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Abstract—Compressibility influences the mechan-
ical bidomain model describing the elastic properties
of tissue. Displacements of the intracellular and
extracellular spaces are analyzed individually, and
differences in these displacements produce mem-
brane forces. Two length constants are associated
with the membrane spring constant, one contains
the shear moduli and the other contains the bulk
moduli. The analytical solutions in these exam-
ples indicate that the monodomain part does not
contribute to the membrane force. Accounting for
compressibility has its largest impact on the intra-
cellular and extracellular pressures. The bidomain
contribution to the pressure obeys the Helmholtz
equation rather than Laplace’s equation. This model
predicts membrane forces that might cause tissue
remodeling or mechanotransduction.

Keywords-biomechanics; mechanical bidomain
model; mechanotransduction; pressure; remodeling.

I. INTRODUCTION

The mechanical bidomain model is a new math-
ematical description of the biomechanics of tissue,
which distinguishes between displacements in the
intracellular and extracellular spaces and focuses
on forces across the cell membrane [1-5]. Such

membrane forces may affect transmembrane pro-
teins, such as integrins, that are responsible for
tissue remodeling and mechanotransduction [6-8].
Membrane forces may also play a role in tissue
engineering because mechanical stresses influence
the growth of replacement tissue [9], in remodeling
of blood vessels [10], and in development because
mechanical stresses guide the growth of fetal tissue
[11]. The unique feature of the mechanical bido-
main model is that it is macroscopic (representing
the tissue rather than individual cells) but because
it tracks the intracellular and extracellular spaces
individually it can predict membrane forces. The
mechanical bidomain model is analogous to the
electrical biodmain model [12], which is currently
the most widely used model for simulating defib-
rillation. For a review of the mechanical bidomain
model, see [4].

In a previous version of the mechanical bido-
main model [4], both the intracellular and ex-
tracellular spaces were incompressible, so tissue
displacements did not change the tissue volume
(dilatation). The pressure distribution in a tissue is
defined as the bulk modulus times the dilatation
[13, 14]. The incompressible limit corresponds to
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the finite product of these quantities as the bulk
modulus goes to infinity and the dilatation goes to
zero. Tissue is largely water, so the incompressible
assumption is often valid. Tissue bulk moduli are
much larger than shear moduli. The bulk modulus
is on the order of 2 × 109 Pa, whereas the shear
modulus is about 2 × 104 Pa, a difference of a
factor of 100,000 [15], so one can typically assume
incompressibility.

The mechanical bidomain model is complicated
because there are two bulk moduli: one for the
intracellular space, χ, and one for the extracel-
lular space, δ. Although one can easily imagine a
limiting process to arrive at intracellular and extra-
cellular pressures, p and q, similar to that outlined
above, the ratio χ

δ may impact the tissue behavior,
even if χ and δ are both much greater than the
intracellular and extracellular shear moduli, ν and
µ. Furthermore, the pressures contribute to the
boundary conditions at the tissue surface, and the
appropriate boundary conditions remain uncertain.

The goal of this paper is to resolve questions
surrounding the mechanical bidomain model by
rederiving the model without the assumption of
incompressibility. We solve several biomechanics
problems, analyze their solutions, and then impose
incompressibility to determine the correct behavior
in that limit. This procedure introduces new qual-
itative behavior into the model. For instance, pre-
vious studies revealed a bidomain length constant
that depended on the membrane spring constant K
coupling the intracellular and extracellular spaces
[1, 4]. In this paper, there are two length constants,
both involving K; one containing the shear moduli
and one the bulk moduli. Our results change the
way we calculate and interpret the intracellular
and extracellular pressures, impact the predicted
displacements, and affect the membrane force dis-
tribution.

II. METHODS

A. Mechanical Bidomain Model

Consider an isotropic tissue and ignore any
active tension. To keep things simple, we consider
a two- dimensional Cartesian coordinate system (x,

Fig. 1. A schematic diagram of the mechanical bidomain
model for a two-dimensional sheet of tissue. The elastic
properties of the intracellular space are depicted by the lower
grid of springs (green), and the properties of the extracellular
space by the upper grid (blue). The two spaces are coupled by
the membrane, shown as an array of springs (red). Because
this is a two-dimensional model, stretching of the membrane
springs is not caused by displacements in the z direction
perpendicular to the sheet. Rather, if the intracellular and
extracellular spaces are displaced by different amounts in the
x-y plane, the membrane springs will stretch causing forces
on the membrane.

y). The strains are related to the intracellular and
extracellular displacements, u and w, by

εixx =
∂ux
∂x

εexx =
∂wx
∂x

(1)

εiyy =
∂uy
∂y

εeyy =
∂wy
∂y

(2)

εixy=
1

2

(
∂ux
∂y

+
∂uy
∂x

)
εexy=

1

2

(
∂wx
∂y

+
∂wy
∂x

)
.

(3)
The relationships between intracellular and ex-

tracellular stresses and strains are

τixx = χ(εixx + εiyy) + 2νεixx (4)

τexx = δ(εexx + εeyy) + 2µεexx (5)

τiyy = χ(εixx + εiyy) + 2νεiyy (6)

τeyy = δ(εexx + εeyy) + 2µεeyy (7)
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τixy = 2νεixy (8)

τexy = 2µεexy. (9)

The equations of mechanical equilibrium are

∂τixx
∂x

+
∂τixy
∂y

= K (ux − wx) (10)

∂τexx
∂x

+
∂τexy
∂y

= −K (ux − wx) (11)

∂τixy
∂x

+
∂τiyy
∂y

= K (uy − wy) (12)

∂τexy
∂x

+
∂τeyy
∂y

= −K (uy − wy) . (13)

Plugging (1-9) into (10-13) and rearranging, we
obtain the equations governing the mechanical
bidomain model

χ
∂

∂x

(
∂ux
∂x

+
∂uy
∂y

)
+

2ν

(
∂2ux
∂x2

+
1

2

∂2ux
∂y2

+
1

2

∂2uy
∂x∂y

)
= K

(
ux − wx

)
(14)

δ
∂

∂x

(
∂wx
∂x

+
∂wy
∂y

)
+

2µ

(
∂2wx
∂x2

+
1

2

∂2wx
∂y2

+
1

2

∂2wy
∂x∂y

)
= −K

(
ux − wx

)
(15)

χ
∂

∂y

(
∂ux
∂x

+
∂uy
∂y

)
+

2ν

(
∂2uy
∂y2

+
1

2

∂2ux
∂x∂y

+
1

2

∂2uy
∂x2

)
= K

(
uy − wy

)
(16)

δ
∂

∂y

(
∂wx
∂x

+
∂wy
∂y

)
+

2µ

(
∂2wy
∂y2

+
1

2

∂2wx
∂x∂y

+
1

2

∂2wy
∂x2

)
= −K

(
uy − wy

)
. (17)

Fig. 1 shows a schematic drawing of a two-
dimensional sheet of tissue representing the me-
chanical bidomain model. The intracellular and
extracellular spaces are each represented by a grid
of springs (green and blue), and their behavior is
described by the left-hand sides of (14-17). These
grids are connected across the cell membrane by
an array of springs (red) coupling the two spaces.
The force produced by these springs is represented
by the right-hand sides of (14-17). The membrane
force depends on the difference between the in-
tracellular and extracellular displacements and the
spring constant K.

B. Shear Displacement

We first analyze shear displacements using
methods similar to those presented previously
[4]. Take the y-derivative of (14) and subtract
the x-derivative of (16), and similarly take y-
derivative of (15) and subtract the x-derivative
of (17). The results are simpler when expressed
in terms of the z-components of the curl of the
displacements, ωi = (∇× u)z = ∂uy

∂x −
∂ux

∂y and
ωe = (∇×w)z = ∂wy

∂x −
∂wx

∂y ,

ν∇2ωi = K (ωi − ωe) (18)

µ∇2ωe = −K (ωi − ωe) , (19)

where ν and µ are the shear moduli (terms con-
taining the bulk moduli χ and δ cancel out). If we
add (18) and (19), we get

∇2 (νωi + µωe) = 0. (20)

If we divide (18) by ν and (19) by µ and subtract,
we obtain

∇2 (ωi − ωe) =
1

σ2
(ωi − ωe) , (21)

where σ =
√

νµ
K(ν+µ) .
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Define α = ωi + µ
νωe and β = ωi − ωe, so

ωi = ν
ν+µ(α+ µ

ν β) and ωe = ν
ν+µ(α− β). These

functions obey ∇2α = 0 and ∇2β = 1
σ2β. The

function α is a weighted sum of the intracellular
and extracellular spaces, obeys Laplace’s equation,
and describes the “monodomain” behavior of the
system; β is the difference between the intracellu-
lar and extracellular spaces, obeys the Helmholtz
equation so it will decay with distance by the
length constant σ, and specifies the “bidomain”
behavior. Because β represents the difference be-
tween u and w, it is responsible for the membrane
force.

C. Volume Dilatation

We next consider volume changes in the tissue,
which is the new feature presented in this paper.
Take the x-derivative of (14) and add it to the y-
derivative of (16), and similarly take x-derivative
of (15) and add it to the y-derivative of (17), and
get

(χ+ 2ν)∇2ei = K(ei − ee) (22)

(δ + 2µ)∇2ee = −K(ei − ee), (23)

where ei = ∇·u and ee = ∇·w are the intracellu-
lar and extracellular dilatations. Now assume that
the bulk moduli are much greater than the shear
moduli (χ, δ >> ν, µ) so

χ∇2ei = K(ei − ee) (24)

δ∇2ee = −K(ei − ee). (25)

If we add the two equations, we get

∇2(χei + δee) = 0. (26)

If we divide (24) by χ and (25) by δ and subtract,
we obtain

∇2(ei − ee) =
1

ξ2
(ei − ee) , (27)

where

ξ =

√
χδ

K(χ+ δ)
. (28)

Define the intracellular and extracellular pres-
sures as p = −χei and q = −δee. To examine
the incompressible limit, let χ and δ go to infinity
and ei and ee go to zero in such a way that p and
q remain finite. Furthermore, define two auxiliary
pressures: P = p+q is the monodomain pressure,
and Q = p − χ

δ q is a weighted difference of the
pressures. The pressures p and q are expressed in
terms of P and Q as

p =
χ

χ+ δ

(
P +

δ

χ
Q

)
, (29)

q =
δ

χ+ δ
(P −Q) . (30)

The pressures P and Q obey the equations ∇2P =
0, ∇2Q = 1

ξ2Q. P obeys Laplaces equation and
represents the monodomain behavior. Q obeys the
Helmholtz equation, decays with distance by a
length constant ξ, and represents the bidomain
behavior.

D. Summary of the Methods

This analysis shows that the displacements
caused by shearing and the dilatations caused by
volume changes obey analogous equations. Both
can be separated into a monodomain part and a
bidomain part. Both introduce new length con-
stants, σ and ξ, that characterize the behavior. The
analysis of shear was presented previously [4] and
results in a boundary layer near the tissue edge
[5]. The analysis of volume dilatation is new: it
represents an advance beyond the previous model.

The equations above suggest that the pressure
and displacement are independent. However, they
are in fact coupled by the boundary conditions
at the tissue surface. For instance, if the tissue
is perfused by an adjacent bath, the boundary
conditions are: the normal component of the ex-
tracellular stress is continuous with the stress in
the bath, and the normal component of the intra-
cellular stress is zero. If the tissue-bath surface
were specified by the plane y = constant, then
the boundary conditions would be τexx = −Pbath
and τexy = τixx = τixy = 0. Here, Pbath is the
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Fig. 2. A schematic diagram of Example 1: a cylinder of
tissue of radius b immersed in a bath at pressure P0.

hydrostatic pressure in the bath, which we take as
a static fluid.

Our next goal is to examine three examples,
from the very simple to the increasingly com-
plex, that illustrate the behavior of the mechanical
bidomain model, with our focus primarily on the
dilatation and pressure.

III. RESULTS

A. Example 1: Cylinder in a Bath

Consider a cylinder of isotropic tissue (of radius
b) immersed in a fluid bath at pressure P0 (Fig.
2). This might represent, for example, a cardiac
papillary muscle lying in a superfusing bath. We
examine this case first because shear forces play
no role in the behavior; we need to determine
only the pressure distribution in the tissue. In this
case, the displacement is in the radial direction
r and does not depend on the angle θ, so in
cylindrical coordinates the strains are related to
the displacement by εirr = ∂ur

∂r , εiθθ = ur

r , εirθ =

0, εerr = ∂wr

∂r , εeθθ = wr

r , and εerθ = 0 [16]. The
stresses and strains are related by τirr = χ(εirr +
εiθθ)+2νεirr, τiθθ = χ(εirr+εiθθ)+2νεiθθ, τirθ =
0, τerr = δ(εerr + εeθθ) + 2µεerr, τeθθ = δ(εerr +
εeθθ) + 2µεeθθ, and τerθ = 0.

The equations of mechanical equilibrium writ-
ten in cylindrical coordinates are [16]

∂τirr
∂r

+
τirr − τiθθ

r
= K (ur − wr) (31)

∂τerr
∂r

+
τerr − τeθθ

r
= −K (ur − wr) . (32)

At the surface of the tissue (r = b), the boundary
conditions are τirr = 0 and τerr = −P0.

The displacements that obey the equations of
mechanical equilibrium and boundary conditions
are

ur = − P0

χ+ δ

(
r

2
− ξ I1(r/ξ)

I0(b/ξ)

)
(33)

wr = − P0

χ+ δ

(
r

2
+ ξ

χ

δ

I1(r/ξ)

I0(b/ξ)

)
, (34)

where I0 and I1 are modified Bessel functions
of the first kind. Membrane forces arise due to
the difference in displacements, u - w. In this
case, ur − wr = P0

ξ
δ
I1(r/ξ)
I0(b/ξ)

. The membrane force
is largest near the boundary r = b. However,
the displacements go to zero as χ and δ go to
infinity, so the membrane force vanishes for an
incompressible tissue.

The pressures p = −χei and q = −δee remain
finite when χ and δ go to infinity

p = P0
χ

χ+ δ

(
1− I0(r/ξ)

I0(b/ξ)

)
(35)

q = P0
δ

χ+ δ

(
1 +

χ

δ

I0(r/ξ)

I0(b/ξ)

)
. (36)

Fig. 3 shows p and q as functions of r. These pres-
sures can be recast in terms of P and Q, P = P0

and Q = −P0
χ
δ
I0(r/ξ)
I0(b/ξ)

. The monodomain pressure
P is just the bath pressure, while the bidomain
pressure Q decays with length constant ξ as one
moves inward from the tissue surface. If ξ << b,
then several length constants below the surface
Q is approximately zero and the intracellular and
extracellular pressures are constants; p = χ

χ+δP0

and q = δ
χ+δP0. Although the pressures remain

finite as the bulk moduli go to infinity, they still
depend on the ratio of the bulk moduli, χ

δ . The
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Fig. 3. The pressures p and q as functions of r, for χ = 2δ
and ξ = b

10
. The blue curve represents the intracellular

pressure p and the red curve represents the extracellular
pressure q.

tissue behavior is independent of the shear moduli
ν and µ.

The length constant ξ depends on the bulk
moduli, and as χ and δ go to infinity ξ grows.
However, the value of the membrane spring con-
stant K is not known but is expected to be large
[4]. Therefore, the size of ξ =

√
χδ

K(χ+δ) relative
to the cylinder radius b is not obvious. If ξ << b,
the pressure changes over a thin boundary layer
near the tissue surface, like shown in Fig. 3. If
ξ >> b, p = 0 and q = P0, and are constant. The
limit ξ >> b corresponds to the prediction of the
mechanical bidomain model presented previously
[4]. Ultimately, the size of ξ is an experimental
question that cannot be resolved until we have the
necessary data. One virtue of this first example
is that it highlights a key new feature of our
model, the new length constant ξ, and indicates
what quantities need to be measured to assess the
model.

B. Example 2: Blood Vessel

The next example is of a cylinder of fluid, of
radius a, surrounded by tissue, which is a model
for a blood vessel (Fig. 4). This example is slightly
more complicated than the first example, because
the shear moduli now play a role in the solution.
However, the approach is similar to Example 1.
The displacements that obey the equations of equi-

Fig. 4. A schematic diagram of Example 2: a cylindrical
vessel of radius a containing fluid at pressure P0, surrounded
by tissue.

librium and the boundary conditions are

ur =
P0

ν + µ

(
a2

2r
− ξ ν

χ

K1(r/ξ)

K0(a/ξ)

)
(37)

wr =
P0

ν + µ

(
a2

2r
+ ξ

ν

δ

K1(r/ξ)

K0(a/ξ)

)
, (38)

where K0 and K1 are modified Bessel functions
of the second kind. These expressions each have
two terms: a first term, P0

ν+µ
a2

2r , that governs the
monodomain behavior and does not go to zero as
the bulk moduli go to infinity, and a second bido-
main term containing Bessel functions. Because
the monodomain terms are the same in the intracel-
lular and extracellular spaces, they contribute noth-
ing to the membrane force. The monodomain part
(Fig. 5a) implies that a high pressure inside the
vessel causes it to expand. The difference between
the intracellular and extracellular displacements is
ur−wr = −P0ξ

ν
ν+µ

K1(r/ξ)
K0(a/ξ)

(
1
χ + 1

δ

)
, which gives

rise to membrane forces near the tissue boundary
r = a that fall off with a length constant ξ (Fig.
5b). The difference ur −wr vanishes when χ and
δ go to infinity. Therefore in the incompressible
limit, there is no membrane force.

The dilatations ei = P0

χ
ν

ν+µ
K0(r/ξ)
K0(a/ξ)

and ee =

−P0

δ
ν

ν+µ
K0(r/ξ)
K0(a/ξ)

become zero for large values of

χ and δ. The pressures, p = −P0
ν

ν+µ
K0(r/ξ)
K0(a/ξ)

and
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Fig. 5. a) The monodomain part of the displacement, b)
the bidomain part of the displacement ur − wr , and c) the
pressures p and q, all as functions of r, for ν = 2µ , χ =
2δ, and ξ = a

10
. The displacements and pressures have been

normalized to their values at r = a.

q = P0
ν

ν+µ
K0(r/ξ)
K0(a/ξ)

are independent of χ and δ
except though their dependence on ξ (Fig. 5c).
The monodomain pressure is zero, P = 0, so
there is only a bidomain contribution. In the limit
when ξ >> a (as presented by [4]), the pressures
become constant: p = −P0

ν
ν+µ and q = P0

ν
ν+µ .

This example emphasizes two points. First, like
Example 1, it illustrates how the pressures fall
off from the boundary with length constant ξ, the
new parameter introduced in this paper. Second, it
shows how the displacement is divided into two
parts, one of which gives rise to membrane forces
(although in this case the membrane force goes to

zero as χ and δ go to infinity).

C. Example 3: Sheet of Active Tissue

The last example is of a two-dimensional sheet
of cardiac tissue undergoing an active contraction
(Fig. 6). This example is more complicated than
the first two, but we include here it for several
reasons. First, it shows how the two length con-
stants, σ and ξ, can both contribute to the solution.
Second, it contains a non-zero membrane force
even when the bulk moduli go to infinity. Third,
it was analyzed in detail using the incompressible
model [5], so redoing the calculation with com-
pressibility highlights those changes compressibil-
ity introduces. Finally, the example shows how
the active tension enters the equations, which is
a crucial element when modeling cardiac tissue.

We represent the active contraction as a uniform
tension T added to the intracellular stress tensor
[13, 14]. The tension acts along the myocardial
fibers, which we assume are straight, uniform and
oriented in the x direction. Other than this active
tension, we assume that the tissue is isotropic. In
Cartesian coordinates, the tension would be repre-
sented by a constant T added to τixx. In cylindrical
coordinates, the tension enters the stress tensor in
a more complicated way, shown below.

In cylindrical coordinates, the strains are ex-
pressed in terms of the displacements by [16]

εirr =
∂ur
∂r

εerr =
∂wr
∂r

(39)

εiθθ =
ur
r

+
1

r

∂uθ
∂θ

εeθθ =
wr
r

+
1

r

∂wθ
∂θ

(40)

εirθ =
1

2

(
1

r

∂ur
∂θ

+
∂uθ
∂r
− uθ

r

)
(41)

εerθ =
1

2

(
1

r

∂wr
∂θ

+
∂wθ
∂r
− wθ

r

)
. (42)

The stress and strain are related by [5]

τirr = χ(εirr+εiθθ)+2νεirr+
T

2
(1+cos 2θ) (43)

τerr = δ(εerr + εeθθ) + 2µεerr (44)
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Fig. 6. A schematic diagram of Example 3: a sheet of
isotropic cardiac tissue of radius R with straight and uniform
myocardial fibers oriented in the x-direction.

τiθθ = χ(εirr+εiθθ)+2νεiθθ+
T

2
(1−cos 2θ) (45)

τeθθ = δ(εerr + εeθθ) + 2µεeθθ (46)

τirθ = 2νεirθ −
T

2
sin 2θ (47)

τerθ = 2µεerθ. (48)

The equations of equilibrium are [16]
∂τirr
∂r

+
1

r

∂τirθ
∂θ

+
τirr − τiθθ

r
= K (ur − wr)

(49)

∂τerr
∂r

+
1

r

∂τerθ
∂θ

+
τerr − τeθθ

r
= −K (ur − wr)

(50)

∂τirθ
∂r

+
1

r

∂τiθθ
∂θ

+ 2
τirθ
r

= K (uθ − wθ) (51)

∂τerθ
∂r

+
1

r

∂τeθθ
∂θ

+ 2
τerθ
r

= −K (uθ − wθ) . (52)

At the surface of the tissue r = R, the boundary
is stress free: τirr = τerr = τirθ = τerθ = 0. The
displacements obeying these equations of equilib-
rium and boundary conditions are

ur =
T

2

{
1

ν + µ

[
−r

2
− µ

ν

1

2h

I2(r/σ)

r
−

ξ2µ

χ

(
1− g

h

) dI2(r/ξ)
dr

I2(R/ξ)

]
cos 2θ+

1

χ+ δ

[
−r

2
−
(
δ

χ

)
ξ
I1(r/ξ)

I0(R/ξ)

]}
(53)

wr =
T

2

{
1

ν + µ

[
−r

2
+

1

2h

I2(r/σ)

r
+

ξ2µ

δ

(
1− g

h

) dI2(r/ξ)
dr

I2(R/ξ)

]
cos 2θ+

1

χ+ δ

[
−r

2
+ ξ

I1(r/ξ)

I0(R/ξ)

]}
(54)

uθ =
T

2

1

ν + µ

[
r

2
+
µ

ν

1

4h

dI2(r/σ)

dr
+

2
ξ2µ

χ

(
1− g

h

) I2(r/ξ)

rI2(R/ξ)

]
sin 2θ (55)

wθ =
T

2

1

ν + µ

[
r

2
− 1

4h

dI2(r/σ)

dr
−

2
ξ2µ

δ

(
1− g

h

) I2(r/ξ)

rI2(R/ξ)

]
sin 2θ (56)

where

h =
1

4

d2I2(R/σ)

dr2
− 1

4R

dI2(R/σ)

dr
+
I2(R/σ)

R2

(57)

g =
1

R

dI2(R/σ)

dr
− I2(R/σ)

R2
. (58)

Both u and w contain a leading monodomain
term that is in general larger than the subsequent
bidomain terms (Fig. 7a). The tissue contracts
along the fiber direction, and expands perpendic-
ular to the fiber direction. (Note: Fig. 7a appears
different than Fig. 1 in [5] because Fig. 1 in [5] is
incorrect. It should look exactly like our Fig. 7a).
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Fig. 7. a) The monodomain part of the displacement, and
b) the bidomain part of the displacement, as functions of
position, for χ = 2δ, ν = 2µ, ξ = R

10
and σ = R

100
. The

solid circle shows the tissue boundary with zero displacement,
and the dashed oval shows how the tissue deforms when an
active tension is present. The fibers are horizontal. The arrows
in panels a) and b) are scaled differently; without this scaling
the arrows in (b) would be much smaller.

As χ and δ go to infinity, the difference in the
displacements is

ur − wr = − T
8ν

2

h

I2(r/σ)

r
cos 2θ (59)

uθ − wθ =
T

8ν

1

h

dI2(r/σ)

dr
sin 2θ. (60)

Fig. 8. a) The intracellular pressure p, and b) the extracellular
pressure q, as functions of position, for χ = 2δ, ν = 2µ, and
ξ = R

10
.

In general, σ << R. The membrane force is
largest within a few length constants σ of the edge
r = R, and the θ component is larger than the
r component (Fig. 7b). (Note: our Fig. 7b is not
identical to Fig. 2 in [5] because we use a different
value of σ

R ; [5] used σ = R
10 , whereas we use

σ = R
100 .)

Taking the limit as χ and δ go to infinity and
ei and ee go to zero, the pressures become

p =
T

2

{
χ

χ+ δ

(
1 +

δ

χ

I0(r/ξ)

I0(R/ξ)

)
+

µ

ν + µ

(
1− g

h

) I2(r/ξ)

I2(R/ξ)
cos 2θ

}
(61)

q =
T

2

{
δ

χ+ δ

(
1− I0(r/ξ)

I0(R/ξ)

)
−

µ

ν + µ

(
1− g

h

) I2(r/ξ)

I2(R/ξ)
cos 2θ

}
. (62)

The pressures can be expressed as P = T
2 and

Q =
T

2

{
I0(r/ξ)

I0(R/ξ)
+

χ+ δ

δ

µ

ν + µ

(
1− g

h

) I2(r/ξ)

I2(R/ξ)
cos 2θ

}
. (63)

Fig. 8 shows p and q as functions of position.
These pressure distributions are very different than
those shown in Figs. 3 and 4 of [5]. Away from
the tissue edge the pressures in our Fig. 8 are both
constant, with deviations from this constant value
only within a few length constants of the boundary.

IV. DISCUSSION

The analysis in the Methods and Results illus-
trates how compressibility affects the mechanical
bidomain model. It is useful to compare the pre-
vious derivation of the model with the version
developed in this paper. If we assume an isotopic
tissue T = 0 and analyze the model developed
previously [4] using the methods derived here, the
mechanical bidomain equations would be ∇2α =
0, ∇2β = 1

σ2β, ∇2P = 0, and ∇2Q = 0. In
our revised model, we obtain the same equations,
except for the equation governing Q: ∇2α = 0,
∇2β = 1

σ2β, ∇2P = 0, and ∇2Q = 1
ξ2Q. The

monodomain part of the model is the same in
both cases (∇2α = 0 and ∇2P = 0) but the
bidomain part is different. In the original model,
the bidomain behavior was characterized by one
length constant σ =

√
νµ

K(ν+µ) . In the revised
model, the bidomain behavior is characterized by
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two length constants, σ and ξ =
√

χδ
K(χ+δ) . As dis-

cussed previously [4], the value of the membrane
spring constant K is not known but is expected
to be large, implying that σ is small. The size of
ξ is not as clear. K is large, but so are χ and δ.
In the truly incompressible limit, χ and δ go to
infinity, so ξ becomes very large and the equation
for Q becomes ∇2Q = 0, as it was in the previous
model. Note that in many of the expressions for
the tissue displacement (e.g., (33)), a factor of ξ

χ+δ
is present, which goes to zero as χ and δ become
very large, even if ξ is large. The length constant
governing shearing, σ, is in general much smaller
than the length constant for dilatation, ξ, because
the bulk moduli are much greater than the shear
moduli. The ratio ξ

σ is about 300, independent of
the value of K. We often speak of boundary layers
of both pressure and displacement arising from the
mechanical bidomain model. This view of a thin
boundary layer is only useful in the limit when
both σ and ξ are small compared to other length
scales, such as the radius of the papillary muscle
or blood vessel being modeled.

The solutions for the displacement in all three
examples have a similar form: a monodomain
part that depends on some power of the radius
and which is the same in the intracellular and
extracellular spaces, and a bidomain part that falls
off with length constant σ or ξ. The monodomain
part is typically larger than the bidomain part,
but because it is the same in both spaces it
contributes nothing to the membrane force, which
is proportional to the difference between the in-
tracellular and extracellular spaces. The bidomain
part is different in the two spaces, so it alone
contributes to the membrane force. In these three
examples, the bidomain part contains a modified
Bessel function, which solves the Helmholtz equa-
tion in two dimensions. Although these special
functions are somewhat unfamiliar, at large values
of their argument they behave qualitatively like
exponentials (I as an increasing exponential, and
K as a decaying exponential). So, if the bidomain
length constants are small the bidomain part of the
displacement falls off approximately exponentially

with distance from the tissue boundary. Example
3 is particularly useful because that problem was
solved completely using the previous model [5].
The monodomain parts of the calculation are the
same in both cases. The solution for the membrane
force is similar but not identical. A term containing
a modified Bessel function is present in both, and
implies that both calculations result in a boundary
layer at the edge of the tissue r = R of thickness
σ. However, in the previous calculation [5] the
membrane force also contained a term proportional
to r, implying that the membrane force had a small
contribution far from the boundary. This term is
not present in our calculation. Thus, the effect of
properly accounting for compressibility can make
a difference in the model predictions, even in the
incompressible limit.

The largest difference in Example 3 between the
previous calculation and ours is the pressure. In
the previous calculation [5], both the intracellular
and extracellular pressures contained a term that
varied as r2 cos 2θ. The intracellular pressure also
contained a constant term T

2 , but the extracellular
pressure did not. Therefore, there were large dif-
ferences between p and q throughout the tissue.
In our calculation, p and q are both dominated by
constant terms, and the only spatial dependence
arises from terms containing a Bessel function. If
ξ << R these Bessel function terms decay away
from the surface, so p = Tχ

2(χ+δ) and q = Tδ
2(χ+δ) .

However, if ξ >> R the Bessel function I2 is
approximately proportional to r2, so the pressure
varies as r2 cos 2θ like in the previous calculation.

The physical meaning of the intracellular and
extracellular pressures has always been a confus-
ing issue with the mechanical bidomain model.
Reference [4] discussed the connection between
macroscopic and microscopic properties of the
model. According to that discussion, p and q
are macroscopic pressures, and are related to the
microscopic pressures pmicro and qmicro by p =
Θipmicro and q = Θeqmicro, where Θi and Θe are
the intracellular and extracellular volume fractions.
The shear moduli ν and µ are also macroscopic
parameters. If we similarly take χ and δ to be
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macroscopic parameters, we find by analogy that
χ = Θiχmicro and δ = Θeδmicro. If χmicro and
δmicro are the same (both the bulk modulus of
water) then χ

δ = ν
µ and the microscopic pressure

difference pmicro−qmicro is proportional to Q and
is zero except within a few length constants of the
tissue edge. In other words, the bidomain pressure
Q represents the difference between the micro-
scopic intracellular and extracellular pressures, and
any fluid flow between the two spaces would be
driven by Q.

If one wants to use the previous model to do
calculations, the primary change is the boundary
conditions on the pressures. Instead of requiring
that p = 0 at the boundary, one specifies that
Q = 0, so p = χ

χ+δP and q = δ
χ+δP . The

resulting calculations using the previous model
will be correct, except in a boundary layer of
thickness ξ.

V. CONCLUSION

In conclusion, consideration of tissue compress-
ibility clarifies the behavior of the mechanical
bidomain model. The monodomain contribution
to the displacement and pressure are unchanged.
The bidomain contribution to the displacement
is similar to previous calculations, and it deter-
mines the membrane force. This paper shows
that the bidomain contribution to the pressure is
very different than was thought previously, and it
determines the difference in microscopic pressure
between the intracellular and extracellular spaces.
The bidomain model predicts two new length
constants: σ determines the width of the boundary
layer for the membrane forces, and ξ determines
the width of the boundary layer for the pressure.
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