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Abstract—In this work we study and simulate
a model for the dynamics of Chagas disease that
includes randomness in some of the system coeffi-
cients. The disease, caused by the parasite T. cruzi,
affects 8-10 million humans throughout rural areas
in the Americas. A basic model for the disease dy-
namics, which consists of four nonlinear differential
equations for the populations of the vectors, infected
vectors, humans, and domestic animals was devel-
oped in Spagnuolo et al., (2009). Here, the model is
modified by using a logistic term with two delays for
vector population growth and extended to include
random coefficients, reflecting the uncertainty in the
determination of their values. The existence of the
unique local solution for the model as a stochastic
process is established. Numerical simulations are
performed to conduct sensitivity analysis on seven
of the model parameters. Variations in two of the
model parameters lead to significant changes in the
number of infected humans and infected domestic
mammals, indicating that these parameters need to
be accurately obtained.

Keywords-Chagas disease, random coefficient, epi-
demic dynamics, nonlinear dynamical system, sen-
sitivity analysis

I. INTRODUCTION

Chagas disease, which is responsible for sig-
nificant morbidity and mortality throughout much
of Latin America, is caused by the parasite Try-
panosoma cruzi. It leads to organ deformity and
early death in many of the 8-10 million individ-
uals infected [2], [20], [29]. While the rate of
early death is quite variable between countries, the
average proportion of infected people that show
cardiopathy is approximately 23%, [20]. Vectorial
transmission of T. cruzi takes place through vari-
ous species of insects of the subfamily Triatominae
(family Reduviidae) of which Triatoma infestans is
one of the dominant vectorial species. The control
of Chagas disease transmission remains largely
based on vector population control by spraying
with insecticides, and on blood-bank screening
[13], [24], [27], [30]. This has proven effective
in limiting the spread of the disease, and in some
cases eliminating the domestic insects. However,
there are parts of Latin America where the disease
seems to be uncontrollable, such as the Bolivian
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Chaco region [26]. Moreover, there is growing
concern in the USA, Europe, and other parts of
the world with the possible spread of the disease
brought by infected immigrants [28], [34].

Since insecticide spraying is essential in con-
trolling the disease, there is considerable interest
in optimizing the spraying schedules so as to make
them as effective as possible in decreasing the
domestic insect population. A basic model for the
disease transmission dynamics that includes the
effects of insecticide spraying was constructed and
investigated in [31], and related issues were stud-
ied in [7], [9], [32]. Several applied Chagas disease
transmission models have been developed, such as
a deterministic model [11], a stochastic Markovian
model [35], as well as a specific mathematical
model to optimize spatio-temporal strategies to
control the Chagas disease vectors [18]. Other
models for Chagas disease can be found in [1],
[12], [21] and the references therein.

The basic model in [31] consists of a delay-
differential equation for the vector population
and three nonlinear differential equations for the
growth of the total numbers of infected vectors,
humans, and domestic mammals. Here, we build
on the research in [32], where a modified model
with a delayed logistic term in the vector equation
was presented, analyzed, and issues related to
spraying schedules were numerically simulated. In
this work we also modify the delay-differential
equation for the vector population growth by using
two delays. Indeed, we make a distinction between
the development time delay and the time lag for
the population to sense the carrying capacity of
the habitat.

In view of the considerable difficulties in mea-
suring or estimating many of the model parame-
ters, we conduct sensitivity analysis on seven of
them. The following seven parameters are chosen:
(i) the vector mortality rate due to insecticide
spraying, (ii) the day of the year when insecti-
cide spraying is applied, (iii) the vector natural
mortality rate, (iv) the vector-to-human parasite
transmission probability, (v) the vector’s prefer-
ence for biting people or animals and the number

of animals, (vi) the vector egg development time,
and (vii) the time lag in vector population sensing
or responding to the carrying capacity. The first
five are largely unknown and seem to affect the
prevalence of infection in humans and domestic
mammals. The latter two are chosen because they
appear as delays in the equation for the vector pop-
ulation and could fundamentally alter the vector
dynamics. The sensitivity analysis identifies which
of these seven parameters substantially change
infection outcomes and thus need to be estimated
with high precision.

To perform the sensitivity analysis, for each of
the seven parameters we construct the appropriate
probability space and use a uniform random distri-
bution. Each parameter is then varied in a thousand
different computer simulations, while holding the
other parameters at prescribed (baseline) values,
see Table I. Interactions between the parameters
are not considered in this study. The purpose
here is to introduce randomness and start the
sensitivity analysis of the model. The issue of
the combined randomness, because of possible
interaction among the coefficients, will be studied
in depth in the future following the sensitivity
analysis approach in [25]. The envelopes of the
solutions in each case are depicted in Section V.

The existence of the unique local solution of
the delay-differential equation for the total vector
population is stated in Theorem 1. The existence
and uniqueness of the local solution of the system
of infected populations as a stochastic process
is shown in Theorem 4. It follows from a more
general result for systems of differential equations,
Theorem 2, that is established first.

The paper is arranged as follows. Section II
presents the model, following [31], [32]. The sen-
sitivity analysis in the seven chosen parameters is
described in Section III. The local existence of
the unique solution of the model for each random
choice of the parameters is established in Section
IV. A numerical algorithm for the model was writ-
ten in Mathematica and the results of simulations
and their discussion are given in Section V. The
conclusions of the paper are in Section VI, where
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some unresolved questions are also identified.

II. THE MODEL

We use an enhancement of the model for the
dynamics of Chagas disease constructed in [32].
Information on the pertinent biological processes
involved in the spread of the disease can be found
in [11], a comprehensive summary in [19], and
full details of the model and the assumptions
that underlie it in [31]. The model represents
the overall disease transmission dynamics, in a
representative village, of the total populations of
vectors (triatomines) (V ), humans (N ), domestic
mammals– ‘dogs,’ (D), and chickens (C). The
latter act as sources of blood-meals, but cannot
become infected. For the sake of simplicity, the
number of humans N , dogs D, and chickens C in
the village are considered constant through time.
However, C is allowed to be a different constant
in different simulations, as specified below. For
V,N, and D, we denote by subscript i the num-
ber of infected individuals, and the non-infected
populations are assumed to be susceptible.

The Mathematical model for Chagas disease (a
modified version of the models in [31], [32]) is as
follows:

Find the functions {V, Vi, Ni, Di} : [0, T ] → R4
+

such that:

dV

dt
= r(t− τ1)V (t− τ1)

(
1− V (t− τ2)

K

)
− dmV − dsp(V − Vmin)+, (II.1)

dVi
dt

= b(V − Vi) (pNVNi + pDV dfDi)

− dmVi − dsp
(

1− Vmin
V

)
+

Vi,

(II.2)

dNi

dt
= αN (N −Ni)Vi − γNi

Ni, (II.3)

dDi

dt
= αD(D −Di)Vi − γDi

Di, (II.4)

Vi(0) = Vi0, Ni(0) = Ni0, Di(0) = Di0,
(II.5)

V (t) = V0(t), −τ ≤ t ≤ 0. (II.6)

Here, R4
+ = {x = (x1, x2, x3, x4) ∈ R4 : 0 ≤

xj , j = 1, . . . , 4}, τ = max{τ1, τ2}, and we
omitted the dependence of the functions on t,
except in the terms with delays.

We note a change of notation from that used in
[31], [32] in order to conform to the usual notation
in the field of population dynamics: we use dsp as
the death rate due to insecticide spraying.

Equation (II.1) describes the daily rate of
change of the total vector population. We use,
following [33], the delayed logistic term in the
growth rate of vectors to account for the natural
vector carrying capacity K that effectively limits
the number of domestic vectors that can live in the
village (equivalently, in each house). The growth
rate depends on the following: the natural death
rate of triatomines, dm = dm(t); the fecundity
rate, r = r(t), which is affected by a time lag (τ1)
of the hatching of eggs and the time lag (τ2) in
the population reacting to the carrying capacity K
(see [33]); and the mortality rate due to insecticide
spraying, dsp = dsp(t). We note that here we use
two delays or time lags, while in the previous
works we used only one.

The model assumes that a subpopulation of
insects Vmin survives spraying [14], [15], and the
mortality due to spraying is modeled by the term
dsp(t)(V (t) − Vmin)+, where (f)+ denotes the
positive part of f , (f)− represents the negative
part, and f = (f)+− (f)−. Including the positive
part guarantees that the spray does not kill all the
vectors in a house.

Equation (II.1) is a delay-differential equation
with two delays and is not coupled to the other
equations, so it can be solved independently.

The coupled system of equations (II.2)-(II.4) for
Vi(t), Ni(t), and Di(t), (0 < t ≤ T ) has to be
solved simultaneously. Here, pNV and pDV denote
the probabilities of a vector becoming infected
by one bite on an infected human or an infected
dog, respectively. The mortality rates of infected
humans and infected dogs are denoted by γNi

and γDi
, respectively, while N −Ni and D −Di

are the susceptible human and dog populations,
respectively. We let αN = bpV N and αD =
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bdfpV D, be the infection rates of susceptible
humans and susceptible dogs, respectively. Here,
following [31], b = b(t) is the insect biting rate,
pV N is the probability that a susceptible human
becomes infected from one infected bite, pV D is
the probability that a susceptible dog becomes
infected from one infected bite, and df is the biting
preference factor used to represent the vectors’
preference for dogs relative to humans. The vector
preference for humans is set to 1 and df > 1 since
T. infestans prefer to bite dogs, [16]. Similarly, cf
is the vector preference factor for biting chickens.

The initial populations, when the process starts
(conveniently chosen as t = 0), are given in (II.5)
and (II.6). We next add randomness to the model.

III. THE MODEL WITH RANDOMNESS

Our main interest is to study the effects of vari-
ability in seven of the model parameters. There-
fore, we apply sensitivity analysis to the following
parameters:

(i) The mortality rate due to insecticide spraying
dsp

(ii) The day insecticide spraying is applied t1
(iii) The natural mortality rate dm
(iv) The parasite transmission probability pV N
(v) The weighted blood supply factor bsupp

(vi) The egg development time τ1

(vii) The delay in responding to the carrying ca-
pacity τ2

For the sake of completeness, we also simulate
the case when the two delays are equal in order to
compare to the simulations in [32] and to see the
effects of two delays.

The sensitivity analysis is performed for each
parameter separately, and we do not consider the
possible interactions among the parameters.

To describe the use of randomness, we use a
probability space (Ω,F , P ), where Ω is the sample
space, F is a σ-algebra, and P is the probability
function. In each case we let F be the usual Borel
σ-algebra of open sets in Ω, and we choose P to
be the uniform probability in each sample space.

We now describe each random parameter in
turn, with its sample space, which we denote by

Ωj , where j = i, ii, . . . vii is the index of the case.

(i) The randomness in the vector death rate from
spraying, dsp(t), can occur for many reasons,
including the weather (wind, temperature), and
different house structures, spraying equipment, and
chemicals used. Although, as expected, when the
spray is so effective that it kills all the vectors
that come in contact with it, there is almost no
sensitivity to dsp(t). However, when the death rate
is much smaller, representing an insecticide that
is not effective or a population of vectors that
developed partial resistance to the insecticide, it
is found that there is considerable variation in the
solutions.

The death rate function without randomness is
dsp(t) = dmaxd, where d(t; t1, t2) ( [10], [31],
[32]) is

d(t; t1,t2) =


2.5415(e−λ(t−t1)2 −e−1/2)

if t1 ≤ t ≤ t2,
0 otherwise.

Here, since we choose the first day of the year to
be the first day of Fall, the first day of spraying
is chosen as t1 = 212.5, which is the 30.5th day
of Spring, t2 = 303.75 is the last day for which
the spray is still effective, as its potency lasted
about 91.25 days, and λ = 6 · 10−5. Clearly, in
different locations the active duration of different
insecticides will be different. In the baseline case
dmax = 1, which essentially represents death of
the vector upon contact with the insecticide. To
study the sensitivity of the model to dsp, we choose
dmax = 0.1, which represents a weaker insecticide
or the acquired resistance of the vectors to the
spray chemical. We choose the sample space as

Ωi = (−0.1, 0.2). (III.1)

Then, the random death rate due to spraying is

dsp(t, ω) = (dmax + ω)d(t; t1, t2), (III.2)

and the choice of Ωi guarantees that dsp(t, ω) > 0,
for all t ∈ [0, T ].

(ii) The first day of spraying t1 in d(t; t1, t2) is
chosen as a random parameter since the spraying
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in different villages in a region is administered
on different days. In some locations the spraying
is done in Spring, so we choose t1 to be in the
Spring. To make the simulations more realistic, we
allow t1 to be different each year, out of N̂ years,
and choose t1 = 212.5 to be the day in the middle
of Spring and then t2 = 303.75. The sample space
is chosen to be

Ωii = (−35.5, 35.5)N̂ . (III.3)

Then, each ω ∈ Ωii is an N̂ -tuple ω =
(ω1, ω2, . . . , ωN̂ ), and the starting day of spraying
in year κ is t1κ = t1 + ωκ. Thus, the death
rate due to spraying is dsp(t; t1 + ωκ, t2 + ωκ),
κ = 1, . . . , N̂ . The choice of Ωii guarantees that
the first day of spraying t1κ in each year is in
Spring.

(iii) The inclusion of randomness in the triatomine
natural mortality rate dm(t) is mainly motivated by
the lack of basic field data. We denote the natural
death rate function without randomness by dm(t),
and assume it is periodic with a period of one year.
The following seasonal death rate function, taken
from [10] where more details can be found, is used
in this work:

dm(t) =



0.0025 + (0.0075−0.0025)t
136

if 0 ≤ Mod(t, 365) ≤ 136,

0.0075 + (0.0001−0.0075)(t−136)
(222−136)

if 136 ≤ Mod(t, 365) ≤ 222,

0.0001 + (0.0025−0.0001)(t−222)
(365−222)

if 222 ≤ Mod(t, 365) < 365.
(III.4)

The sample space is chosen as

Ωiii = (−0.0001, 0.003). (III.5)

The natural death rate with randomness for ω ∈
Ωiii is given by

dm(t, ω) = dm(t) + ω, (III.6)

and the choice of Ωiii guarantees that dm(t, ω) >
0, for all t ∈ [0, T ].

(iv) The randomness in the disease transmission
probability pV N arises from lack of direct field
data, however, indirect estimates can be found in
[22]. We denote the infection probability from an
infected vector to a susceptible person without ran-
domness by pV N , and assume that it is constant. In
[31] the baseline value pV N = 8 · 10−5 was used,
but the estimates in [22] indicate that the range is
9 · 10−4 − 1.2 · 10−3 is more realistic. Therefore,
we set pV N = 0.001 and choose the sample space
as

Ωiv = (−0.0001, 0.0002). (III.7)

The combined biting and infection rate with ran-
domness is given by

αN (t, ω) = b(t)(pV N + ω), (III.8)

where ω ∈ Ωiv, b is the biting function, described
in Sect. 5. The choice of Ωiv guarantees that
αN (t, ω) > 0, for all t ∈ [0, T ].

(v) The randomness in the weighted blood supply
bsupp arises from the fact that the numbers of
chickens and dogs per house vary considerably.
The weighted blood supply is given by bsupp =
N+dfD+cfC, and since N and D are constants
and df = 7cf ( [16]), the variability in the blood
supply can be described by changing C and cf . In
the baseline simulations C = 1110 (15 chickens
per house) and cf = 0.35. To introduce random-
ness, we let the number of chickens per house be
between 10 and 20 so that C ∈ (740, 1480) and
allow for variability in the vector’s preference for
chickens by letting cf ∈ (0.15, 0.5). We choose
the sample space as

Ωv = (740, 1480)× (0.15, 0.5), (III.9)

and then for (C, cf ) = ω ∈ Ωv, the random blood
supply is given by

bsupp(ω) = N + 7cfD + cfC. (III.10)

The weighted blood supply affects the model by
influencing the biting rate (and thus, the growth
rate) of the vectors. As the blood supply increases,
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more blood meals are available, and the vectors
bite more frequently. The full details of how bsupp
appears in the model are found Section V.
(vi) The randomness in the development time τ1 is
due to the natural variation in the egg laying and
hatching times. We denote the time lag in hatching
without randomness by τ1, assumed to be fixed,
and in the simulations we used τ1 = 20 days, [3].
Allowing for a different random development time
each computer run leads us to choose the sample
space as

Ωvi = (−10, 10). (III.11)

The random development time lag τ1 is given by

τ1(ω) = τ1 + ω, (III.12)

where ω ∈ Ωvi, and the choice of Ωvi guarantees
that 10 < τ1(ω) < 30.

(vii) The randomness in τ2, the delay in responding
to the carrying capacity, is due to a complicated
mixture of behavior and physiology that results
in the vectors not realizing they are reaching the
limit of their environment. This delay is also influ-
enced by natural environmental phenomena such
as the weather. We denote the time lag without
randomness by τ2, and in the simulations we used
τ2 = 190 days. We choose the sample space to be

Ωvii = (−95, 95) (III.13)

and use the same random number in each run of
50 years. Then, the random delay τ2 is given by

τ2(ω) = τ2 + ω, (III.14)

for ω ∈ Ωvii, and the choice of Ωvii guarantees
that 100 < τ2(ω) < 270 days.

In each one of the cases (i)–(vii), for each ω ∈
Ωl, l = i, . . . , vii, we solve (II.1)–(II.6) with the
relevant random coefficient.

The unique solvability of the system, for each
ω ∈ Ωl, l = i, . . . , vii, is discussed in the next
section, together with the stochastic aspects of the
problem. Numerical simulations with randomness
in the seven different parameters are presented in
Section V.

IV. EXISTENCE AND UNIQUENESS

This section analyzes the system (II.1)–(II.6)
with randomness, cases (i)–(vii), and establishes
its unique local solvability.

As was noted above, the system consists of a
delay-differential equation for the vectors, (II.1),
that is not coupled to the other equations, and the
coupled system (II.2)-(II.4) of ordinary differential
equations. Therefore, we study them separately.

We let the product probability space be

Ω = Ωi × · · · × Ωvii,

and denote by B ([0, T ]) the Borel sets on [0, T ]
and by F the σ-algebra related to the probability
space Ω. We use the uniform probability on Ω.
Throughout the rest of this section, we consider
the system (II.1)–(II.6) on [0, T ] , where T ≤ t∗
and

t∗ = inf {t > 0 : V (t, ω) = 0}. (IV.1)

We have the following result, where the assump-
tions on the problem data are more general than
those above.

Theorem 1: Assume that r(t), dm(t) and
dsp(t), are nonnegative, bounded, and continuous
on [0,∞), V0(t) is positive and continuous on
[−τ, 0] with V0(t) < K, and τ , dmax, K, and
Vmin are positive constants. Then, for each ω ∈ Ω
and each 0 < T ≤ t∗, the problem (II.1) and
(II.6), in each one of the cases (i)–(vii), has a
unique solution V (t, ω). Moreover, the function

(t, ω)→ V (t, ω)

is product measurable with respect to the σ-algebra
B ([0, T ])×F .

Proof: The existence of a solution follows
from a standard construction on successive inter-
vals of small length. The uniqueness follows in
similar fashion by considering the difference of
two solutions. The solution exists on [0, T ] as long
as it is bounded, which we show in the Appendix.
Also, in the Appendix we show that the solution
satisfies the measurability condition when the data
is bounded on [0, T ].
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In general, the existence of a global solution of
the vector equation with two delays depends on
the parameters in a technically detailed manner.
However, we point out that our numerical simula-
tions, which use parameter values taken from field
data, exhibit well-behaved global solutions. The
conditions on the parameters that ensure a globally
bounded positive solution will be addressed in a
different work.

We turn to the solvability of the system (II.2)–
(II.5) using the solution V (t, ω) from Theorem 1.

The existence and uniqueness of the solution
to (II.2)–(II.5) is based on the following general
result, where (Ω,F , P ) is a probability space, X
is a topological space and B (X) denotes the Borel
sets of X . We note that this general result has merit
in and of itself.

Theorem 2: Let f : Rn × [0, T ] × Ω → Rn
satisfy the following conditions:

1) |f | is uniformly bounded by a constant M.

2) (x, t) → f (x, t, ω) is continuous for each
ω ∈ Ω.

3) (x, t, ω) → f (x, t, ω) is B (Rn) ×
B ([0, T ]) × F measurable (product measur-
able).

4) x (0, ω) = x0 (ω), where x0 ∈ F , is measur-
able.

5) For each ω ∈ Ω there exists at most one
solution to the problem

x′ = f (x, t, ω) , x (0) = x0 (ω) . (IV.2)

If x (t, ω) denotes a solution of the initial value
problem (IV.2), then it is the unique solution and
the function

ω → x (t, ω)

is F measurable, and so x (t) is a stochastic or
random process, where x (t) (ω) ≡ x (t, ω).

Proof: We consider approximate problems
used to obtain solutions via the Peano Theorem.
To that end, we introduce the delay operator

Dhx (t, ω) ≡
{

x (t− h, ω) if t > h,
x0 (ω) if t ≤ h,

and let

xh (t, ω) ≡ x0 (ω)

+

∫ t

0
f (s,Dhxh (s, ω) , ω) ds.

(IV.3)

Then the function xh is B ([0, T ])×F measurable.
Indeed, let I[a,b] be the indicator function of the
interval [a, b], i.e., I[a,b](s) = 1 if s ∈ [a, b] and
I[a,b](s) = 0 otherwise, then for t ≤ h,

xh (t, ω) ≡ x0 (ω)

+

∫ T

0
I[0,t] (s)f (s,x0 (ω) , ω) ds.

(IV.4)

Let now {smi }
2m

i=1 be a uniform partition of [0, h]
and consider the finite sum

2m−1∑
k=0

f (smk ,x0 (ω)) I[smk ∧t,smk+1∧t) (s) ,

where smk+1 ∧ t ≡ min(smk+1, t), which is an
approximation of the integrand in (IV.4) that con-
verges pointwise for each (s, ω) ∈ [0, T ] × Ω.
Then, the integrals of these integrands satisfy

xm (t, ω) ≡
2m−1∑
k=0

f (smk , x0 (ω))
(
smk+1 ∧ t− smk ∧ t

)
and each function xm (t, ω) is measurable in
B ([0, T ]) × F . By the dominated convergence
theorem, and the boundedness of f , it follows
that xh (t, ω) in (IV.3) is the pointwise limit of
the sequence of functions xm, which are product
measurable and this shows that I[0,h) (t)xh (t, ω)
is also product measurable, and the function is
continuous in t, for 0 ≤ t < h.

We now use the expression (IV.3) for xh on the
interval [h, 2h) and similar arguments and obtain
that

(t, ω)→ I[h,2h) (t)xh (t, ω)

is also product measurable. Continuing this step
by step way over the intervals [(k − 1)h, kh], for
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1 ≤ k ≤ 2m, establishes that (t, ω)→ xh (t, ω) is
product measurable as claimed for 0 ≤ t ≤ T .

Next, we pass to the limit hm → 0 and show
that for each ω there exists a unique solution t→
x (t, ω) to the problem

x (t, ω) = x0 (ω) +

∫ t

0
f (s,x (s, ω)) ds, (IV.5)

that is the uniform limit of xhm
(t, ω) on [0, T ] as

m → ∞. The important observation here is that
a single sequence {hm} works for all the ωs at
once.

The functions t → xhm
(t, ω) are equicontin-

uous and uniformly bounded, independently of
hm, and therefore, by the Arzela-Ascoli theorem
there exists a further subsequence which converges
uniformly on [0, T ] to a function x (t, ω). Then,
using the uniform continuity of f on a compact
set including all values of xhm

(t, ω), we can pass
to the limit in (IV.3) and obtain the existence of a
solution to (IV.5). By assumption (5) this solution
is unique and, therefore, the original sequence con-
verges to this limit. Otherwise, there would exist a
subsequence which does not converge to x (t, ω)
and then a further subsequence would converge
to another solution which would contradict the
uniqueness assumption. Since this does not depend
on which ω is being considered, the existence and
uniqueness part of the theorem follows.

Finally, it follows from the proof that (t, ω)→
x (t, ω) is B ([0, T ])×F measurable and so x (t)
is a stochastic process.

We note that by replacing f with a suitably trun-
cated function, we obtain the following corollary.

Corollary 3: Let the assumptions of Theorem
2 hold, with the exception of (1) so that f is
not necessarily uniformly bounded, but there exists
a bound on all local solutions (IV.5). Then, the
conclusions of Theorem 2 hold.

We apply the general result above to the system
(II.2)–(II.5) with randomness. Since V is known
on [0, T ], the other equations can be considered for
a known V , which is product measurable. Also, as
we show in the Appendix, V is uniformly bounded
in ω on [0, T ].

Now, we observe that 0 ≤ Vi < V , 0 ≤ Ni <
N , and 0 ≤ Di < D. Thus, the equations for
Vi, Ni and Di satisfy the assumptions of Corol-
lary 3 and we obtain the following existence and
uniqueness theorem.

Theorem 4: Let V (t, ω) denote the unique so-
lution in Theorem 1. Then, under the above as-
sumptions, for each 0 < T ≤ t∗, there exists
a unique solution (Vi (t, ω) , Ni (t, ω) , Di (t, ω))
on [0, T ] to the initial value problem of (II.2)–
(II.5) with randomness in the coefficients, and it
has the property that each of these functions is
B ([0, T ])×F measurable.

V. NUMERICAL ALGORITHM AND

SIMULATIONS

A computer code was written in the software
package Mathematica [36] to numerically solve
the system. The approximate solutions were gen-
erated using the internal numerical differential
equations solver “NDSolve,” which uses adaptive
step size procedures. In addition, for the sake
of completeness, another set of solutions was
generated in Mathematica using Adams predictor-
corrector methods, yielding identical results.

All the figures below show the evolution of
the vectors V (t)–top left, infected vectors Vi(t)–
top right, infected humans Ni(t)–bottom left, and
infected dogs Di(t)–bottom right. In the baseline
case we use the data from Table I, and in all
simulations insecticide spraying begins in year
25. This is chosen so that the system settles
into periodic oscillations before we activate the
spraying term. In each one of the cases (i)-(vii)
with randomness, we run 1000 simulations for 50
years, so 25 years are with spraying. In each figure,
the shaded area is the envelope that indicates the
ranges of the intervals between the highest and the
lowest simulation result at each timestep. We note
that the upper and lower curves of the envelopes
are not solutions of the system. These envelopes,
if the model describes the real process reasonably
well, should contain most of the observed field
information. The Gaussian and skewed distribu-
tions produce very close results to those of the
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uniform distribution, so we do not include them
in this report.

A. The data functions and coefficients

The vector population growth coefficient func-
tion is given by

r(t) =
1073

3 · 20000
· 20 · 0.831 · bsupp · b(t), (V.1)

where the weighted blood supply bsupp is given in
the table and the biting rate function, taken from
[8], is

b(t) =
B(t)

400 + 100df + 100cf
. (V.2)

Here, B(t) is a periodic function, with a period of
365 days, given by

B(t) =



(− 15
365 )

91.25
t+

15

365

if 0 ≤ Mod(t, 365) ≤ 91.25,

( 30
365 )

228.1− 182.5
(t− 182.5)

if 182.5 ≤ Mod(t, 365) ≤ 228.1,

( 7
365 −

30
365 )

273.75− 228.1
(t− 228.1) +

30

365

if 228.1 ≤ Mod(t, 365) ≤ 273.75,

( 15
365 −

7
365 )

365− 273.75
(t− 365) +

15

365

if 273.75 ≤ Mod(t, 365) < 365.

B. The baseline case without randomness

We first present in Fig. 1 the results of numer-
ical simulations without randomness. Then, we
compare the simulation results with randomness
to the baseline case. The sharp decrease in the
number of vectors and infected vectors after the
beginning of insecticide spraying in year 25 is
noticeable. In Fig. 1, in addition to the depiction of
the graphs based on daily values of the simulations
(grey), we also present a linear interpolation of the
values of the populations on a specific day (red).
This provides better insight into what would be
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Fig. 1. System behavior in the baseline case without
variability.

observed by someone who visits the village on
that day each year.

It is seen that the number of infected humans
is large, approaching almost 95% at the peak
(before spraying starts), and about 200 in year
50. The slower decline in infected humans relative
to infected dogs once insecticide spraying starts
is due to the longer life span of humans, sixty
years for an infected human versus eight years
for an infected dog. The sharp decrease in the
vector population is caused by the choice of a
very effective insecticide. We say more on this
issue in the following subsection. More detailed
simulations and analysis can be found in [10].

We note that whereas the difference between the
detailed simulation results and what would be seen
by an observer who visits the village once a year
is very small for infected humans and dogs, it is
substantial for the vectors and infected vectors.

We note that in the absence of spraying, the
vector population oscillates below and above the
carrying capacity. Finally, with these values of the
parameters, especially τ1 and τ2, we see that the
oscillations exhibit a 2-year cycle. These numeri-
cal observations warrant additional mathematical
study of the model as well as additional field
studies.

C. Variability in the spraying mortality rate dsp
Since the original motivation for the model was

to investigate spraying schedules (cf. [31]), we
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begin with the results of the numerical simulations
with random mortality rate due to spraying dsp(t).
It was found in the simulations that when the
insecticide is very effective, killing all the vectors
in the house except those in the cracks, then there
was very little variability in the results. Therefore,
the value of dsp is not important, as long as the
spray kills all the available vectors upon contact.
Thus, we do not depict the case with randomness
in a very effective insecticide. We note that the
variations were only in the height of the function
dsp(t) and not its shape.
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Fig. 2. Case (i): Model variability with 90% reduction of
the insecticide effectiveness.

However, the vectors may become less sensitive
to the chemical, develop resistance, or the weather
conditions may reduce the effectiveness of the
insecticide. So we run simulations of case (i) with
a spray that is 10% as effective (i.e., dmax = 0.1).
These simulation results are depicted in Fig. 2. It
is seen that the variability in the vectors, infected
vectors, and infected dogs is very large, while the
variability in the infected humans is moderate. The
variation in the human infections is about 80 over
a period of 25 years of spraying, which in a village
of 296 humans is quite significant. Indeed, at year
50 the ratio of the variability due to randomness
to the infected humans is about 80/296 ≈ 27%.
In part, the effects are moderate because of the
longevity of humans and our assumption of a
constant human population. The effects on the
domestic animals, ‘dogs,’ are marked, as the vari-
ation at year 50 is about 145/215 = 67%. This is

0 10 20 30 40 50
0

10 000

20 000

30 000

40 000

50 000

Years

V
ec

to
rs

0 10 20 30 40 50
0

5000

10 000

15 000

20 000

25 000

Years

In
fe

ct
ed

V
ec

to
rs

0 10 20 30 40 50
0

50

100

150

200

250

300

Years

In
fe

ct
ed

H
um

an
s

0 10 20 30 40 50
0

50

100

150

200

Years

In
fe

ct
ed

D
og

s

Fig. 3. Case (ii): Model behavior with variability in t1.

similarly due in part to their shorter lifespan. We
conclude that whereas in the case of very effective
spray there is very little variability and the exact
value of dsp is not so important. On the other
hand, when the insecticide is not very effective
the system is sensitive to the spraying death rate.
Clearly, having effective spraying is very important
to reduce the variability. This raises the concern of
the vectors developing resistance to the insecticide,
which we discuss in Section VI.

D. Variability in the day of spraying application,
t1

In the simulations in [10], [31], [32] the first day
of the year, day 1, was chosen as the first day of
Fall in the southern hemisphere. Then, the first day
of spraying was set as t1 = 212.5, the 30.5th day
of Spring. However, the day of insecticide spraying
varies considerably, as explained above.

The results of the numerical simulations with
random t1 are shown in Fig. 3. It is seen that
while the randomness, with ω ∈ Ωii, affects the
vectors and the infected vectors mildly, it has a
very small effect on the infected humans and dogs.
It is likely that this insensitivity to t1 is due, in
part, to our choice to restrict it to Spring. If this
restriction is correct, then any day in Spring is
a good day for spraying. More information from
field studies is needed to determine if the model
needs to be modified or if the randomness interval
for t1 should be enlarged.
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Fig. 4. Case (iii): Model behavior with variability in dm(t).

E. Variability in the mortality rate dm
The numerical simulations of the model with

random natural mortality rate dm(t) are shown in
Fig. 4. It is seen that randomness, with ω ∈ Ωiii,
has substantial effects on the vector and infected
vector populations, while having moderate effects
on the infected human and dog populations. In-
deed, the variation in infected humans in year 50
is about 30/296 = 10%, and in dogs is about
5/215 = 2%. We note that this variability in both
populations is lower than the variability before
spraying near year 25.

F. Variability in disease transmission probability
pV N

The numerical simulation results with random
transmission probability pV N are shown in Fig. 5.
We see that the randomness, with ω ∈ Ωiv, mildly
affects the number of infected humans, but has
almost no effect on the other populations. We
conclude that the model does not depend on this
parameter and a precise value is not necessary,
unless the sample space Ωiv is too small.

G. Variability in the blood supply factor bsupp
Next, we run numerical simulations with ran-

dom variability in the weighted blood supply
factor bsupp. The results are depicted in Fig. 6.
It is seen that there is considerable variability
caused by this parameter in the number of vectors,
infected vectors and infected dogs. However, the
variability in the numbers of infected humans is
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Fig. 5. Case (iv): Model behavior with variability in pV N .

quite small, so it is not clear how accurate the
value of bsupp needs to be. If the concern is only
for humans, a not very accurate value is sufficient.
But, if one wants to have good insight into the
whole process, a more accurate value is needed.
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Fig. 6. Case (v): Model behavior with variability in the blood
supply bsupp.

H. Variability in the development time τ1

The results of the numerical simulations with
random development time τ1 are shown in Fig. 7.
The randomness, with ω ∈ Ωvi, has very little
effect on any of the four populations. We conclude
that the model is not sensitive to the development
time with our choice of the sample space Ωvi,
which seems reasonable.

I. Variability in the time lag τ2

The numerical simulation results with random
time delay in responding to the carrying capacity,
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Fig. 7. Case (vi): Model behavior with variability in τ1.
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Fig. 8. Case (vii): Model behavior with variability in τ2.

τ2, are shown in Fig. 8. We see that the random-
ness, with ω ∈ Ωvii, has a sizable effect on the
vectors and infected vectors, but a very small effect
on the infected humans and dogs. We conclude that
only the vector part of the model depends on τ2.
Moreover, our choice of the sample space Ωvii is
reasonable and therefore a precise value of τ2 is
likely not necessary if the interest is in using the
model to predict human or dog infections. On the
other hand, as noted above, if the overall process
is of interest, a reasonable value of τ2 has to be
determined, preferably from field data.

We note here that by changing the delay τ2

there is numerical evidence that the type of vector
oscillations changed. We discuss this point below
as it warrants further mathematical and numerical
investigation.

J. Variability in the time delay with τ1 = τ2

For the sake of completeness, we run simula-
tions of the case when τ1 = τ2, which was studied
in [32]. The sample space was chosen to be the
same as in Case (vi), centered about τ1 = 20,
in order to be comparable to [32] where the time
delay is 20 days.
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Fig. 9. Model behavior with τ1 = τ2.

The results are depicted in Fig. 9. It is seen that
there is a big change in the dynamics of the vector
population as compared to Fig. 7 and 8 as the
maximum number of vectors is much lower. Also,
the variability due to randomness is insignificant
in all four of the populations. Additionally, when
there are two delays, the main difference is the
emergence of a two-year cycle that changes the
nature of the yearly oscillations. Therefore, the use
of two delays requires further study as the details
of the dynamics are qualitatively different.

VI. CONCLUSIONS

This work studies an extension of the model
for the spread of Chagas disease, developed in
[31], [32], by considering a two-delay equation
for the vectors, and allowing randomness in seven
system parameters. The study of the model sen-
sitivity is motivated by the simple observation
that most of the model parameters are difficult or
even impossible to obtain experimentally. So the
knowledge of the parameters for which the model
is not sensitive allows the use of good estimates of
their values without distorting the solutions. On the
other hand, those parameters to which the model
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is very sensitive must be found or estimated with
higher accuracy, entailing much more effort.

The existence of the unique local solution of
the model for each choice of the parameters was
established, as well as the fact that for each ran-
dom parameter the solution x(t, ω) is a stochastic
or random process. The result, Theorem 2, is very
general and can be used in the sensitivity studies
of many related types of models.

The sensitivity analysis was done by running
1000 numerical simulations of the system dynam-
ics over 50 years for each of the seven chosen
parameter, randomly chosen from the appropriate
sample space while holding all other parameters at
their baseline values. It was found that the model
is sensitive to the natural mortality rate dm and
insecticide spraying dsp when it is only 10% as
effective.

The model is moderately sensitive to the
weighted blood supply factor bsupp = N + cdD+
cfD and the time delay in responding to the
carrying capacity, τ2. In the bsupp case there was
considerable sensitivity for the vectors, infected
vectors and dogs, while in the case of τ2 there
was considerable sensitivity for the vectors and in-
fected vectors only. The insensitivity of the human
population is due, in part, to the longevity of the
human life-span (even with the disease).

Within the parameter ranges of the appropriate
sample spaces, the model seems to be insensitive
to the values of the mortality rate due to insecticide
spraying dsp (with 100% effectiveness), the devel-
opmental delay τ1, the day of spraying application
t1, and the disease transmission probability pV N .
The latter is somewhat surprising and further study
is needed to clarify the reasons.

The numerical simulations show that the system
is insensitive to the values of dsp when the insec-
ticide is very effective and kills all the vectors,
except those in the cracks (Vmin). However, the
simulations with a death rate due to spraying at
10% effectiveness show considerable system sensi-
tivity. This highlights the importance of insecticide
resistance. If the effectiveness of the insecticide
is reduced, the death rate would decrease and the

model would become more sensitive to this param-
eter. The issues of deterioration of the spray or the
vectors developing resistance are real concerns in
the field and warrant additional study.

Another conclusion is that even very large vari-
ability in the vector and infected vector popula-
tions does not automatically translate into large
variability in the infected humans and domestic
animals.

This study raises questions that warrant further
study. In addition to those mentioned above, we
note the following. There is a need for a deeper
analysis of the vector equation, especially to es-
tablish the global boundedness and positivity of
the solutions with two delays. There is numerical
indication of a two-cycle baseline solution, i.e., the
system repeats each oscillation every two years.
This seems to be related to the chosen values of
the delays τ1 and τ2, since when τ2 is allowed
to change this two-cycle solution changes, Fig. 7.
This is a topic of interest and a mathematical
investigation is warranted. This may lead to a
deeper study of the effects of the two delays on
the system. In addition, we note that in several
cases the numerical simulations show the vector
population oscillating below and above the carry-
ing capacity. Also, it is of mathematical interest
to establish the existence of periodic solutions as
seen in the numerical results.

This work opens a way to study related models
and to allow the field research to put more ef-
fort into the determination of those parameters to
which the model is sensitive. Finally, we plan to
run more simulations with the other parameters,
some joint combinations, and also other versions
of the model.
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APPENDIX

We first present a short proof of the bound-
edness of the vector population V (t, ω) for
ω ∈ Ω and t ∈ [0, T ], where T ≤ t∗ ≡
inf {t > 0 : V (t, ω) = 0}. We note that t∗ > 0,
and in fact, t∗ > τ∗ ≡ min{τ1, τ2}. To see this we
recall that the equation for V is

V ′ = r(t− τ1)V (t− τ1)

(
1− V (t− τ2)

K

)
− dmV − dsp(V − Vmin)+. (A.1)

Since V (t∗) = 0 and V ′(t∗) ≤ 0, we see from
equation (A.1) that either V (t∗−τ1) ≤ 0 or V (t∗−
τ2) ≥ K. But 0 < V0(t) < K for t ∈ [−τ, 0], and
thus t∗ > τ∗.

Now, because V is positive on [0, T ], it suffices
to bound V from above. We will use induction
by bounding the solution on successive inter-
vals of length τ∗. Recall that V0(t) is bounded
and positive on [−τ, 0], and thus, there exists
a constant B−1 such that 0 < V0(t) < B−1

for all t ∈ [−τ∗, 0]. Now, in the inductive step
we assume that 0 < V (t) < Bj , for every
t ∈ [jτ∗, (j + 1)τ∗], where j = −1, 0, 1, 2, . . . ,
m. Then, it follows from equation (A.1) that for
all t ∈ [(m+ 1)τ∗, (m+ 2)τ∗] we have

V ′(t) < r∗Bm, (A.2)

where, using the 365 day periodicity of r, we set

r∗ = sup
ω∈Ω

{
max

0≤s≤365
{r(s, ω)}

}
. (A.3)

Note that r∗ is finite because of how Ω is defined.
Finally, a simple integration of inequality (A.2)

from (m+ 1)τ∗ to t yields

V (t) < V ((m+ 1)τ∗) + r∗Bmτ∗.

Thus, V (t) is bounded above on [(m+1)τ∗, (m+
2)τ∗]:

V (t) < Bm+1 ≡ Bm(1 + r∗τ∗)

= B−1(1 + r∗τ∗)
m+2. (A.4)

We note that the mathematical analysis of the
problem with two delays, and particularly the issue

of global positivity, is very involved and will be
studied elsewhere.

We turn now to show the measurability of
V (t, ω) with respect to ω ∈ Ω. For t ∈ [−τ, T ]
consider the functions Vδ given by

Vδ (t) = V0 (0 ∧ t)

+ I[0,∞) (t)

∫ t

0
r(s− δ − τ)V (s− δ − τ)

× (1− V (s− δ − τ)) ds

− I[0,∞) (t)

∫ t

0
dm(s− δ)V (s− δ) ds

− I[0,∞) (t)

∫ t

0
dsp(s− δ) (V (s− δ)− Vmin)+ ds

where a ∧ b = min(a, b). The set of functions Vδ
is bounded, as was shown above, and equicontinu-
ous, so by the Ascoli-Arzela theorem there exists a
subsequence, still denoted by subscript δ, such that
Vδ → V uniformly in C ([−τ, T ]), when δ → 0
through a sequence of values. Then, taking the
limit as δ → 0 for a suitable subsequence, one
obtains the following equation on [−τ, T ]:

V (t) = V0 (0 ∧ t)

+ I[0,∞) (t)

∫ t

0
r(s− τ)V (s− τ)

× (1− V (s− τ)) ds

− I[0,∞) (t)

∫ t

0
dm(s)V (s) ds

− I[0,∞) (t)

∫ t

0
dsp(s) (V (s)− Vmin)+ ds.

Thus, the fundamental theorem of calculus yields
a solution to (A.1). Moreover, the right-hand side
of the equation is Lipschitz continuous since V
is bounded. It follows that the solution is unique
and is obtained by letting δ → 0. This holds true
for each ω ∈ Ω. This allows us to assert that the
resulting solution is a measurable function of t and
ω. Each Vδ is product measurable in B ([0, T ])×F
from the construction. Now, we choose a sequence
δn → 0 and use the uniqueness just discussed to
argue that for each (t, ω)

lim
δn→0

Vδn (t, ω) = V (t, ω) .
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TABLE I
THE MODEL PARAMETERS AND THE BASELINE SIMULATION VALUES

Parameter Definition Baseline Value Source

H Total number of houses (houses/village) 74 Est. from [5]
V Total number of vectors (vectors/village) V (0) = 30000 This study
N Number of humans (humans/house) 4 This study
D Number of domestic dogs (dogs/house) 2.9 Est. from [17]
C Number of chickens (chickens/houses) 15 Est. from [5]
Vi Infected domestic triatomids (vectors/village) Vi(0) = 12000 This study
Ni Number of infected humans (humans/village) Ni(0) = 100 This study
Di Number of infected dogs (dogs/village) Di(0) = 35 This study
Vmin Number of vectors surviving spraying (vectors/house) 20 Est. from [14], [15]
r Egg hatching rate (1/day) See (V.1) [5], [17]
dm Natural death rate of vectors (1/day) dm, see (III.4) Est. from [3]
τ1 Vector egg development time (days) 20 [3]
τ2 Carrying capacity response delay (days) 190 This study
b Biting rate (bites/(day · human factor · vector)) See (V.2) Est.from [3], [4]

bsupp Weighted blood supply (human factors) N + dfD + cfC [11]
PNV Human to vector infection probability (per bite) 0.03 [11]
PDV Dog to vector infection probability (per bite) 0.49 [11]
PV N Vector to human infection probability (per bite) 0.001 Est. from [11], [22]
PV D Vector to dog infection probability (per bite) 0.001 Est. from [11]
df Human factor of one dog 2.45 [17]
cf Human factor of one chicken 0.35 [16], [17]
γNi Mortality rate of infected humans (1/day) 0.3

50·365 + 0.7
76.12·365 Est. from [6], [23]

γDi Mortality rate of infected dogs (1/day) 1
8·365 This study, est. 8 years

K Carrying capacity of vectors (vectors/house) 500 This study

Therefore, (t, ω) → V (t, ω) is also product mea-
surable. The proof is complete.
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