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Abstract—Modifications or extensions of the clas-
sical Susceptible-Infected-Recovered (SIR) model
that account for a Quarantine (Q) class have shown
to be capable of supporting recurrent, that is,
periodic disease outbreaks. The fact that in such
outbreaks a significant proportion of individuals
are asymptomatic or experience mild infections has
not been explored extensively. Motivated by our
interests on the transmission dynamics and evolution
of influenza A in human populations, we proceed to
explore the role of an asymptomatic class (A) of in-
dividuals on the long-term transmission dynamics of
influenza. We focus on a Susceptible-Asymptomatic-
Infectious-Quarantine-Recovered (SAIQR) model
that limits the interactions of Q-individuals and
assumes that A-individuals are infectious, possibly
not as infectious as those with clear symptoms.
The analysis is carried out taking advantage of the
significant time scale differences provided by the
demographic and epidemic processes involved. It
is shown that SAIQR-models with vital dynamics
(births and deaths) support recurrent outbreaks
under reasonable disease or intervention periods.
Further, we show that recurrence is possible within
regions of parameter space that are consistent with
influenza A transmission in human populations.

Keywords-epidemics, periodic, damped oscilla-
tions, multiple time scales, influenza, infectious

diseases, quarantine-isolation, recurrent outbreaks,
asymptomatic class.

I. INTRODUCTION

For centuries policies that limit or eliminate
contacts between susceptible and symptomatic in-
fectious individuals have been put in place under
voluntary or mandatory intervention models. In
the case of diseases like Ebola or SARS, drastic
measures are put in place once we become aware
that an outbreak is imminent or even possible.
The response is due to the tremendous risk that
such diseases pose to others due to their link to
high mortality rates. Typically, we would start with
a clear definition of each epidemiological class,
particularly the Quarantine or Q-class, see ([9],
[13]). However, rather than proceeding in such a
direction, we make use of the term quarantine in an
inclusive fashion (not the norm of epidemiology)
since the goal is not to explore the role of the
Q-class, done by several researchers in the past
([13], [15], [20], [21], [28], [40], [41]), but rather
to investigate the impact of the Asymptomatic or
A-class on transmission.

The practice of putting individuals under some
model of quarantine (an Italian word, quaranta,
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since the original period of quarantine was forty
days) probably became an established form of
intervention in the fight against tuberculosis in
Europe and later in the US at the end of the
nineteenth century. The concepts of I & Q [Iso-
lation and Quarantine] have plastic meanings and
uses. An epidemiological dictionary ... defines at
least seven forms of isolation and two classes of
quarantine – one restrictive and the other broad
enough to include many possibilities. The selection
of which definition to use depends on the disease,
form of transmission, and infectious agent. One of
the problems associated with the implementation
of I & Q strategies is that nobody is really sure
how effective they are at the ‘‘population level”.

The program on the use of dynamical systems
to describe and study transmission dynamics and
control of infectious communicable diseases has
been in place for nearly a century, following
the introduction of the celebrated Susceptible-
Infectious-Recovered or SIR framework of Ker-
mack and McKendrick ([29], [30]). SIR-models
are now routinely used as platforms for the study
of the spread and control of communicable dis-
eases like measles, tuberculosis, rubella, chicken
pox and influenza ([4], [8], [14], [24], [31], [34],
[44], [45], [46], [47], [48]). The recent SARS
emergency has reinforced the need to understand
the role of the concepts of I & Q as systematic
methods of disease control over global scales and
to better understand multiple-outbreak epidemi-
ological models ([4], [13], [15]). SIR epidemi-
ological models have been modified to account
for epidemiological factors like permanent or par-
tial immunity after recovery as well as interven-
tion/control measures through the inclusion of I &
Q treated or vaccinated classes. The most modern
version of I & Q is now referred to as “social dis-
tancing”, which gained momentum under the 2009
A/H1N1 influenza pandemic ([18], [22], [23], [25],
[35], [38]). The inclusion of a class of individu-
als that are isolated (quarantined) after infection
gained increased mathematical attention ([9], [21],
[28], [34]), after the incorporation of such a class
provided SIQR epidemiological models the ability

to support recurrent outbreaks ([20], [27], [36],
[39], [48]).

Influenza is one of the most common human
diseases with the uncanny ability to re-invent itself
through minor changes known as point mutations
(nucleotide substitutions in the HA molecule) or
through dramatic transformations (shifts) known to
have led to major pandemic with the 1918 A/H1N1
influenza, possibly the most memorable, pandemic
in recorded history ([2], [16]).

The dynamics of influenza type A lives in a
global landscape shaped by the history of past
outbreaks that alters the immunological profile
over large geographical scales every year ([6],
[17], [32], [34], [37], [44], [45], [46], [50]). The
adaptive immunological global landscape fosters
competing and coexisting strains of three subtypes:
A/H1N1, A/H2N2 and A/H3N2. It is believed that
exposure to a subtype does not provide any type
of protection or cross-immunity against strains of
a different subtype, a problem under a system
that generates new strains year after year within
subtypes ([40], [41], [42]).

Novel strains of influenza A emerge, possibly
within each subtype, regularly, as a result of
the accumulation of point mutations (or replace-
ment of key nucleotides) within the influenza HA
molecule, while the emergence of new subtypes
is rare as it demands major genetic shifts. The
dangers posed this by changing pathogen means
that treatment or vaccines may not be available
that can prevent or ameliorate an epidemic out-
break. As a result, isolation or quarantine or so-
cial distancing are routinely factored in as key
to effective influenza control; policies that must
account for disease evolution (cross-immunity),
vaccine-treatment supply, mobility, connectivity
(mass transportation) and behavioral dynamics
from the individual to the population to the com-
munity level ([1], [3], [7], [8], [12], [22], [33],
[34], [36], [39], [40], [41], [42]).

In this work, an extension (motivated from our
ongoing work on influenza) of the SIQR model-
ing framework that deliberately includes a class
A of asymptomatic individuals ([9], [49]). We
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are aware that this is a rather restrictive model
for influenza as it does not account for shifts
in population-levels of susceptibility ignoring the
role of cross-immunity. We have carried out work
under models that allow for shifting profiles of
susceptibility ([1], [11], [33], [34], [36], [40], [41],
[42]), and naturally, the work here fits within such
a framework. However, we do not proceed to study
the long-term dynamics of influenza under such a
level of generality as the goal here is simply to
address the impact of, possibly, a large proportion
of asymptomatic individuals on the transmission of
communicable diseases that live under the same
temporal scales as influenza. We are mainly in-
terested in the relatively short term dynamics of
influenza at population level. The time scale we
study is one year to few years. As we shall see,
through this analysis we not only manage to set
the stage for a more comprehensive study but
we identify the role of the A-class in capturing
the qualitative recurrent disease dynamics within
acceptable parameter ranges, a situation that has
not always been considered.

Here, it will be assumed that A-individuals
may be less infectious than those in the I class.
The well-posedness of the model, existence of
equilibria, and the conditions for the existence of
damped solutions are studied in the next sections.
The focus of the analysis exploits the dramatic
differences in epidemiological and demographic
time scales as was done in ([1], [10], [18], [20],
[26], [28], [38], [40], [42]). The inclusion of A
and Q classes can support sustained oscillations,
this qualitative behavior (damped oscillations) has
not been seen in SIQR models that do not include
the A- class as in ([8], [36]). Furthermore, Heath-
cote, Zhien, and Shengbing [28] found that the
SIQR model with quarantine-adjusted incidence
βSI/(N−Q), can have an endemic equilibria that
is stable or unstable spiral, so that periodic solu-
tions can occur. The research in this manuscript is
a part of the PhD dissertation of the main author
[49]. The most valuable contributions of this work
are that we obtain an analytic expression for
the endemic equilibrium point; for some specific

parameters values for influenza, we found damped
oscillations approaching the endemic equilibrium
for the model SAIQR with quarantine-adjusted in-
cidence βS(I+σA)/(N−Q),due to the inclusion
of the A-class. The dynamics of the model SAIQR
changed compared with the dynamics of the model
SIQR; and an inequality for the final relation size
was found, following the techniques as in [5].

II. THE SAIQR MODEL WITH

QUARANTINE-ADJUSTED INCIDENCE

As noted, we will be dealing with the dynamics
of a single strain that provides permanent immu-
nity after recovery. The susceptible pool will be
replenished by a continuous flow of newborns who
are assumed to be susceptible to the circulating
strain. It is further assumed that the population
is not experiencing measurable long term growth,
that is, it is assumed that the population is con-
stant asymptotically in time. Hence, the popu-
lation is divided into five disjoint classes: S(t),
susceptible; A(t), asymptomatic ; I(t), infectious;
Q(t), isolated (quarantined), and R(t), recovered
individuals. The transmission coefficient, that is
the average number of effective contacts that lead
to new infectious per-susceptible and per-infected
is denoted by β, but this contacts would occur
within the population of size N−Q, the incidence
given by βS(I + σA)/(N − Q) is called the
quarantine-adjusted incidence. We assume that in-
dividuals from the A-class are infectious but with a
possibly reduced per-capita transmission rate, βσ,
σ ∈ [0, 1]. The proportion of individuals moving
from the S-class into the I-class per unit of time is
denoted by p while the proportion transferred from
the S-class into the A-class is given by 1−p. The
per-capita isolation or quarantine rate is θ. Further,
it is assumed that isolated (quarantined) individ-
uals have a negligible number of contacts with
members of the overall population; that is, they
play no role in the transmission process. Therefore,
if the per-capita recovery rates for asymptomatic,
infectious and isolated individuals are γ1, γ2 and
γ3, respectively, then the use of above definitions
and assumptions leads to the following system of
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nonlinear ordinary differential equations:

S′ = Λ− βS (I + σA)

N −Q
− µS

A′ = (1− p)βS (I + σA)

N −Q
− (γ1 + µ)A

I ′ = pβS
(I + σA)

N −Q
− (γ2 + θ + µ)I

Q′ = θI − (γ3 + µ)Q
R′ = γ1A+ γ2I + γ3Q− µR,

(1)
with initial conditions

S(0) = S0, A(0) = A0, I(0) = I0, Q(0) = 0,

R(0) = 0.

TABLE I: Definition of symbols and parameter values

Symb. Definition Value(Range)

S(t) Susceptible individ. at time t

A(t) Asymptom. individ. at time t

I(t) Infectious individ. at time t

Q(t) Isolated individ. at time t

R(t) Recovered individ. at time t

Λ Birth rate 1/(80 ∗ 365)

µ Mortality rate 1/(80 ∗ 365)

β Transmiss. rate 0.6

σ Transmiss. rate from class A [0, 1]

θ Isolation rate 1/θ ∈ [1, 7]

γ1 Recovery rate from class A 1/γ1 ∈ [3, 7]

γ2 Recovery rate from class I 1/γ2 ∈ [3, 7]

γ3 Recovery rate from class Q 1/γ3 ∈ [3, 7]

Since N = S + A + I + Q + R we conclude
that

dN

dt
= Λ− µN,

and, therefore, that N(t) → Λ/µ as t → ∞.
That is the total population is asymptotically con-
stant. The well-posedness of the model follows

from a straightforward application of the classical
theory:

Result 2.1: Let S0, A0, I0, Q0, R0 ≥ 0, S0 +
A0+I0+Q0+R0 = N0. Then there exist solutions
S(t), A(t), I(t), Q(t), R(t) to System (1) with ini-
tial data S0, A0, I0, Q0, R0 that are defined for all
time t ≥ 0 such that S,A, I,Q,R are nonnegative
for all t. Note that if A0 = 0, I0 = 0, Q0 = 0
then A(t) ≡ 0 and I(t) ≡ 0, and if I0 > 0
and A0 > 0 then S(t), A(t), I(t), Q(t), R(t) are
strictly positive for all t > 0 and Q is bounded
by Q̂ = max {Q0, θ/(γ3 + µ)}. An outline of the
proof is in the Appendix.

Since the total population is asymptotically con-
stant the results in [10], guarantee that System
(1) can be reduced to the qualitatively equivalent
System

S′ = Λ− βS (I + σA)

N −Q
− µS

A′ = (1− p)βS (I + σA)

N −Q
− (γ1 + µ)A

I ′ = pβS
(I + σA)

N −Q
− (γ2 + θ + µ)I

Q′ = θI − (γ3 + µ)Q,
(2)

with N =
Λ

µ
.

If we define the state vector E = (S,A, I,Q),
then System (2) supports at most two equilibria:
the disease free equilibrium E0 = (Λ/µ, 0, 0, 0)
and, an unique endemic equilibrium
E∗(S∞(<0), A∞(<0), I∞(<0), Q∞(<0)),
where the quantities
S∞(<0), A∞(<0), I∞(<0), Q∞(<0) are the
unique nonzero equilibrium solutions to System
(2) that exist if the basic reproduction number,
<0, is greater than one, as will be discussed in
the next section.
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III. BASIC REPRODUCTION NUMBER AND THE

ENDEMIC EQUILIBRIUM

To see how the basic reproduction number
arises, we linearize System (2) around E0 yielding
the jacobian matrix



−µ −βσ −β 0

0
−(γ1 + µ) 
+ (1 − p)βσ

(1− p)β 0

0 pβσ −(γ2 + θ + µ)
+ pβ

0

0 0 θ −(γ3 + µ)




In
fe

ct
ed

Therefore, the eigenvalues of the above jacobian
are λ = −µ; λ = −(γ3 + µ) and, the two
eigenvalues of the sub matrix J1(E0) given by−(γ1 + µ) + (1− p)βσ (1− p)β

pβσ −(γ2 + θ + µ) + pβ


Conditions trace(J1(E0)) < 0 and

det(J1(E0)) > 0 are equivalent to <0 < 1,
where

<0 =
pβ

γ2 + θ + µ
+

(1− p)βσ
γ1 + µ

, (3)

so that the disease-free state is locally asymp-
totically stable as long as <0 < 1. <0 is called
the basic reproduction number and is the sum of
the additive contributions of the A- and I-classes
to the generation of secondary infections when
S(0) ≈ Λ/µ.

The SAIQR model can be thought of as a
family of models parameterized by σ and p, that
isM(σ, p). The asymptomatic class is not present
when p = 1 and σ = 0 so that M(0, 1) corre-
sponds to the classical SIQR model with

<0 =
β

γ2 + θ + µ
.
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Fig. 1: Infectious and asymptomatic individuals
for p = 0.3. When <0 = 2.6 and <0 = 3.5
we can observe that the number of asymptomatic
individuals has a peak around day 30 of the
spread of the disease. For all values of <0 the
number of infectious individuals is increasing at
the beginning of the spread of the disease.

The importance of <0 in the control of disease
dynamics is evident from the extensive efforts to
estimate its value for various diseases and its role
in the study of the dynamics of infections diseases
([19], [26]).

The simulation of the solutions for System (1),
for different <0 values, shows for example, that
at the beginning of an outbreak, the population
of the infectious class actually increases (Figure
1) due to the inclusion of the A-class, this last
simulation highlights the effect of the inclusion of
an asymptomatic class.

We collect our stability results below:
Result 3.1: If <0 < 1 the disease free equi-

librium point E0 = (Λ/µ, 0, 0, 0) for System (2),
is locally asymptotically stable. If <0 > 1 then
E0 is unstable. An outline of the proof is in the
Appendix.

Result 3.2: If <0 ≤ 1, then

Ω = {(S,A, I,R)|0 ≤ S +A+ I +R ≤ Λ/µ},

with S ≥ 0, A ≥ 0, I ≥ 0, R ≥ 0 is an asymptotic
stability region for the disease free equilibrium E0.
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The Liapunov function

L(x) = σ(γ2 + θ + µ)A+ (γ1 + µ)I,

is used to prove that all solutions for System (2)
starting in Ω approach E0. An outline of the proof
is in the Appendix.

The endemic equilibrium

E∗(S∞(<0), A∞(<0), I∞(<0), Q∞(<0)),

of System (2) is obtained when <0 > 1, and is
given by

S∞(<0) =
Λ

µ

(c− ab)
(c− ab<0)

A∞(<0) = (1− p)Λab
d

(1−<0)

(c− ab<0)

I∞(<0) = pΛb
(1−<0)

(c− ab<0)

Q∞(<0) = pΛθ
(1−<0)

(c− ab<0)
,

(4)

where a = γ2 + θ + µ, b = γ3 + µ, c = pµθ and
d = γ1 + µ.

The endemic equilibrium obeys the property
that S∞(<0) + A∞(<0) + I∞(<0) + Q∞(<0) <
Λ/µ if and only if <0 > 1. The infected population
approaches to zero for any value of <0. When
<0 > 1, the endemic equilibrium is positive and
the values of A∞(<0), I∞(<0), in Figure 1, which
seem to be approaching to zero but are actually
approaching small positive values. However, we
like to highlight that under different parameter
values (still satisfying <0 > 1), different dynamics
are observed such as the ones in Figure 1 and
damped oscillations in Figure 2.

The stability of the endemic equilibrium is tied
to the roots of the characteristic polynomial asso-
ciated with J(E∗). It is at this point that we make
the decision to explore a region of parameter space
that is relevant to the study of the dynamics of
influenza. Specifically we observe that the average
life-expectancy 1/µ is on the order of decades
while 1/γ1, 1/γ2 1/γ3 and 1/θ are on the order of
days. Hence, we can safely assume that µ is much
smaller than γ1, γ2, γ3 and θ. Taking into account
these differences in time scales (longevity versus
the infectious period), we proceed to generate a

series expansion for the coefficients of the char-
acteristic polynomial near µ, the following result
was obtained

Result 3.3: The expansion of the characteristic
polynomial for J(E∗) about µ is

P (λ; ξ) = λ4+p3(ξ)λ
3+p2(ξ)λ

2+p1(ξ)λ+p0(ξ),
(5)

where ξ is the set of parameters for the model,
when µ = 0, Polynomial (5) reduces to

P (λ; ξ) = λ4 + p3(ξ)λ
3 + p2(ξ)λ

2, (6)

where

p3(ξ) = Γ− r

<0
0

p2(ξ) = γ3

[
γ1 + γ2 + θ − r

<0
0

]
p1(ξ) = 0
p0(ξ) = 0,

and
Γ = γ1 + γ2 + γ3 + θ

<0
0 =

(1− p)σβ
γ1

+
pβ

γ2 + θ
r = (1− p)σβ + pβ.

Polynomial (6) has two zero eigenvalues, and
two eigenvalues given by

λ1,2 =

[
r

<0
0

− (γ1 + γ2 + γ3 + θ)

]
±
√
D

2
, (7)

where

D =

[
γ1 + γ2 + γ3 + θ − r

<0
0

]2
−4γ3

[
γ1 + γ2 + θ − r

<0
0

]
.

An outline of the proof is in the Appendix.

IV. AN EXAMPLE.

We set γ = γ1 = γ2 = γ3 and θ = kγ where
k ≥ 3.

The exact algebraic expressions for the roots
are extremely complex and therefore we proceed
to postulate specific relations between the recov-
ery and the isolation rates. Specifically, we let
γ = γ1 = γ2 = γ3, and let the isolation rate
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Fig. 2: Damped oscillations approaching the en-
demic equilibrium, γ = γ1 = γ2 = γ3, 1/γ ∈
(3, 7), <0 = 1.7, p = 0.2, σ = 0.2, β = 0.6, and
k ≥ 3.

be proportional to the recovery rate, θ = kγ.
A reasonable quarantine period for influenza is a
week since infected people normally stay isolated
between 1 and 7 days, then 1/θ ∈ [1, 7], and the
recovery rate is minimum 3 days, then 1/γ ≥ 3
therefore k ≥ 3. Under these assumptions the
discriminant and the real part for λ1,2 reduce to

D =

[
γ(3 + k)− r

<0
0

]2
− 4γ

[
γ(2 + k)− r

<0
0

]
,

and
Re(λ1,2) =

1

2

[
r

<0
0

− γ(3 + k)

]
,

Recurring epidemic is shown through simula-
tions with typical parameters for influenza. Figures
3 and 4 show damped oscillations for the solutions
to the SAIQR model with particular values of <0.

The inclusion of A and Q classes can sup-
port sustained oscillations, this qualitative behavior
(damped oscillations) can be observed in Figure
2, this has not been seen in SIQR models that
do not include the A- class as in ([8], [36]).
Furthermore, Heathcote, Zhien, and Shengbing
[28] found that the SIQR model with quarantine-
adjusted incidence can have an endemic equilibria
that is stable or unstable spiral, so that periodic
solutions can occur.
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Fig. 3: Sustained oscillations, can be observed for
γ = γ1 = γ2 = γ3, 1/γ ∈ (3, 7), <0 = 1.7 and
k ≥ 3, p = 0.2, σ = 0.2.
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Fig. 4: The inclusion of A and Q can support
sustained oscillations, γ = γ1 = γ2 = γ3,
1/γ ∈ (3, 7), <0 = 1.7 and k ≥ 3, p = 0.2,
σ = 0.2.

V. FINAL SIZE RELATION

In epidemiology models, the final size relation is
a fundamental equation relating the final size of the
epidemic to the basic reproduction number. The
final size relation is an important tool for analyz-
ing the behavior of an epidemic model. Kermack
and McKendrick [29], derived this equation for
a general age-of-infection model, without writing
the equation directly related with the basic repro-
duction number, recent work [5], show the final
size relation for a general epidemiological model,
depending on the basic reproduction number, in
a new simpler form if the total population size
remains constant.
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In order to find the final size relation, we start
with the reduced SAIR, which corresponds to the
SAIQR model where Q is not included; Λ = 0;
and µ = 0, then System (1) becomes

S′ = −βS (I + σA)

N
,

A′ = (1− p)βS (I + σA)

N
− γ1A,

I ′ = pβS
(I + σA)

N
− γ2I,

R′ = γ1A+ γ2I,

(8)

where

<0 =
pβ

γ2
+
σ(1− p)β

γ1
. (9)

Define ϕ(t) as the total infectivity at time t,
B(τ) as the fraction of infected members remain-
ing infected at infection age τ , and π(τ) as the
mean infectivity per individual at the infection age
τ , where 0 < π(τ) ≤ 1, see [5] for more details.

For System (8), two infective classes are in-
volved, for the I -class, we have

πI(τ) = 1,

and
BI(τ) = p exp−γ2τ ,

for the A-class, we have

πA(τ) = σ,

and
BA(τ) = (1− p) exp−γ1τ . (10)

The mean infectivity per individual for members
of the population with infection age τ , denoted by
M(τ) is

M(τ) = πI(τ)BI(τ) + πA(τ)BA(τ),
= pe−γ2τ + σ(1− p)e−γ1τ .

In order to find the final size relation for System
(8), we follow the method used in [5]. The total
infectivity at time t is

ϕ(t) = I(t) + σA(t),

then

S′ = − β
N
S(t)ϕ(t),

ϕ(t) = ϕ0(t)

+

∫ t

0
−S′(t− τ)

[
pe−γ2τ + σ(1− p)e−γ1τ

]
dτ

(11)

since ϕ(t) = I(t) + σA(t), then

− S′

S
=

β

N
ϕ0(t)

− β

N

∫ t

0
S′(t− τ)

[
pe−γ2τ + σ(1− p)e−γ1τ

]
dτ.

(12)

Integrating Equation (12) with respect to t from
0 to infinity gives the general final size relation for
SAIR model,

ln

(
S0
S∞

)
= <0

(
1− S∞

N

)
. (13)

where the basic reproduction number is

<0 = β
∫∞
0 A(τ)dτ,

= β
∫∞
0 pe−γ2τ + σ(1− p)e−γ1τdτ,

= pβ
γ2

+ σ(1−p)β
γ1

.
(14)

Using the previous method, we proceed to find
the final size relation for one outbreak (Λ = 0
and µ = 0), for the SAIQR model, under these
conditions the model SAIQR becomes

S′ = −βS (I + σA)

N −Q
,

A′ = (1− p)βS (I + σA)

N −Q
− γ1A,

I ′ = pβS
(I + σA)

N −Q
− (γ2 + θ)I,

Q′ = θI − γ3Q,
R′ = γ1A+ γ2I + γ3Q.

(15)

Denote
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Â =

∫ ∞
0

A(t)dt, Î =

∫ ∞
0

I(t)dt,

from System (15), integration of the equation for
S′ gives

ln

(
S0
S∞

)
= β

∫ ∞
0

I + σA

N −Q
dt.

From Result 2.1, we have that

Q(t) < Q̂ = max {Q0, θ/(γ3 + µ)},

since demographic is not taken into account, then
µ = 0; also, Q0 = 0; furthermore Q̂ < N and
Q̂ = θ/γ3, then it holds that

Q(t) ≤ θ

γ3
< N,

then

β

N

[
Î + σÂ

]
≤ ln

(
S0
S∞

)
<

β

N − θ/γ3

[
Î + σÂ

]
,

furthermore

β
[
Î + σÂ

]
= β

[
I0

γ2 + θ
+
σA0

γ1

]
+ (S0 − S∞)<0,

assuming A0 = I0 = 0, the following inequali-
ties represent the final size relation for the SAIQR
model

1

N
[(S0 − S∞)<0] ≤ ln

(
S0
S∞

)
≤ 1

N − θ/γ3
[(S0 − S∞)<0] ,

(16)

with

<0 =
pβ

γ2 + θ
+

(1− p)βσ
γ1

.

The final size relation is a measure of the total
number of infected individuals after an outbreak of
the disease during certain period of time. In order
to find the final size relation the initial number of
infected individuals can be approximated to zero,
so, A0 = I0 = Q0 = R0 = 0 , since S0 + A0 +
I0 +Q0 +R0 = N , then N = S0, from where the

final size relation (16) becomes

(
1− S∞

N

)
<0 ≤ ln

(
N

S∞

)
≤ 1

N − θ/γ3
[(N − S∞)<0] .

(17)
More details about final size relation and final

epidemic size for different epidemiological models
can be found in [5].

APPENDIX

Proof of Result 2.1: The right hand side of Sys-
tem (1) is continuously differentiable and hence
it is locally Lipschitz, and therefore there exits
a unique solution S(t), A(t), I(t), Q(t), R(t) to
System (1) with the initial data S0, A0, I0, Q0, R0

that is defined on a maximal forward interval of
existence [43]. Consider the set Ω ⊂ R5 defined
by

Ω = {(S,A, I,R,Q) : 0 ≤ S +A+ I +Q+R ≤ Λ

µ
}

we show that
i) Since I(0) ≥ 0 and A(0) ≥ 0 from System

(1) we have that

I(t) ≥ I0 exp

∫ ∞
0

(
pβS

1

N −Q

)
dt

− I0 exp

∫ ∞
0

((γ2 + θ + µ))dt

A(t) ≥ A0 exp

∫ ∞
0

(
(1− p)βσ S

N −Q

)
dt

−A0 exp

∫ ∞
0

((γ1 + µ)) dt

Q(t) = Q0e
(γ3+µ)(t0−t)

+

(∫ t

0
θI(ζ)e(γ3+µ)(ζ−t0)dζ

)
e(γ3+µ)(t0−t)

R(t) = R0e
µ(t0−t)

+

(∫ t

0
(γ1A(ζ) + γ2I(ζ) + dζ

)
eµ(t0−t)

+

(∫ t

0
γ3Q(ζ)eµ(ζ−t0)

)
eµ(t0−t).
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then S(t) ≥ 0, A(t) ≥ 0, I(t) ≥ 0,
Q(t) ≥ 0, R(t) ≥ 0 for all t > 0.

ii) Q is bounded by Q̂ = max

{
Q0,

θ

γ3 + µ

}
.

The last statement will be established if we
show that Q(t) ≤ κ for all t ≥ 0 and that
κ ≥ θ

γ3+µ
if Q0 ≤ κ. Suppose that the above

inequalities do not hold then there exists a
time t1 with Q′(t1) > 0 and Q(t1) > κ. From
the Q-equation in System (1) we have

dQ(t1)

dt
= θI(t1)− (γ3 + µ)Q(t1)

≤ θ(I(t1)− 1) ≤ 0,

since (I(t1)− 1) < 0 and θ > 0, Q′(t1) > 0,
this contradiction implies that Q(t) ≤ κ for
all t ≥ 0. Suppose now that Q(0) > κ ≥
θ

γ3+µ
. In order to show that Q(t) ≤ Q(0) for

all t ≥ 0 we assume that the last inequality
does not hold. Hence there exists a time t2 >
0 such that Q(t2) ≥ Q(0) and Q′(t2) > 0.
However since Q(t2) > θ/(γ3 + µ), then

Q′(t2) = θI(t2)− (γ3 + µ)Q(t2)

≤ θ(I(t2)− 1) ≤ 0,

but Q′(t2) > 0. Hence we have reach a con-
tradiction and Q(t) is bounded from above
by Q̂ , where Q̂ = max {Q0, θ/(γ3 + µ)}.

Proof of Result 3.1: The stability of the disease
free equilibrium point depends on the signs of the
real parts of the eigenvalues of the Jacobian matrix
J(E0), −µ and −(γ3 + µ) are two eigenvalues of
J(E0). Conditions

trace(J1(E0)) < 0,

and
det(J1(E0)) > 0,

are equivalent to <0 < 1, hence this guarantee
the asymptotic stability of the disease-free equi-
librium. If <0 > 1 implies that E0 is unstable. see
[43] for more mathematical details.

Proof of Result 3.2: For S ≥ 0, A ≥ 0, I ≥
0, Q ≥ 0, Define the region

Ω = {(S,A, I,R)|0 ≤ S +A+ I +Q ≤ Λ/µ}.

Define a Liapunov function L over Ω0 ∈ Ω as
follows, for x ∈ Ω0,

L(x) = σ(γ2 + θ + µ)A+ (γ1 + µ)I,

hence L satisfies

i) L ∈ C1(Ω0), L(Λ/µ, 0, 0, 0) = 0 and
L(x) > 0 if x 6= E0.

ii) If <0 < 1, for all x ∈ Ω0, x 6= E0, then
dL

dt
< (γ1 + µ)(γ2 + θ + µ)(I + σA) [<0 − 1] < 0,

then all solutions of System (2) starting in Ω
approach E0.

Proof of Result 3.3: The characteristic polynomial
for J(E∗), has the form

P (λ; ξ) = λ4+p3(ξ)λ
3+p2(ξ)λ

2+p1(ξ)λ+p0(ξ),
(18)

the expansion of the characteristic polynomial for
J(E∗) to first order in µ can be obtained as follow,
define

<0
0 =

(1− p)σβ
γ1

+
pβ

γ2 + θ

<1
0 =

(1− p)σβ
γ21

+
pβ

(γ2 + θ)2
,

Γ = γ1 + γ2 + γ3 + θ
r = (1− p)σβ + pβ,

then <0 = R0
0 − R1

0µ + O(µ2). The coefficients
for the characteristic polynomial are given by

p3(ξ) = −Tr(J(E∗))

p2(ξ) =
1

2
{[Tr(J(E∗))]2 − Tr[J(E∗)2]}

p1(ξ) = −1

6
{[Tr(J(E∗))]3

− 3Tr[J(E∗)2]Tr(J(E∗))}
+ 2Tr[(J(E∗))3]

p0(ξ) = Det(J(E∗)),

after some calculations, we have

p3(ξ) =

(
Γ− r

<0
0

)
+

(
3 + <0

0 −
<1
0

(<0
0)

2
r

)
µ+O(µ2)
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p2(ξ) = γ3

(
γ1 + γ2 + θ − r

<0
0

)
+

(
pθ − 3r − γ1(γ2 + θ)<1

0

<0
0

)
µ

+

(
Γ(2 + <0

0)− pθ −
γ3r<1

0

(<0
0)

2

)
µ+O(µ2)

p1(ξ) = −
(

2rγ3 − pθγ1
<0
0

− γ1(γ2 + θ)γ3<1
0

<0
0

)
µ

+
(
((γ1 + γ3)(γ2 + θ) + γ1γ3) (1 + <0

0)
)
µ

− γ1 (pθ + 2(γ2 + θ))µ+O(µ2)

p0(ξ) = (γ2 + θ) ((1− p)σβ − γ1)µ
+ (γ1γ3pβ)µ+O(µ2).

Note that, if µ = 0 then p1(ξ) = p0(ξ) = 0, so
the characteristic polynomial has two zero eigen-
values.

VI. CONCLUSION

In this work, we look at the simplest epidemio-
logical model that incorporates the dynamics of
an asymptomatic class. We focus on parameter
values appropriate for a model of an influenza
epidemic, and look specifically for evidence that
models that include A and Q classes can exhibit
sustained oscillations. We have carried out the
standard analysis of an SAIQR model, and shown
that when <0 < 1, the free disease equilibrium
point is globally asymptotically stable, and when
<0 > 1, we found an analytic expression for
the unique endemic equilibrium in terms of <0

and the other parameters. Through simulations
with typical parameters for influenza, we observe
damped oscillations that describes recurring epi-
demics, this has not been seen in SIQR models
that do not include the A- class as in ([8], [36]).
A final size relation for the SAIQR model is then
established. The utility of a final size relation is
that it gives an implicit determination for the final
size of the epidemic, and it can be used to estimate
the effects of changes in the parameters on the
epidemic size. This is something that cannot be
obtained from numerical simulations. Numerical

simulations are used if we have a specific set of
parameters and we want to predict a quantitative
outcome, but qualitative results cannot be proved
to exist persistently using only numerical methods.
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