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Abstract—We conditionally extend formulas of
(Dietz and Schenzle, J. Math. Biol. 22: 117-120,
1995) for the ”transmission potential” of an immu-
nizing infection with pre-infection possible before
birth and vertical transmission admitted. We look
for minimum proportion to be covered to reduce
basic reproduction rate below 1 by acting through
vaccination. We present also a new criterion al-
lowing the selection of an immunizing vaccination
strategy by bringing the reproduction number below
1. We find that reduce vertical transmission, adds
chances to eradicate disease. Moreover reduce age of
vaccination reduces the minimum vaccination cov-
erage inducing global immunization against disease
by bringing down the basic reproduction number.

Keywords-Transmission potential, minimum pro-
portion for vaccination immunization, endemic

disease, pre-infection. AMS Classification: 35K55,
92D30, 49J20, 92D25.

I. INTRODUCTION: MOTIVATION AND

FORMULATION OF THE MODEL

A. Motivation

We study an immunizing infection in a closed
population where, as [5, (Dietz and Schenzle
1985)], susceptible newborns are added according
to the constant positive rate Λ, infective newborns
at constant positive rate Λ′ of total infective at
the same index c ≥ 0 (seen e.g. as the infection
time of infected population or any other biological
structure with dc/dt=1), and susceptible individuals
die according to the rate µ(a), where a denotes
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the chronological age of an individual. We use
proportionate mixing that is more accurate for an
age strutured model describing a closed population
(of size n(t, a) at time t and chronological age a)
that is not big. Vertical transmission is introduced
here (contrary to [5, (Dietz and Schenzle 1985)]
and according to [1, (Busenberg and Cooke 1993)]
due to its importance. As main results, we find
that reduce vertical transmission, adds chances to
eradicate disease. Moreover reduce age V of vacci-
nation reduces the minimum vaccination coverage
inducing global immunization against disease by
bringing down the basic reproduction number.

B. Formulation of the models and equilibria

1) The model and its aggregated form with per-
fect vaccine and vertical transmission: In equilib-
rium, we assume that the size N of the population
is:

N = Λ

∫ ∞
0

e−M(a)da = ΛL

where M(a) =
∫ a

0 µ(s)ds, n(t, a)
t→+∞→

n∞(a) = Λe−M(a) and L denotes the life ex-
pectancy of newborn. We analyse the basic re-
production rate [4, (Dietz 1975)] or infectious
contact number [7, (Hethcote 1976)] R0 without
vaccination (resp. R0(Ψ) with vaccination rate Ψ)
estimated from equilibrium force of infection λ0

(resp. λΨ).
As [5, (Dietz and Schenzle 1985)] in most cases,

we defined (or assume):
• K(Ψ, λΨ) as the smallest contact rate above

wich a positive endemic level is possible for
the vaccination rate or strategy Ψ [5];

• γ(a) as the age-specific per capita contact or
activity rate; it takes also into account the age
specific (average) probability of becoming
infected through a contact with infectious
individual;

• lim
a→+∞

[
ap∞(a)e−M(a)

]
= 0 because we

assume also that the function a
J→

ap∞(a)e−M(a) belongs to L1 (0,+∞);
• x(t, a) as the density of susceptibles at time
t and age a;

• y(t, a, c) as the density of infectives at time
t , chronological age a and level c;

• d1(a, c) is the additional death rate due to
disease to be added to the rate of healing or
immunization (we later simplify it into the
form d1(a, c) ≡ d1(a));

• we see then that dynamic of the compartment
of retired individuals is decoupled from the
model studied for our immunizing infection;

• c could be greater than a (notion of ”pre-
infection” included: infection before birth
possible);

• a consequence is this modified version of the
force of infection (compare to [5, (Dietz and
Schenzle 1985, p. 118)]):

λ(t) =
f

N

∫ ∞
0

∫ ∞
0

p(t, a′)y(t, a′, c)dcda′

• f as the probability of infectiousness (de-
pending on c in [5, (Dietz and Schenzle
1985)] but constant here as an average since
several health public policy ignore probability
variations at first approximation);

• probability that an individual of age a has
contact with an individual of age a′given
that it has a contact with a member of the
population

p(t, a, a′) ≡ p(t, a′) =
γ(a′)n(t, a′)∫∞

0 γ(u)n(t, u)du

with

p(t, a′)
t→+∞→ p∞(a′) =

γ(a′)n∞(a′)∫∞
0 γ(u)n∞(u)du

• transmission potential

R0(Ψ) =
K(Ψ, λΨ)

K(Ψ, 0)

We formulate, with the notation ∂z := ∂
∂z , a

model with vertical transmission by combining
approach of [3, (Castillo-Chavez and Feng 1998)]
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and [5, (Dietz and Schenzle 1985)]:



(∂t + ∂a)x =− (λ(t) + Ψ(a) + µ(a))x

(∂t + ∂a + ∂c)y(t, a, c) =

− (d1(a, c) + µ(a)) y(t, a)

x(t, 0) =Λ ≥ 0

x(0, a) =x0(a) ≥ 0

y(0, a, c) =y0(a, c) ≥ 0

y(t, a, 0) =λ(t)x(t, a)

y(t, 0, c) =Λ′
∫ ∞

0
p(t, a′)y(t, a′, c)da′

(1)

Remark 1: In fact there are certain probability
for the infected population y(t, a′, c) giving a birth
to a health newborn, this indicates that there are
some input of newborns in to the formulation of
x(t, 0) from y(t, a′, c). However, this could be
neglected since we assume that infected population
is very small compared to healthy one: it justfies
also our constant influx of health newborns Λ. We
will focus later on Λ′ since we want to sketch
in priority the impact of vertical transmission on
basic reproduction rate.

For sake of simplicity, we select the special
case: d1(a, c) ≡ d1(a) and use the new variable

y(t, a) =

∫ ∞
0

y(t, a, c)dc

Then the wellposed system (1) rewrites as



(∂t + ∂a)x = −(λ(t) + Ψ(a) + µ(a))x(t, a)

(∂t + ∂a) y(t, a) =−
(
d1(a) + µ(a)

)
y(t, a)

+ λ(t)x(t, a)

x(t, 0) =Λ ≥ 0

x(0, a) =x0(a) ≥ 0

y(0, a) =y0(a) ≥ 0

y(t, 0) =Λ′
∫ ∞

0
p(t, a′)y(t, a′)da′

λ(t) =
f

N

∫ ∞
0

p(t, a′)y(t, a′)da′

(2)

2) Cauchy problem and integrated solutions in
brief: The system (2) can be re-written under the
form of a Cauchy problem:

{
dw(t)
dt = Aw(t) + F (t, w(t)) := G(t, w(t))

w(0) = w0 ∈ D(A)
(3)

with

w(t) ≡


0
0

x(t, .)
y(t, .)


and

D(A) = {0} × {0} ×
(
W 11(0; +∞)

)2
Consider v ≡


α
β
x̂
ŷ

 and the Banach space

X = R× R×
(
L1(0; +∞)

)2
endowed with the usual norm

‖v‖X = |α|+ |β|+
∫ ∞

0
[|x̂(a)|+ |ŷ(a)|] da

Positive cone of X is

X+ = [0; +∞)× [0; +∞)×
(
L1

+(0; +∞)
)2

We define also

X0 = {0} × {0} ×
(
L1(0; +∞)

)2
and its positive cone

X0+ = {0} × {0} ×
(
L1

+(0; +∞)
)2
.

We set u ≡


0
0
x̂
ŷ

 and the linear and closed

operator defined on D(A) by:

A : D(A) → X

u 7−→


x̂(0)
ŷ(0)

−dx̂
da − (Ψ(.) + µ(.)) x̂

−dŷ
da −

(
d1(.) + µ(.)

)
ŷ
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It always exists µ̄ ∈ [0; +∞) such that: ∀a ≥
0, µ(a) ≥ µ̄. Then we have for each λ > −µ̄

(λ−A)−1X+ ⊂ X0+ (4)

and (−µ̄,∞) ⊂ ρ(A) with

‖(λ−A)−1‖L(X) ≤
1

λ+ µ̄
, ∀λ > −µ̄. (5)

The part A0 of A defined by

A0 : D(A0)→ X

u 7−→


0
0

−dx̂
da − (Ψ(.) + µ(.)) x̂

−dŷ
da −

(
d1(.) + µ(.)

)
ŷ


with D(A0) defined byu ≡


0
0
x̂
ŷ

 ∈ D(A) : Au ∈ D(A),

x̂(0) = ŷ(0) = 0


A0 verifies the Hille-Yosida property: It exists

µ̄ ∈ [0; +∞) such that ∀a ≥ 0, µ(a) ≥ µ̄ and we
have for each λ > −µ̄

‖(λ−A0)−1‖L(X0) ≤
1

λ+ µ̄
, ∀λ > −µ̄. (6)

and (by lemma 2.1 of [6, Ducrot et al. 2010]):
X1 := D(A0). Assumption 2.2 of [6, Ducrot
et al. 2010, p. 267] is satisfied. Then its lemma
2.3[6, Ducrot et al. 2010, p. 267] applies: A0

is the infinitesimal generator of a C0-semigroup
(TA0

(t))t≥0 on X1.
We define (with λ(t) = f

N

∫∞
0 p(t, a′)ŷ(a′)da′)

also the Frechet differentiable in the second vari-
able u ( and then ”locally” Lipschitz in u) pertur-
bation (for each t ≥ 0):

F (t, .) : X0 → X
u 7−→ G(t, u(.))−Au

with

F (t, u(.)) =


−Λ

−Λ′
∫∞

0 p(t, a′)ŷ(a′)da′

−λ(t)x̂
λ(t)x̂


The model (3) is well posed with an integrated
solution w globally defined in time through a
bounded dissipativity property[2], [6], [8], [10],
[12], [13]. w satisfies (in Bochner sense for in-
tegrals): ∫ t

0
w(s)ds ∈ D(A)

and

w(t) = w0 +A

∫ t

0
w(s)ds+

∫ t

0
F (s, w(s))ds

(t ≥ 0)

3) Stationary solution of (2): A stationary so-
lution (xΨ; yΨ) of (2) (with the force of infection
at equilibrium λΨ) satisfies:



xΨ(a) = Λe−(ΛΨ(a)+Φ(a)+M(a))

yΨ(a) = Λ′
∫ ∞

0
p∞(a′)yΨ(a′)da′e−(D1(a)+M(a))

+

∫ a

0
λΨxΨ(s)e(Φ(s)−Φ(a)+M(s)−M(a))ds

λΨ : =
f

N

∫ ∞
0

p∞(a′)yΨ(a′)da′

(7)
with:

ΛΨ(a) =

∫ a

0
λΨda

′ = λΨ.a

Φ(a) =

∫ a

0
Ψ(a′)da′

and
D1(a) =

∫ a

0
d1(a′)da′

Then λΨ is a fixed point of the function

g(z) =

(
Λ′
∫ ∞

0
p∞(a′)e−(D1+M)(a′)da′

+
fΛ

N

∫ ∞
0

p∞(a)

∫ a

0
e−(Φ(a)+M(a)+s.z)dsda

)
.z
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We defined then the non-increasing function

h(z) = Λ′
∫ ∞

0
p∞(a′)e−(D1(a′)+M(a′))da′

+
Λf

N

∫ ∞
0

p∞(a)

∫ a

0
e−(Φ(a)+M(a)+s.z)dsda

and the treshold

KΨ
0 := h(0)

Solution(s) of the equation g(z) = z are z =
λ−Ψ = 0 (Disease free equilibrium) and (if KΨ

0 ≥
1) z = λ+

Ψ where λ+
Ψ is the only non zero solution

of the equation: h(z) = 1 corresponding to the
endemic equilibrium.

II. TRANSMISSION POTENTIALS

As [5, (Dietz and Schenzle 1985)], we defined

K(Ψ, λΨ) = (h(λΨ))−1

It is obvious that K(Ψ, λΨ) = K(0, λ0) then
the potential transmission is

R0(Ψ) =
K(Ψ, λΨ)

K(Ψ, 0)
=
K(0, λ0)

K(Ψ, 0)
(8)

Then if we set these two non-increasing func-
tions:

A(Φ) :=Λ′
∫ ∞

0
p∞(a′)e−(D1(a′)+M(a′))da′

+ f
Λ

N

∫ ∞
0

ap∞(a)e−(Φ(a)+M(a))da

and

B(λ0) : = Λ′
∫ ∞

0
p∞(a′)e−(D1(a′)+M(a′))da′

+f
Λ

N

∫ ∞
0

p∞(a)

∫ a

0
e−(M(a)+s.λ0)dsda

R0(Ψ) =
A(Φ)

B(λ0)
(9)

RΛ′=0
0 (Ψ) is the basic reproduction rate R0 with-

out vertical transmission and RΛ′ 6=0
0 (Ψ) is the ba-

sic reproduction rate R0 with vertical transmission.
We set

U1 :=

∫ ∞
0

p∞(a)

∫ a

0
e−(M(a)+s.λ0)dsda

and

U2 :=

∫ ∞
0

ap∞(a)e−(Φ(a)+M(a))da

Two cases appear:
C1) If

U1 ≥ U2

then
RΛ′=0

0 (Ψ) ≤ RΛ′ 6=0
0 (Ψ)

C2) If
U1 ≤ U2

then
RΛ′=0

0 (Ψ) ≥ RΛ′ 6=0
0 (Ψ).

Remark 2: C2) is satisfied if

e−M(a)

∫ a

0
e−s.λ0ds ≤ ae−(Φ(a)+M(a))

that means
1− e−λ0a

λ0
≤ ae−Φ(a)

The approximation (for λ0 very small com-
pared to maximal reacheable human age or life
expectancy/lifespan) provides the approximation

a . ae−Φ(a)

or
1 . e−Φ(a)

In that case, the second case C2) is probably
less recurrent than obvious case C1)

Remark 3: Another remark for inequality

1− e−λ0a

λ0
≤ ae−Φ(a)

coming from case C2), is the fact that it corre-
sponds to a ”massive and agressive” campaign (Φ
huge) of vaccination that reverse the effect of verti-
cal transmission (λ0 very small). C2) naturally tra-
duces the supplementary infectious cases brought
by vertical transmission reduced by vaccination,
but not enough to be similar to the case Λ′ = 0.
Because of the term e−Φ(a) at the numerator of
R0(Ψ), we see that R0(Ψ) ≤ R0(0) := R0:
vaccination reduces the basic reproduction rates
(see also [9, (Kouakep and Houpa 2014)] for the
case without vertical transmission).
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III. A CRITERION FOR ”SUFFICIENT”
VACCINATION STRATEGIES AND MINIMAL

PROPORTION FOR IMMUNIZATION OF AN

ALMOST CLOSED POPULATION

We observe that if R0 6= 0

R0(Ψ)

R0
=

(
1−

fΛ
N

∫∞
0 ap∞(a)e−M(a)

[
1− e−Φ(a)

]
da

A(0)

)
(10)

Theorem 4: We assume that R0 > 1. To reach
a basic reproduction rate R0(Ψ) below 1, the
following inequality schould be satisfied by the
choosen vaccination rate Ψ:

(
f Λ
N

∫∞
0 ap∞(a)e−M(a)

[
1− e−Φ(a)

]
da

A(0)

)
>

1− 1

R0
(11)

A sufficient condition to reach R0(Ψ) below 1
is the condition (for a.e a > 0):(

f
N

[
1− e−Φ(a)

]
Λ′

Λ [1 + e−D1(a)

a ]

)
> 1− 1

R0
(12)

Remark 5: Inequality (12) induces a kind of
control on age a > 0 (for a vertically transmited
disease as hepatitis B) that could reduce globally
the number of infected childs and infectives.

we define the non-increasing function:

G(b) :=Λ′
∫ ∞
b

p∞(a′)e−(D1(a′)+M(a′))da′

+ f
Λ

N

∫ ∞
b

ap∞(a)e−M(a)da

Following [5, (Dietz and Schenzle 1985)], we
propose in the next result a formula showing min-
imum proportion p∗ to be covered if vaccination
takes place at age V :

Theorem 6: A formula showing minimum pro-
portion p∗ to be covered if vaccination takes place
at age V is given by:

p∗ =

(
1− 1

R0

)
G(0)

G(V )
(13)

IV. DISCUSSION

Formula (11) suggests that a pressure is done by
vertical transmission on the inequality to satisfy if
we want to bring the transmission potential rate
below 1, compared to the situation without vertical
transmission. With (12) we see also that if size
at equilibrium N of population increases, then
achieve global immunization through vaccination
is more difficult.

We observe a similar situation for the mini-
mal proportion for vaccination: reduce Λ′ (verti-
cal transmission), adds chances to satisfy crite-
rion (11) for disease eradication. A discussion is
necessary around the formula (13). [11, (Sall et
al. 2004)] said truth when they pointed out the
fact that neglect vertical transmission in vaccinal
strategies for sub-Saharan Africa is a mistake: we
see by formula (13) that reduce age V of vacci-
nation (in biological ranges) reduces the minimum
vaccination coverage p∗ inducing immunization.

A further work will consider an imperfect vac-
cine and differential infectivity as [3, (Castillo-
Chavez and Feng 1998)] and [9, (Kouakep and
Houpa 2014)] in a specific case as hepatitis B.
Migrations could be also considered.
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