£ is a contraction semigroup, the
resolvant set ρ (−£) of −£ contains R+ � {0}3

and ‖S£ (t)‖ ≤ 1, ∀t ∈ [0, T ]. Therefore, the
spectral radius of S£ (t) is less than one. On the
other hand 0 /∈ exp (tσp (−£)) ⊆ σp (S£ (t)) ⊆
{0}

⋃
exp (tσp (−£)) , ∀t ∈ [0, T ]. Clearly, if

λ = Re (λ) + i Im (λ) is an element of the
principal spectrum of −£ then exp (λt) is an
element of the principal spectrum of S£ (t) and
|exp (λt)| = exp (Re (λ) t) ‖S£ (t)‖ ≤ 1. It fol-
lows that Re (λ) ≤ 0.

Corollary 11. The equilibrium θ∗ is stable.
Moreover if all the complex eigenvalues λ of
the operator θ 7→ div (A (x)∇θ) satisfy α ≥
(1− θ

1
u) Re (λ) almost everywhere in Ω, then θ∗

asymptotically stable.

C. Optimal control of the diffusion model

In the previous section we have seen that
the equilibrium of system (14) − (16) was con-
ditionally asymptotically stable. Whether or not
the equilibrium θ∗ is asymptotically stable, the
disease progression shall be contained with respect
to some criteria given in terms of costs. The aim

3See Theorem 3.1 in [25], p8.

of this section is to control the system such that
the following cost functional is minimized:

J3
T (u) =

∫ T
0

∫
Ω

(
θ2 + k1 (x)u2

)
dxdt+

∫
Ω k2 (x) θ2 (T, x) dx,

where k1 > 0, k2 ≥ 0 are bounded penalization
terms. The function k1(x) can be interpreted as
the cost ratio related to the use of control effort u;
while k2 is the cost ratio related to the magnitude
of the final inhibition rate θ (T, ·). In practice, k1

reflects the spatial dependence of environmental
sensitivity to control means, while k2 reflects ge-
ographical variations in the cost of the inhibition
rate of Colletotrichum at the end of the control
period.

In order to establish the optimal control, we will
first need to define UK,C as the set of controls
u ∈ C

(
[0, T ] ;H1 (Ω; [0, 1])

)
such that for every

t, s ∈ [0, T ] , ‖u (t, ·)− u (s, ·)‖H1(Ω) ≤ K |t− s|
and ‖∇u (t, ·)‖L2 ≤ C. For every K,C ≥ 0, UK,C

is nonempty.

Theorem 12. Let K,C ≥ 0. Then there is a
control v ∈ UK,C which minimizes the cost J3

T .

Proof: Since J3
T is greater than zero it is

bounded below. Let that infinimum be J∗. There
is a sequence (un)n∈N such that the sequence(
J3
T (un)

)
n∈N converges to J∗. Using definition

of UK,C the (un)n∈N is bounded and uniformly
equicontinuous on [0, T ]. By the Ascoli theorem,
there is a subsequence (unk

) which converges to
a control v. Since the cost function is continuous
with respect to u it follows that J3

T (v) = J∗.

We first look the linearized system in the neigh-
borhood of (θ, u) = (ε, 0), where ε depends on
x. Indeed, this case is of practical significance
since the monitoring is assumed to be continuous
year-round, and the endemic period corresponds
to particular conditions. Thus the outbreak of the
disease is ”observable” at the moment of onset.
The linearized version of (14) is

∂θ/∂t = α− αθ − αεuθ
1

+ div (A (x)∇θ) , on ]0, T [× Ω

(23)
Note that if ε = 0 the linearized system is not
controllable.
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Let £1θ = −αθ + div (A (x)∇θ). Equation
(23) becomes

∂θ/∂t = £1θ − αεuθ1
+ α, on ]0, T [× Ω

Theorem 13. The linearized version of (14)−(16)
has an optimal control in C

(
[0, T ] ;L2 (Ω)

)
given

by

u (t, ·) = (1/k1)BP (T − t, ·) θ (t, ·) + 1/(εθ
1
), t ∈ [0, T ]

where the linear operator P is solution to the
following Riccati equation:
·
P = £1P+P£1−(1/k1)PB2P+I, P (0) = k2I.

In that equation I is the identity linear operator
and B is the linear operator αεθ

1
I .

Proof: (Sketch)
If we set v = u − 1/ (εθ

1
) then equation (23)

becomes

∂θ/∂t = £1θ − αεvθ1
, on ]0, T [× Ω.

The rest of the proof is similar to the proof in [29]
concerning linear regulators.

If S£1
is the contraction semigroup generated

by £1, then we have ∀t ∈ [0, T ]

P (t) f = S£1
(t)P (0)S£1

f

+
∫ t

0 S£1
(t− s)

(
I − (1/k1)PB2P

)
S£1

(t− s) fds

Let now consider the nonlinear equation (14). Let
£u be the operator £ corresponding to control
strategy u and let S£u

be the contraction semi-
group generated by −£u. Let

U ≡
{

u ∈ C
(
[0, T ] ;H1 (Ω; [0, 1])

)
;

∀t ∈ [0, T ] , S£u
(t) is invertible

}
.

Some necessary and sufficient conditions for a
semigroup of operators to be embedded in a group
of operators are given in [25].

Theorem 14. Assume that there is a bounded ad-
missible control u∗ ∈ U which minimizes the cost
function J3

T . Let θ̃ be the absolutely continuous
solution of (14)− (16) associated with u∗. Then∫

Ω

((
θ̃ (t0, x)

)2
+ k1 (x) (u∗ (t0, x))2 − p (t)£u∗ θ̃ (t, x)

)
dx

≤
∫

Ω

((
θ̃ (t0, x)

)2
+ k1 (x) (u (t0, x))2 − p (t)£uθ̃ (t, x)

)
dx,

where p is the absolutely continuous solution on
[0, T ] of the adjoint state problem

∂p/∂t = £u∗p− 2θ̃, (t, x) ∈ R∗+ × Ω
〈A (x)∇p, n〉 = 0, on R∗+ × ∂Ω

p (T ) = 2k2θ̃ (T, ·)
(24)

Proof: We give a proof following the maxi-
mum principle proof in [29].

For an arbitrary control w and sufficiently small
h ≥ 0, define the needle variation of u∗ as

uh (t) =


u∗ (t) , t ∈ [0, t0 − h]
w, t ∈ ]t0 − h, t0[
u∗ (t) , t ∈ [t0, T ]

Let θh be the output corresponding to uh. Since
u∗ minimizes J3

T , J3
T

(
θh
)

> J3
T

(
θ0
)

and
∂+J3

T

(
θ0
)
/∂h > 0.

∂+θ0 (t0, ·) /∂h

= lim
h→0+

1

h

[
θh (t0, ·)− θ0 (t0, ·)

]
= lim

h→0+

1

h

∫ t0

t0−h

(
£u0 θ̃ (s, ·)−£uhθh (s, ·)

)
ds

= (£u0 −£w) θ0 (t0, ·)

Since vh (t) = u∗ (t) on [t0, T ], for almost t in
[t0, T ], ∂θh/∂t = α−£u∗θ

h.

∂
(
∂+θ0 (t, ·) /∂h

)
/∂t

= ∂
(
∂+θh (t, ·) /∂h

)
/∂t
∣∣∣
h=0

= ∂+
(
∂θh (t, ·) /∂t

)
/∂h

∣∣∣
h=0

= ∂+
(
α−£u∗θ

h
)
/∂h

∣∣∣
h=0

= −£u∗

(
∂+θh/∂h

)∣∣∣
h=0

= −£u∗
(
∂+θ0/∂h

)
Therefore,

∂+θ0 (t, ·) /∂h = S£u∗ (t) (S£u∗ (t0))−1 (£u0 −£w) θ0 (t0, ·)
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Consequently,

∂+

(∫
Ω
k2 (x)

(
θ0 (T, x)

)2
dx

)
/∂h

= 2

∫
Ω
k2 (x) θ0 (T, x) ∂+θ0 (T, x) /∂hdx

= 2

∫
Ω
k2 (x) θ0 (T, x)S£u∗ (T ) (S£u∗ (t0))−1

× (£u0 −£w) θ0 (t0, x) dx

= 2

∫
Ω

(S£u∗ (t0))−1 S£u∗ (T ) k2 (x) θ0 (T, x)

× (£u0 −£w) θ0 (t0, x) dx,

and in the same manner

∂+

(∫ T

0

∫
Ω

(
θ0 (t, x)

)2
dxdt

)
/∂h

=

∫ T

t0

∫
Ω

(
∂+
(
θ0 (t, x)

)2
/∂h

)
dxdt

= 2

∫ T

t0

∫
Ω

(S£u∗ (t0))−1 S£u∗ (t) θ0 (t, x)

× (£u0 −£w) θ0 (t0, x) dxdt.

Since ∂+J3
T

(
θ0
)
/∂h ≥ 0, we have

2
∫ T
t0

∫
Ω (S£u∗ (t0))−1 S£u∗ (t) θ0 (t, x)£u0θ0 (t0, x) dxdt

+ 2
∫

Ω (S£u∗ (t0))−1 S£u∗ (T ) k2 (x) θ0 (T, x)£u0θ0 (t0, x) dx

−
∫

Ω

((
θ̃ (t0, x)

)2
+ k1 (x) (u∗ (t0, x))2

)
dx

≥ 2
∫ T
t0

∫
Ω (S£u∗ (t0))−1 S£u∗ (t) θ0 (t, x)£wθ

0 (t0, x) dxdt

+ 2
∫

Ω (S£u∗ (t0))−1 S£u∗ (T ) k2 (x) θ0 (T, x)£wθ
0 (t0, x) dx

−
∫

Ω

((
θ̃ (t0, x)

)2
+ k1 (x) (w (t0, x))2

)
dx.

Note that t0 has been chosen arbitrarily. Let p be
the solution of the adjoint state problem (24). Then
for every time t ∈ [0, T ],∫

Ω

((
θ̃ (t0, x)

)2
+ k1 (x) (u∗ (t0, x))2 − p (t)£u∗ θ̃ (t, x)

)
dx

≤
∫

Ω

((
θ̃ (t0, x)

)2
+ k1 (x) (u (t0, x))2 − p (t)£uθ̃ (t, x)

)
dx.

This theorem shows that the optimal control u∗

minimizes the following Hamiltonian.

H
(
θ̃, p, u

)
=

∫
Ω

(
θ̃2 + k1u

2 − p£uθ̃
)
dx

As a result, we have the following necessary
condition corresponding to ∂H/∂u

(
θ̃, p, u∗

)
= 0:

∫
Ω

(
2k1u

∗ − αθ1θ̃p/(1− θ1u
∗)2
)
dx = 0. (25)

Condition (25) is satisfied in particular if

2k1u
∗(1− θ1u

∗)2 = αθ1θ̃p, (26)

which is analogous to (10) for the within-host
model . Then we can adopt the following corre-
sponding strategy

u∗ (t) =

{
1 when 27αθ2

1
θp ≥ 8k1,

w3 (t) when 27αθ2
1
θp < 8k1,

where w3 (t) is the element of
[
0,min

{
1

3θ
1

, 1
}]

which is the nearest to the smallest nonnegative
solution of the equation (26).

IV. CONCLUSION

In this paper two models of anthracnose control
have been surveyed. These models both have the
general form

∂θ/∂t = f (t, θ, u) + g (t) ,

where f is linear in the state θ but not necessarily
in the control u. As far as the authors know,
this type of control system has not been exten-
sively studied. This may be due to the fact that
physical control problems usually do not take this
form. The majority of such problems tend to use
”additive” controls (see [8], [16] for literature on
models). But in models of population dynamics,
”mutiplicative” control are often more realistic.

Our first model characterizes the within-host
behaviour of the disease. We were able to ex-
plicitly calculate an optimal control strategy that
effectively reduces the inhibition rate compared to
the case where no control is used. In our second
model we take into account the spatial spread of
the disease by adding a diffusion term. That makes
the model more interesting but considerably more
difficult to analyze. Moreover, visual evaluation
appears more difficult because in this case the state
of the system is a function of three spatial variables
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plus time. Although we have provided equations
satisfied by the optimal control (for the linearized
system), in this paper we do not give a practical
method for computing the optimal control. It is
possible that adapted gradient methods may be
used [2]: this is a subject of ongoing research.

Our models seems quite theoretical, but could
be used for practical applications if the needed
parameters were provided. Indeed, in the literature
[9], [10], [12], [17] there are several attempts to
estimate these parameters. The principal advantage
of our abstract approach is that it can be used to
set automatic means to control the disease which
are able to adapt themselves with respect to the
host plant and to the parameters values.

Obviously our models can be improved. In
particular, several results are based on some condi-
tions of smoothness of parameters, and the control
strategy is also very regular. In practice parame-
ters are at most piecewise continuous, and some
control strategies are discontinuous. For instance,
cultural interventions in the farm are like pulses
with respect to a certain calendar. The application
of antifungal chemical treatments are also pulses,
and the effects of these treatments though con-
tinuous are of limited duration. We are currently
investigating a more general model that takes into
account those irregularities.
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cacao thé, vol. XI (2), 1967.

[23] Muller R., L’évolution de l’anthracnose des baies du
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