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Abstract—The Discrete Pulse Transform (DPT) for im-
ages and videos has been developed over the past few years
and provides a theoretically sound setting for a nonlinear
decomposition of an image or video. In [1] the theoretical
basis of the DPT was presented. In this paper we now
present a sound characterization of this useful nonlinear
hierarchical decomposition by referring to its ability as a
separator, the consistency of the decomposition, as well as
the smoothing ability of the decomposition.

Keywords-LULU; Discrete Pulse Transform; DPT; Non-
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I. INTRODUCTION

The Discrete Pulse Transform (DPT) is a nonlinear
hierarchical decomposition obtained by the successive
application of the LULU operators Ln and Un where n
increases from 1 to N , where N is the number of data
points in the signal. For a concise overview of the one-
dimensional LULU operators see [2] as well as further
collaboration with Laurie and Wild. The LULU operators
were extended in detail to multidimensional arrays in
[1], which provides a framework for the obvious areas
of image processing in two dimensions, as well as
video processing in three dimensions. We provide a
short overview of these operators and the DPT here for
completeness.

A. LULU Operators

The concept of morphological connectivity was in-
troduced by J. Serra and G. Matheron in the 1980’s.
They recognised the need for the concept of an axiomatic

connectivity and thus the axiomatic approach to connec-
tivity was introduced. In 1988 Serra and Matheron, [3],
introduced the concept of a connectivity class, for use in
Mathematical Morphology.

Definition 1: C is a connectivity class or a connec-
tion on the power set P(E) if the following axioms hold:
(i) ∅ ∈ C (ii) {x} ∈ C for each x ∈ E (iii) For each
family {Ci} in C such that

⋂
Ci 6= ∅, we have

⋃
Ci ∈ C.

A set C ∈ C is called connected.
We define the operators Ln and Un on A(Zd), where

A(Zd) is the vector lattice of all real functions defined on
Zd with respect to the usual point-wise defined addition,
scalar multiplication and partial order.

Definition 2: Let f ∈ A(Zd) and n ∈ N. Then

Ln(f)(x) = max
V ∈Nn(x)

min
y∈V

f(y), x ∈ Zd,

Un(f)(x) = min
V ∈Nn(x)

max
y∈V

f(y), x ∈ Zd,

where Nn(x) = {V ∈ C : x ∈ V, card(V ) = n+ 1}.
It is important to notice that here the collection of n-

neighbourhoods, Nn(x), the LULU operators act on, can
take on any shape as the only restriction is on their size.
This is the important advantage of the LULU operators,
which are only concerned about size, and morphological
filters, which operate in conjunction with a specified
structuring element with a specified size. This allows
for open investigation of the image structures instead of
searching for structures of a specific shape.
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B. The Discrete Pulse Transform

The operators Ln and Un smooth the input signal by
removing peaks (the application of Ln) and pits (the
application of Un). These peaks and pits are defined
mathematically in Definition 3 and 4.

Definition 3: Let V ∈ C. A point x /∈ V is called
adjacent to V if V ∪ {x} ∈ C. The set of all points
adjacent to V is denoted by adj(V ), that is, adj(V ) =
{x ∈ Zd : x /∈ V, V ∪ {x} ∈ C}.

Definition 4: A connected subset V of Zd is called a
local maximum (minimum) set of f ∈ A(Zd) if

sup(inf)y∈adj(V )f(y) < (>)inf(sup)x∈V f(x).

The results proved in [1] and [4] provide the following
summary of the effect of the operators Ln and Un on a
function f ∈ A(Zd):
(1) The application of Ln (Un) removes local maximum

(minimum) sets of size smaller or equal to n.
(2) No new local minimum (maximum) sets are created

where there were none, however the action of Ln
(Un) may enlarge existing local minimum (max-
imum) sets or join two or more local minimum
(maximum) sets of f into one local minimum
(maximum) set of Ln(f) (Un(f)).

(3) Ln(f) = f (Un(f) = f ) if and only if f does not
have local maximum (minimum) sets of size n or
less.

The DPT provides a representation of an image (when
d = 2) and higher dimensional arrays at all the scale
levels. We obtain a decomposition of a function f ∈
A(Zd), with finite support. Let N = card(supp(f)).
We derive the DPT of f ∈ A(Zd) by applying iteratively
the operators Ln, Un with n increasing from 1 to N as
follows

DPT (f) = (D1(f), D2(f), ..., DN (f)), (1)

where the components of (1) are obtained through
D1(f) = (I−P1)(f), Dn(f) = (I−Pn)◦Qn−1(f), n =
2, ..., N, Pn = Ln ◦ Un or Pn = Un ◦ Ln and
Qn = Pn ◦ ... ◦ P1, n ∈ N. This decomposition results
in components Dn which are each a sum of discrete
pulses φns, s = 1, 2, ..., γ(n) with disjoint supports of
size n, where in this setting a discrete pulse is defined
as follows,

Definition 5: A function φ ∈ A(Zd) is called a pulse
if there exists a connected set V and a real number α
such that

φ(x) =

{
α if x ∈ V
0 if x ∈ Zd \ V .

The set V is the support of the pulse φ, that is supp(φ) =
V .
We can then reconstruct the original signal as

f =

N∑
n=1

Dn(f) =

N∑
n=1

γ(n)∑
s=1

φns.

II. CHARACTERIZATION OF THE DPT

A. Linear versus Nonlinear

As discussed in [4], the nonlinearity of the LULU
smoothers makes theoretical development more compli-
cated than for linear operators. However, taking on the
additional complexity is justified since in two dimensions
an image is basically the transformation of data by a
human eye or measuring instrument. This transformation
is significantly complicated to be considered nonlinear
[5]. Thus taking this stance the analysis of images via
nonlinear operators is more logical than that of linear.
Linear operators are also notorious for blurring edges.

Linear processing techniques are however a natural
starting point for analysis due to the simplicity of their
application and theoretical backbone available. Examples
of linear filters are the Fourier transform, Hadamard
transform, the discrete cosine transform, and wavelets.
They also provide sufficient results in most applications,
but there are problems in which a nonlinear process
would prove more viable and efficient. Pitas and Venet-
sanopoulos [6] provide examples of such cases, such as
signal dependent noise filtering e.g. photoelectron noise
of photosensing devices; multiplicative noise appearing
as speckle noise in ultrasonic imaging and laser imaging;
and nonlinear image degradations e.g. when transmission
occurs through nonlinear channels. Advantages of non-
linear filters are 1) the ability to handle various noise
types, 2) edge preservation, 3) fine detail preservation,
4) unbiasedness (directional and illumination based) or
invariance, and 5) computational complexity [6].

Nonlinear filtering techniques can be broadly classi-
fied accordingly in the following areas: order statistic fil-
ters, homomorphic filters, polynomial filters, mathemat-
ical morphology, neural networks, and nonlinear image
restoration [6]. The LULU operators fit nicely into the
areas of mathematical morphology, due to their similarity
to area operators therein, as well as order statistics,
two areas which have been integrated quite efficiently
in literature [6]. Examples of order statistics, discussed
in detail in [6], are the median, rank-order filters, max-
min filters, Lp-mean filters, and α-trimmed mean filters.
The LULU operators are examples of max-min filters
but with the disadvantages listed in [6] improved upon.
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The basic filters of mathematical morphology are the
erosion and dilation, and subsequently the morphological
opening and closing, to which the LULU filters are again
closely related.

B. Separators

A common requirement for a filter P , linear or non-
linear, is its idempotence, that is P ◦ P = P . For linear
operators the idempotence of P implies the idempotence
of the complementary operator I − P , where I denotes
the identity operator. For nonlinear filters this implication
generally does not hold, so the idempotence of I − P ,
also called co-idempotence, [7], can be considered as an
essential measure of consistency.

For every a ∈ Zd the operator Ea : A(Zd) → A(Zd)
given by Ea(f)(x) = f(x − a), x ∈ Zd, is called a
shift operator. We now define a separator which mimics
the actions required of an operator P . The first three
properties in Definition 6 define a smoother. More detail
on smoothers can be found in [4].

Definition 6: An operator P : A(Zd) → A(Zd) is
called a separator if

(i) P ◦ Ea = Ea ◦ P, a ∈ Zd (Horizontal shift
invariance)

(ii) P (f + c) = P (f) + c, f, c ∈ A(Zd), c a constant
function (Vertical shift invariance)

(iii) P (αf) = αP (f), α ∈ R, α ≥ 0, f ∈ A(Zd)
(Scale invariance)

(iv) P ◦ P = P (Idempotence)
(v) (I − P ) ◦ (I − P ) = I − P (Co-idempotence)
Figure 1 illustrates the action of a separator P . It

shows how a separator will separate the signal into
noise and the true signal without the need for recursive
smoothing, that is, it does the separation on the first
filter application so that there is no ‘signal’ left in
the ‘noise’ nor any ‘noise’ left in the ‘signal’. The
median smoother is an example of a filter which requires
recursive application. The LULU operators Ln and Un
and all their compositions are separators thus providing
a strong separating capability of a signal.

C. Nonlinear Decompositions

The structure of a hierarchical decomposition is as
follows in general. The operator F1 is applied to the
input image f to obtain a decomposition of f into f1, the
smoother image, and D1, the noise component removed.
This process is repeated with F2, F3,...,FN until there
is nothing left to remove except the constant image DN .
The decomposition then has the form f = β1D1 +
β2D2 + ... + βNDN , for some βi, i = 1, ..., N . Such a

Fig. 1. The action of a separator P

hierarchical decomposition has been investigated inten-
sively in literature, see [8], [9], [10] for some nonlinear
cases. However, in no literature have we found a unified
theoretical backbone to connect such nonlinear hierarchi-
cal decompositions and provide methods of comparison
nor methods of testing the capability of the structure of
the decomposition. In Tadmor et al [8], for example, a
decomposition f =

∑k
j=1 uj + vk is obtained, where vk

is the noise component and the uj’s the decomposition
components, by functional minimization. Tadmor et al
discuss convergence of the minimizer, localization and
adaptability, but nothing to indicate the strength of the
decomposition save numerical visual examples. Similarly
Wong et al [10] do not provide a theoretical indication
of the strength of their decomposition obtained as a
probabilistic scale-space derived from the nonlinear dif-
fusion equation in [11]. In [9], the authors even state that
comparisons with their proposed nonlinear scale-space
and other nonlinear hierarchical decompositions ‘are to
be made with care’.

D. Consistent Decompositions

As stated in [6] and above in Section II-C, the main
limitations of nonlinear decompositions is the lack of
a theory with which to compare the ability of various
decompositions. The Highlight theorem first conjectured
in 2007 [12], and later proved in 2010 [13], provides
this much needed backbone. The quality of a nonlinear
hierarchical decomposition, such as the Discrete Pulse
Transform given in (1), can be characterized through the
concept of consistent decomposition (also called strong
consistency, [12]). For a linear decomposition of two
signals f and g, namely D(f) =

∑
iDi(f) and D(g) =∑

j Dj(g), the equality

D(αf + βg) = α
∑
i

Di(f) + β
∑
j

Dj(g) ∀ α, β ∈ R
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Fig. 2. Illustration of the Highlight Theorem

always holds. This is clearly a desirable property but
for a nonlinear decomposition this will in general not
be satisfied. However, a weaker form of linearity is
provided by the Highlight Theorem. It shows that the
multidimensional Discrete Pulse Transform in (1) is
strongly consistent, in the sense that the above holds
for α, β > 0. The Highlight Theorem [13] states the
following: Given a basis of pulses identified by the DPT
for a signal f , form a new function g as any linear
combination of the pulses of f with heights the same
sign as before. Then the DPT of g will identify the same
basis of pulses, and recover the new heights.

Figure 2 provides an illustration of the Highlight
theorem. The name of theorem indicates its usefulness.
Besides the ‘weak’ linearity it presents for a nonlin-
ear decomposition, which we shall define as highlight-
linearity, it allows for the highlighting or emphasizing
of specific pulses deemed to be important, without de-
stroying the structure of the decomposition. We state the
theorem more precisely in the following form.

Theorem 7: For a DPT decomposition of f , let g =∑N
n=1

∑γ(n)
s=1 αnsφns where the constants αns are pos-

itive. Then the DPT decomposition of g is obtained
as DPT (g) =

∑N
n=1

∑γ(n)
s=1 αnsφns, so that the pulses

of g are obtained as αnsφns. If αns = αn for each
n then DPT (g) =

∑N
n=1 αnDn(f), so that Dn(g) =

αnDn(f).
The proof of Theorem 7 by Laurie for any dimension

can be found in [13]. Therein the theory is described by
considering the signal as a graph where the data points
are the graph vertices and with the edges between the
vertices based on the geometry of the of the signal (i.e.
connectivity). Laurie also provides an implementation
algorithm for the DPT which is O(m) where m is the
number of edges in the graph.

The DPT decomposition is also total variation pre-
serving. We assume C on Zd is a graph connectivity, for
example for images the pulses of the DPT are based on
4- or 8-connectivity, the individual pulses can be viewed
as a graph G = (Vn, Em) with the data points as the
n vertices Vn and the neighbour relation between data
points as the m edges Em. The connectivity of such a
graph G can be defined via a relation r ⊂ Zd × Zd,
where p ∈ Zd is connected (by an edge) to q ∈ Zd
iff (p, q) ∈ r. The relation r reflects what we consider
neighbours of a point in the given context. For example,
4-connectivity and 8-connectivity. Let r be a relation on
Zd. We call a set C ⊆ Zd connected, with respect to the
graph connectivity defined by r, if for any two points
p, q ∈ C there exists a set of points {p1, p2, ..., pk} ⊆ C
such that each point is neighbour to the next one, p
is neighbour to p1 and pk is neighbour to q. Here we
assume that r is reflexive, symmetric and shift invariant,
(p, p+ ek) ∈ r for all k = 1, 2, ..., d and p ∈ Zd, where

ek ∈ Zd is defined by (ek)i =

{
0 if i 6= k
1 if i = k

.
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Fig. 3. Full total variation distribution and log histogram total
variation distribution of Cat Image

The Total Variation of f ∈ A(Zd) is given by

TV (f) =
∑
p∈Zd

d∑
i=1

|f(p+ (ek)i)− f(p)|.

Although the importance of total variation preserva-
tion for separators cannot be doubted, it is even more so
for hierarchical decompositions like the Discrete Pulse
Transform, due to the fact that they involve iterative
applications of separators. Since the operators Ln, Un,
n = 1, 2, ..., N , and all their compositions, are total
variation preserving, it is easy to obtain the following
result, which shows that, irrespective of the length of the
vector or the number of terms in the sum , no additional
total variation, or noise, is created via the decomposition,
namely

TV (f) =

N∑
n=1

γ(n)∑
s=1

TV (φns). (2)

The proof of this result can be found in [1]. We should
remark that representing a function as a sum of pulses
can be done in many different ways. However, in general,
such decompositions increase the total variation, that
is, we might have strict inequality in (2) instead of
equality. Based on this result we can construct the total
variation distribution of images. More precisely, this is
the distribution of the total variation of an image among
the different layers of the DPT. That is, essentially the
plot of TV (Dn(f)) vs. n. In Figure 3 we present the total
variation distribution of an image, where one can observe
how the total variation is distributed over the pulse size.
In the graph a log scale is used on the vertical axis and
the pulse size values are grouped to form a histogram.
The different character of images naturally manifests
through different forms of total variation distributions.
Using the total variation distribution as a guide for the
content of the image we can determine, firstly, that the
image is relatively ‘denoised’ when the total variation
graph stabalizes, that is, the very little information is

removed after this scale by the DPT. In Figure 4 various
scales of the DPT are picked out based on the total
variation graph. Scales 1 to 17859 indicate the smoothed
image, that is, when the total variation removal stabal-
izes. This smoothed image appears very similar to the
original (with an MSSIM value of 0.9736 (see section
II-E)) but has been smoothed by removing the remaining
scale levels, 17860 to 58571, which contain the large
undetailed pulses. Scales 1 to 880 provide the texture or
detail of the image, scales 4385 to 4395 represent the
large eye of the cat and scale 11420 the eyes, nose and
mouth of the cat.

E. Measuring the Smoothing Ability of the LULU Oper-
ators

The ability of an operator to effectively remove noise
and smooth the signal is usually measured by its output
variance or the rate of success in the noise removal [6].
Other measures used to assess the performance are the
mean square error (MSE) and signal-noise-ratio (SNR)
[6]. In this section we shall present a method in which
to measure the quality of the smoothed image as the
question of the smoothing ability of the DPT arises. The
aim of a smoother is of course to remove the noise
element present. The noise can be due to a number
of factors, for example, acquisition, processing, com-
pression, storage, transmission and reproduction of the
image [14]. The easiest method of evaluation is purely
subjective - namely, human visual investigation. In order
for evaluation to be objective, quantitative methods need
to be used instead.

Quantitative methods can be divided into three cat-
egories [14]. First, full-reference, where the complete
reference (undistorted) image is known with certainty,
secondly, no-reference, where this reference image is
not known at all, and third, reduced-reference, where
only part of the original reference image is known, for
example, a set of extracted features. We measure the
similarity of the smoothed images Pn(f) to the original
unsmoothed image f with the structural similarity index
[14],

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2x + µ2y + c1)(σ2x + σ2y + c2)
,

for two corresponding sets of pixels, x and y, in each
image, where µi, i = x, y is the mean of the pixel
values in i, σ2i , i = x, y is the variance of the pixel
values in i, σxy the covariance between x and y, cj =
(kjL)

2 , j = 1, 2 constants to stabilize the division by the
weak denominator, L = 255 for greyscale images and
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Fig. 4. Chelsea image using only scales 1 to 17859, 17860 to 58571, and 1 to 880 in the first row, and 4385 to 4395 and 11420 in the
second row, respectively

Fig. 5. MSSIM values comparing Pn(f) with f values plotted against scale for the Cat image and an Ocean image

kj � 1 constants (we used kj = 0.05). This measure
is a full-reference measure which provides a useful
framework since we are comparing a smoothed version
of the original distorted image with the original distorted
image. The most widely used such measures are the
mean-square-error (MSE) and the peak signal-noise-ratio
(PSNR), but these measures do not compare well with
the perceived visual quality of the human visual system.
This measure is introduced in order to penalize errors
based on their visibility, that is, to simulate the HVS
as much as possible. This measure is applied to 8 × 8
windows in the image for each pixel and a final mean
structural similarity index is calculated as the average
of these SSIM values, called the MSSIM. An MSSIM
value closer to 1 indicates stronger similarity. Wang et
al provide MATLAB code for the implementation of the
MSSIM as a free download, which was made use of.

Figure 5 provides MSSIM values for various images
as the LULU smoothing progresses through the DPT
from scale n = 1 up to N . Notice how, based on the
content of the images, the reduction in the MSSIM values
as the DPT progresses varies from image to image.
The graphs provide a mechanism to determine where

visual structure is in the image, that is, when the HVS
would pick out structures of significance. Notice how the
ocean image in Figure 5 contains very little structure
and the MSSIM plot decreases gradually through the
application of the DPT without any ‘occurrences’. The
cat image however presents a number of phenomenons
in its MSSIM plot which indicate structure. Figure 6
indicates what is present at these scales. Scales 1 to
4030 represent the detail and the remaining scales the
large relatively unimportant scales. The eye, face and
forehead are represented at scales 4234 to 4235, 4325 to
4335 and 14565 to 14575 respectively.

III. CONCLUSION

We have presented on overview of the LULU operators
and the resulting Discrete Pulse Transform for multidi-
mensional arrays. As a new hierarchical decomposition
the status of the DPT within the image processing
community needs to be justified, thus we provide a char-
acterization of the theoretical backbone of this nonlinear
decomposition. This also provides a method of com-
parison for other nonlinear decompositions, which does
not currently exist. The opportunity for further measures
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Fig. 6. Cat image at scales 1 to 4030, 4031 to 58571, 4234 to 4235, 4325 to 4335, and 14565 to 14575 respectively

of capability should not escape the reader, for example,
the ability of noise removal for different types of noise
contamination (independent as well as dependent noise
structures), total variation preservation, and the nature of
the pulse shapes and what the shapes mean relative to
the image structure, image patterns and image content.
Such work is currently under investigation.
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