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Abstract—Two-phase models can be used to de-
scribe the dynamics of mixed materials and can be
applied to many physical and biological phenomena.
For example, these types of models have been
used to describe the dynamics of cancer, biofilms,
cytoplasm, and hydrogels. Frequently the physical
domain separates into a region of mixed material
immersed in a region of pure fluid solvent. Previous
works have found a perturbation solution to capture
the front velocity at the initial time of contact
between the polymer network and pure solvent, then
approximated the solution to the sharp-interface at
other points in time. The primary purpose of this
work is to use a symmetry transformation to capture
an exact solution to this two-phase problem with a
sharp-interface. This solution is useful for a variety
of reasons. First, the exact solution replicates the
numeric results, but it also captures the dynamics of
the volume profile at the boundary between phases
for arbitrary time scales. Also, the solution accounts
for dispersion of the network further away from
the boundary. Further, our findings suggest that
an infinite number of exact solutions of various
classes exist for the two-phase system, which may
give further insights into the behaviors of the general
two-phase model.

Keywords-Multi-phase modeling; Two-phase mod-
elling; Free boundary problems; Gel Dynamics;
Analytic solutions; Exact solutions.

I. INTRODUCTION

Two-phase models are useful for capturing the
interactions between fluids and/or viscoelastic ma-
terial. Each phase is averaged over a control
volume, where the volume-averaged phases are
incompressible. There is no inertial component
to the system, and the phases are immiscible.
Each phase is governed by conservation equations.
These models have been successful at describing
how emergent structures develop though the inter-
actions of the two phases. There are several known
applications.

Breward et. al. [1] developed a two-phase model
to understand the role of viscosity and drag-
friction in avascular tumor growth. An asymptotic
solution solved explicitly for the volume fraction
revealed that in the absence of viscosity and
friction, tumor growth was regulated by oxygen
tension. Numerical simulations showed increases
in either the drag coefficient or viscosity param-
eter reduces the speed tumor growth. This leads
credence to the notion that the invasiveness of
tumor cells is related to the viscosity of the cells.
Well-differentiated cells are known to grow more
slowly and considered more viscous due to over-
lapping filopodia. Whereas, poorly differentiated
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(less viscous) cells repel one another, contributing
to the spread of tumors. An extension of this
model with an additional phase [2] contrasts the
role of the expansive growth (passive response)
and foreign body hypotheses (active response)
in tumorigenesis. Numerical simulations showed
capsule formation could not result from an active
response. Another model [3] was used to describe
avascular tumor as a two-phase system where
tumor spheroids exist in two states, one solid
and one liquid. Time independent solutions reveal
tumor size increases at an optimal rate of cell
proliferation under nutrient-rich stress-free condi-
tions. Simulations also provided a critical region
for which a necrotic core forms at the tumor’s
center.

Several forces are required to balance conser-
vation of momentum. For two-phase models, the
viscosity of the phases and interstitial friction must
be accounted, but for biofilm morphology, in ad-
dition to hydrostatic pressure, osmotic pressure is
also needed. One such model [4] describes the role
of a network comprised of an extra-cellular poly-
meric substance (EPS) in structural development
in biofilm. Numerical simulations indicate as EPS
is produced by bacteria, a rise in osmotic pressure
contributes to the expansion of the biofilm region.
Two-phase dynamics have also been used to sim-
ulate biofilm growth and cell motility [5], [6]. A
mobile cell contains polymer network phase com-
prised of actin filaments, intermediate filaments,
and microtubules. This phase is the exoskeleton
to a cytoplasmic phase. The network contracts to
propel the cell forward. Numerical simulations of
these models have shown to contain traveling wave
solutions. Another biological model describes to
formation of channels in biofilm [7]. Steady-state
analysis suggests that there is an optimal range for
the pressure gradient to drive the formation of a
channel between two flat plates.

When regions occupied by differing materials
have free boundaries, numerical methods are use-
ful to track the sharp interface. The location of
the interface can be followed explicitly by inter-
face tracking methods [8]. Alternatively, interface

capturing can be used to implicitly solve the same
equations throughout the domain by capturing the
appropriate interface conditions [9].

One such interface capturing method given by
Du et. al. [10] has analyzed the behavior of a
free boundary problem of a two-phase viscous
fluid mixture with a prevalent viscosity in a single
phase. The solution found by Du et. al. is pertur-
bation solution of the front velocity at time t = 0
for a vanishing solvent phase. This solution was
built to explore how the velocity of the interface
moves in a consistent manner to develop numerical
methods to handle the free boundary problem. The
velocity is then tracked numerically for various
initial profiles with the interface capturing method
developed by the group. In each instance, the
numerical solution is compared to the asymptotic
solution and found to be accurate.

In part, the purpose of this paper is to explore
the accuracy of the perturbation solution given by
[10] in comparison to an exact solution, which was
found using symmetry analysis, also called Lie’s
classical method. In each model previously dis-
cussed, numerical, perturbation, and semi-analytic
methods were used to provide insights into the
behaviors of interest. And though these methods
have had some successes in assessing two-phase
models, few attempts have been made to attain
generalized behavior of these systems with exact
solutions.

Lie’s method produces symmetry transforma-
tions which can reduce a system of Partial Dif-
ferential Equations (PDEs) in one spacial dimen-
sion to a system of ODEs. These symmetries are
generated by introducing infinitesimal transforma-
tions, which leave the original system invariant.
For classical symmetry analysis, expansion of this
infinitesimal transformation, produces a linear sys-
tem of PDEs, called determining equations, whose
solutions provide the forms for the symmetry
transformations. Non-classical methods have also
been developed which, in some cases, lead to
additional symmetries. The infinitesimal transfor-
mations give rise to highly non-linear determining
equations and can be difficult or impossible to
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solve. For this reason, the analysis in the paper
only includes the classical method, as it recovers
the solution given by [10] that we are seeking.
Lie’s classical method for producing symmetries
has been successful in generating exact solutions
for a system of PDEs describing viscous flow
through expanding channels [11]. In this work
conservation laws and point symmetries provide
reductions, some of which lead to exact solutions
of the flow in deformable channels. For elliptic,
hyperbolic and mixed-type PDEs for Ricci flow,
Wang [12] found several solutions, including trav-
eling wave solutions, to hyperbolic geometric flow
of Riemann surfaces. The work by Cimpoiasu et.
al [13] used Lie symmetries to produce classes of
solutions for the 2D nonlinear heat equation. It has
also been shown that Lie symmetries generate the
similarity solution for a class of (2+1) nonlinear
wave equation [14].

In this paper, we generate an exact solution
for the two-phase model using a point symmetry.
In the first section, we outline a derivation of
a two-phase system that represents the simplest
version of the model and can be adapted for a
variety of physical situations. Next, we briefly
discuss how to develop symmetries and find a
time translation, scaling symmetry, and a general
Galilei time group. In the third section, we use a
symmetry transformation to reduce the system of
PDEs to an invariant system of ODEs. We make
parameter assumptions similar to Du et. al. [10]
to recover the exact velocity for their asymptotic
solution and compare the exact to the perturbation
solution. It is shown that the approximated free
boundary solution is a close approximation to the
general solution for t = 0. In the fourth section,
we vary which physical driving forces dominate
the two-phase model and generate additional exact
solutions to the system. In the final section of this
work, we discuss potential uses of exact solutions
for the two-phase model and future directions of
this work.

II. THE TWO-PHASE MODEL

In this section, we derive the equations to de-
scribe a two-phase model as seen in the kinetics

of biological gels as described in [5], [10]. Gels
swell and deswell due to ionic fluctuations and
chemical triggers. An example of this occurs in
crawling cells. Myosin converts chemical energy
in the form of ATP into mechanical energy by
causing actin filament to contract, propelling cells
into motion. Neutrophils and macrophages, cells
integral to the immune system of humans, respond
in this manner. Chemical gradients are left by
cells foreign to the immune system, leaving a
chemotactic trail for the immunological cells to
follow [15].

Like in [10], we assume the viscous terms are
prominent forces and inertial terms are negligi-
ble. Gels are composed of a polymeric network
given by φ1 and a fluid solvent φ2. Both phases
are treated as Newtonian fluids that are immisci-
ble. When considering the redistribution of mass
within a control volume, the flux of the network
is given by ∇ · (φ1u1), where the network moves
with a velocity u1. A similar argument is made
for the solvent to give the following equations to
conserve mass.

∂

∂t
(φ1) +

∂

∂x
(uφ1) = 0, (1)

∂

∂t
(φ2) +

∂

∂x
(vφ2) = 0, (2)

where the sum of the volumes saturate to a fixed
control volume, φ1 + φ2 = 1.

Several forces act upon the network. The first
is the force due to the network stress tensor σ1,
which includes the viscous stress tensor and mass
production.

σ1 = µ̂1(∇u1 +∇uT1 ) + λ1∇ · u1,

where µ̂1 is the shear viscosity and λ1 is the
bulk viscosity. In 1-D, this becomes

σ1 = µ1
d

dx
u1, (3)

where µ1 = 2µ̂1 + λ1.
Another force that we include is the frictional

force created by interstitial interactions between
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phases. If both fluids move in unison or if either
volume fraction becomes negligible, drag will van-
ish. With a frictional coefficient given by ξ, this
drag force is given by ξφ1φ2(φ1 − φ2). Next, we
need to account for both the hydrostatic pressure
and osmotic pressure caused by swelling. If P
is the total hydrostatic pressure, then the total
pressure P acting on the network is given by
φ1∇P .

Ionizing chemicals in the solvent can cause the
gel to absorb or release the fluid solvent, causing
an osmotic pressure gradient ∇ψ(φ1) acting on
the network. For this reason, φ1 is considered the
active phase. For the form of the osmotic pressure
term, we follow Cogan et. al. [5] and the references
therein, and assume that ψ(φ1) = k2φ

2
1(φ1 − φ0).

The constant k2 accounts for the effects of the
ionic environment, polymeric structure, and sol-
vent concentration that contribute to swelling and
deswelling. The value of φ0 is a reference vol-
ume fraction. This structure allows for osmotic
pressure to vanish in the event of φ1 = 0 or at
some reference fraction φ0 that can be determined
experimentally for various physical applications.

Assuming constant shear and bulk viscosity, the
momentum of these moving fluids can be given by
balancing the forces described above.

µ1
∂

∂x

(
φ1

∂

∂x
u

)
+ φ1

∂

∂x
P (φ1, φ2) (4)

− ∂

∂x
ψ(φ1)− ξφ1φ2(u− v) = 0

Similar arguments can be made to derive the
forces of momentum within the solvent. The
solvent is a Newtonian fluid with only viscous
stresses acting on it. Fluid pressure acts on the
solvent, but osmosis does not create pressure on
the fluid itself. The fluid is actively absorbed and
released by the gel. The final force is the drag or
frictional force created by interstitial interactions.
Combining these gives the momentum for the
solvent.

µ2
∂

∂x

(
φ2

∂

∂x
v

)
+ φ2

∂

∂x
P (φ1, φ2) (5)

+ ξφ1φ2(u− v) = 0,

where µ2 is the viscosity of the solvent. Summing
(4) and (5) gives the following equation.

µ1
∂

∂x

(
φ1

∂

∂x
u

)
+ µ2

∂

∂x

(
φ2

∂

∂x
v

)
+ (φ1 + φ2)

∂

∂x
P (φ1, φ2)−

∂

∂x
ψ(φ1) = 0.

Since φ1 + φ2 = 1, this becomes

µ1
∂

∂x

(
φ1

∂

∂x
u

)
+ µ2

∂

∂x

(
φ2

∂

∂x
v

)
(6)

+ Px −
∂

∂x
ψ(φ1) = 0,

where Px = ∂
∂xP (φ1, φ2). Solving for Px gives

Px =
∂

∂x
ψ(φ1)− µ1

∂

∂x

(
φ1

∂

∂x
u

)
(7)

− µ2
∂

∂x

(
φ2

∂

∂x
v

)
.

Next, we substitute φ2 = 1−φ1 in the equations
of mass (1) and (2), and the momentum equation
(4) to find the following system for analysis.

∂

∂t
(φ1) +

∂

∂x
(uφ1) = 0, (8)

− ∂

∂t
(φ1) +

∂

∂x
(v(1− φ1)) = 0, (9)

µ1
∂

∂x

(
φ1

∂

∂x
u

)
− ∂

∂x
ψ(φ1) (10)

+φ1Px − ξφ1(1− φ1)(u− v) = 0.

Together equations (8-10) can be reduced to a
system of ODEs using the following transforma-
tion.

u = f(t− αx),

v = g(t− αx), (11)

φ1 = m(t− αx),
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where f , g, and m are to be determined and
α is an arbitrary constant describing wave speed.
Traveling wave solutions have been shown to exist
for the two phase system [6]. For this reason,
if one were to guess an invariant transforma-
tion to reduce this system, the general traveling
wave solution (11) may seem like an obvious
first choice. But, this specific transformation came
from a more general transformation found using
symmetry analysis. Before producing the general
transformation, a brief explanation of symmetry
analysis is given in the following section.

III. SYMMETRY ANALYSIS

In this section, we give a brief explanation of
the method for generating the invariant transforma-
tions that will be used to generate exact solutions
in later sections. For systems of PDEs in 1-D,
symmetry transformations reduce the PDEs to a
system of ODEs. Derived by Sophus Lie [16],
Symmetry Analysis is the mathematical method
for finding transformations to a system of PDEs
that leaves the set of equations invariant, or un-
changed. More recently, there has been substantial
literature regarding symmetry methods. For further
details, we refer the reader to books by Hydon
[17], Bluman and Kumei [18], and Olver [19].

The following coordinate change is called
the infinitesimal transformations. These can be
thought of as a local perturbation on the original
coordinate system.

φ̄1 = φ1 + Φ1(t, x, u, v)ε+O(ε2),

t̄ = t+ T (t, x, u, v)ε+O(ε2),

x̄ = x+X(t, x, u, v)ε+O(ε2),

ū = u+ U(t, x, u, v)ε+O(ε2), (12)

v̄ = v + V (t, x, u, v)ε+O(ε2),

where Φ1, T , X , U , and V are called the infinites-
imals. In general, one seeks to find invariance of
a system of differential equations of the form

Fi(t, x, u, v, φ1, ut, vt, φ1t, ux, vx, φ1x, ...) = 0, (13)

with i = 1, 2, . . . , n, where u, v, φ1 are functions
of t, x. In the specific case of our two-phase
model, the system Fi is given by the equations (8-
10). Under (12), a set of differential equations is
produced for the infinitesimals T , X , U , and V .
These differential equations are called the deter-
mining equations because they determine the form
for the infinitesimals. Solving these determining
equations produced by (12) provides invariant
transformations for the differential equations given
by (13).

The following is called the invariant surface
condition, so called because it leaves the solution
surface invariant under the change of coordinates.

Tut +Xux = U, (14)

Tvt +Xvx = V, (15)

Tφ1t +Xφ1x = Φ1. (16)

When the infinitesimals are solved in conjunc-
tion with the invariant surface condition given by
(14-16), the solutions u, v, and φ1 provide a trans-
formation which reduces the original PDE (13) to
an ODE. In other words, by using Lie’s method to
find an infinitesimal change of coordinates, a two
variable PDE can be reduced to an equation of a
single variable to become an ordinary differential
equation (ODE). Taking the physical nature of the
problem into account, these reductions can lead to
exact solutions to the PDE.

Applying the transformation given by (12) on
(8-10) yields a large system of linear PDEs.

The determining equations are solved interac-
tively to give the forms of the infinitesimals.

Φ1 = 0,

T = α,

X = δx+ Γ(t), (17)

U = δu+
d

dt
Γ(t),

V = δv +
d

dt
Γ(t).

Due to the size of the equations, details of
the determining equations are omitted. For more
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details on an example, see the details given in the
Appendix (A).

In order for the PDEs given by the determining
equations to be satisfied, two cases arise. Either
δ = 0 or δ 6= 0. If δ 6= 0, then the friction
coefficient ξ given in the momentum equations
vanishes. The transformation given by α is a time
translation, δ is a scaling symmetry, and Γ(t) is
a general time dependant Galilei group, as used
in fluid mechanics [20]. These symmetries can be
used to find invariant reductions in the original
system. Notice that for δ = 0 and Γ(t) = 1 in
(17) and solving for u, v, and φ1 in (14-16) gives
the transformation

u =
1

α
+ f̂(t− αx),

v =
1

α
+ ĝ(t− αx),

φ1 = m(t− αx),

Letting f̂ = f(t−αx)− 1

α
and ĝ = g(t−αx)− 1

α
gives the transformation (11).

It should be noted that for our purposes, we are
only interested in pursuing a classical symmetry
analysis to recover the solution presented by Du
et. al. [10]. It is possible that more solutions will
arise from other methods as well. Non-classical
symmetries arise in many cases. In the work
performed by Arrigo et. al. [21], a nonclassical
symmetry is emitted by a class of Burgers’ system.
The Steinbergs symmetry method has provided
exact solutions and reductions to the Calogero-
Bogoyavlenskii-Schiff equation [22]. The Gardner
method can generate an infinite hierarchy of sym-
metries, as was shown with the KdV equations,
Camassa-Holm, and sine-Gordon equations [23].
Non-classical symmetries have also been gener-
ated for the fourth-order thin film equation using
non-classical methods [24].

Further analysis could include any of these
methods, as well as a classification of parameters
which has the potential to produce more symme-
tries. The purpose of this work is not an exhaustive
search for symmetries, but an introduction to using

symmetry methods to recover a more general
solution to the two-phase problem described above
and partially recovered by Du et. al. [10].

IV. RECOVERING THE EXACT SOLUTION FOR A

FREE BOUNDARY PROBLEM

As discussed in [10], since the viscosity of the
solvent is of a much higher magnitude than that
of the fluid, we assume the solvent viscosity µ2 is
zero. Since, φ1 + φ2 = 1, we have φ2 = 1 − φ1.
Now, we replace φ2 in the equations of momentum
(4-5) and find

µ1
∂

∂x

(
φ1

∂

∂x
u

)
+ φ1Px −

∂

∂x
ψ(φ1) (18)

−ξφ1(1− φ1)(u− v) = 0,

(1− φ1)Px + ξφ1(1− φ1)(u− v) = 0, (19)

where u, v, and φ1 are all functions of t, x
as previously discussed and Px is the pressure
gradient. Next, we solve (19) for Px to find

Px = −ξφ1(u− v). (20)

We see the mass equations (1-2) have now
become

∂

∂t
(φ1) +

∂

∂x
(uφ1) = 0,

− ∂

∂t
(φ1) +

∂

∂x
(v(1− φ1)) = 0,

Summing these two equations of mass gives

∂

∂x
(uφ1 + v(1− φ1)) = 0.

Imposing the average velocity is zero, we have

uφ1 + v(1− φ1) = 0,

which gives

v = − φ1
1− φ1

u. (21)

To match the form of equations given by Du
et. al. [10], we let the osmotic swelling term take
the form ψ(φ1) = φ1Ψ(φ1). This, together with
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Multiphase
φ1,φ2>0

φ1=0

Γ

Ω1

Ω2

Fluid

Fig. 1. This shows the region Ω2 of pure solvent (φ1 = 0)
separated at the boundary Γ from the region Ω1 containing
the mixture of both phases.

(20-21), reduces the equation (18) to the following
equation.

(µ1φ1(u)x)x− (φ1Ψ(φ1))x−
ξφ1

1− φ1
u = 0. (22)

As in Figure (1), we assume the mixture occu-
pies the interior region (Ω1), while pure solvent
occupies the external region (Ω2). As the gel-
mixture swells/deswells, the interface between the
regions (Γ) moves. To specify the motion Du et.
al. impose standard jump conditions:

[µ1φ1(u)x − φ1Ψ(φ1)] = 0

[u] = 0.

The solution found by Du et. al. [10] approx-
imates the front velocity for the free boundary
problem at time t = 0. The solution for a piece-
wise constant profile is given by,

φ1 =

{
φ− if x < 0

φ+ if x > 0
,

and the following can be derived

u =

{
Ceβ−x if x < 0

Ce−β+x if x > 0
, (23)

where

β± =

√
ξ

µ1(1− φ1±)
,

and
C =

−φ+Ψ(φ+) + φ−Ψ(φ−)

µ1(φ+β+ + φ−β−)
.

The solution (23) was derived by assuming
φ1+ → 0 at t = 0. In biological gels, regions
of gel separate from regions of pure solvent. So,
it is reasonable to assume that the network phase
vanishes in this region of pure solvent. To make a
graph of the solution given by (23), we assign the
following initial profile.

φ1 =

{
φ− = 1

6 if x < 0

φ+ = 0 if x > 0
. (24)

The parameters used to generate the graphs
are taken from [10], but are repeated in (I) for
convenience. The graph Figure (2) represents the
velocity front for a swelling gel in contact with
a fluid solvent. This perturbation solution is an
approximation for the velocity front at t = 0.
However, there exists an exact solution to this
system that captures this behavior for all values
of φ1 at any point in time.

For the infinitesimals given by (17), let δ = 0
and Γ(t) = 1. Solving the invariant surface condi-
tion for u, v, and φ1 will lead to (11) in terms of
the variable r = t − αx. As with the case found
with solving for (23) , we assume the viscosity of
the second phase is negligible in comparison to
that of the first phase, letting µ2 = 0. To make
the analysis easier, we allow only for swelling in
the active phase, making φ0 = 0. Applying (11)
reduces (8-10) to a single ODE.

µ1α
4(αf − 1)2f ′

2 − µ1α3(αf − 1)3f ′′ (25)

+3k2γ
2α3f ′ + ξ(αf − 1)4 = 0,

where

g =
1

α
, (26)

m =
γ

αf − 1
, (27)
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Fig. 2. This is the perturbation solution given by (23) at
time t = 0. This shows the velocity for a region of vanishing
network (top) in the region x > 0 for an initial profile (24)
(bottom). This would represent expectations of a velocity front
for a swelling gel to contact a fluid solvent.

It should be noted that we could have just
as easily solved (8-10) for f and left m to be
determined. We are choosing to leave f general
to assess the behavior of the velocity, because we
wish to show the exact solution approximated by
Du et. al. [10] can be recovered.

Multiple solutions exist for (25). First, we at-
tempt to recover an exponential solution similar
in form to (23). If we assume the viscosity of
the network phase φ1 has a greater impact on the
system than viscosity and interstitial friction, as
was assumed by Du et al [10]. we can divide by
µ1. This gives the following equation from (25).

α4(αf − 1)2f ′
2 − α3(αf − 1)3f ′′ (28)

+3
k2
µ1
γ2α3f ′ +

ξ

µ1
(αf − 1)4 = 0.

For µ1 of a much larger magnitude than k2 and
ξ, this becomes the following:

α(αf − 1)2f ′
2 − (αf − 1)3f ′′ = 0, (29)

whose solution is

f(r) =
eα(κr+λ)

α
+

1

α
. (30)

This makes the analytic solution for the original
system (1-2) and (4-5) to be

φ1 =
γ̂

αf − 1
= γe−α(κ(t−αx)+λ),

φ2 = 1− γe−α(κ(t−αx)+λ),

u =
eα(κ(t−αx)+λ)

α
+

1

α
,

v =
1

α
,

with µ1 = 0, k2 = 0, ξ = 0.
The parameters of this solution can be matched

to the parameters of the solution given by (23). We
can see that if k = − β

α2 and λ = 1
α ln(αC − 1),

then the solution found above becomes:

φ1 =
γ

C
e
β

α
t−βx,

φ2 = 1− γ

C
e
β

α
t−βx,

u = Ce−
β

α
t+βx +

1

α
, (31)

v =
1

α
,

The parameter α remaining in the velocity of
(31) gives flexibility on scaling time and adjusting
the orientation of the velocity. Notice, as α→∞,
this solution is the same as (23). The velocity be-
comes identical, and the volume fraction becomes
constant, as in the perturbation solution provided
by (23). So, in essence, we have recovered the
time function that was missed by the perturbation
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method used to find (23). Next, we match the
numerical results of (23) for the parameters given
by (I). To do this, we set t = 0 and separate the
solution for the velocity as follows.

u =

{
Ceβx + 1

α , if x ≤ 0

Ce−βx + 1
α if x > 0

, (32)

In Figure (3), we can see the solutions given by
(23) and (32) super-imposed on the same graph
for parameter values given by (I). It is clear that
the perturbation solution is a close approximation
for the exact solution for large values of α. As we
would expect from inspection of the solution (32),
smaller values of α will adjust the exact solution
away from the perturbation solution. The largest
impact α has on the system is in regards to the
time scale and solvent velocity. Large values of
α require larger time steps for movement in the
system, while decreasing the solvent velocity.

β µ1 ξ α
1 0.0108 0.018 1000

10 0.0037 0.616 10000
100 0.000338 5.64 100000

TABLE I
THE PARAMETERS GIVEN IN THE ROW BEGINNING WITH
β = 1 GENERATES THE RESULTS IN (3) TOP. THE NEXT

ROW FOR β = 10 GIVES (3) MIDDLE WITH THE FINAL ROW
GENERATING (3) BOTTOM WITH β = 100.

There are several benefits of finding the ex-
act solution, instead of using numerical methods.
First, numerical results have a difficult time captur-
ing the behavior at the region of contact between
the phases, while the analytical solution easily
gives interface behaviour without computationally
expensive coding, as can be seen in 4. Here we
can see the region of network at t = 0 moving
uniformly away from the initial contact region
x = 0. Smaller values of β fail to capture the
sharp interface. But as β increases to β = 100, we
see the interface remains sharp as time increases.
This is expected, as these results coincide with the
numerical simulations found in [10] by a moving
mesh.

Fig. 3. These are the perturbation solutions given by (23)
at time t = 0 graphed with the solution given by 32 with
β = 1 and the corresponding values for µ1 and ξ described
in (I) given by the top, β = 10 middle, and β = 100 on
bottom. The perturbation solutions are a close approximations
for the exact solutions near the region of separation. We can
see that the shape of each solution is preserved for each set
of parameters, though the scale is modified.
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Fig. 4. For network (φ1) profiles for t = 0 (top) and t =
1000 (bottom). As β increases, the exact solution becomes
more accurate at capturing the expected behavior at the sharp
interface.

As we have seen, the analytic solution recovers
the perturbation solution as well as the numerical
results given by Du et. al. [10]. However, this is
just a single solution to the nonlinear equation
given by (25). It is possible that the other solu-
tions are extraneous, but more likely, additional
solutions describe other physical or biological phe-
nomenon yet to be determined. Further exploration
will be required to fit these solutions, but we look
at the others here.

A. Other Solutions to (25)

Being a non-linear system, the solution to (25)
is not unique. Even though the transformation
given by (11) will clearly give traveling wave

solutions, the structure of the traveling wave for
each solution can vary widely as can be seen with
the next two examples.

If the viscosity of the network is negligible µ1 =
0, the following solution to (25) is given by

f(r) = − k
1

3

2 γ
2

3

ξ
1

3α
1

3 (r + δ)
1

3

+
1

α
, (33)

where r = t− αx.

The structure of this solution is different from
(30) in several ways. When plotting at a single
moment in time t = 0, it looks like a pulse as seen
by the first curve in figure (5). When animated (30)
can be seen as a traveling wave solution, given by
the black curves which moves in the positive t
direction.

Fig. 5. The solution given by (33) plotted at t = (0, 10).
The first curve is at t = 0. As seen by the black curves, the
velocity front travels like a wave as time increases.

Alternatively, if the osmotic pressure has less
of an impact than viscosity and friction, then with
k2 = 0 as seen in the absence of ionizing agents
for gels, we find the following solution

f(r) =
e
α(−κr+λ)+ ξ

2µ1
r2

α
+

1

α
. (34)

Like (30) this solution is exponential, but as seen
in (6) the quadratic term gives an unbounded
traveling wave. The velocity at t = 0 is given by
the first curve. As time increases, the front velocity
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travels as a wave moving to the right. This does
not seem to have any physical analogue since the
velocities are unbounded.

Fig. 6. The solution given by (34) plotted at t = [0, 10].
The first curve is at t = 0. The velocity front shifts to the
right as time increases, moving as a traveling wave.

V. ADDITIONAL SOLUTIONS TO THE

TWO-PHASE MODEL

This section also provides theoretical solutions,
which may or may not have physical relevance. We
explore them here to account for the multitude of
solutions that are emitted by the system (8-10).

There are other two-phase models from physics
that might have solutions contained here. For ex-
ample, one such model describes granular flows
where air is considered a non-viscous (nondense)
phase with the rocks, debris, and other materials
considered as a second highly viscous (dense)
phase [25], [26]. Within these works, numerical
simulations describe the flow behaviors air has
on granular flow. The results suggest that drag
has more than a negligible effect on the flow of
granular materials of finite mass.

The traveling wave solutions provided by (11)
are given by a simple choice for Γ(t) in (17). Here,
we explore different choices for the transformation
and follow the reduction of the PDEs to ODEs.
Then, we derive solutions to the ODEs by consid-
ering various changes in the physical nature of the
problem. By adjusting which physical parameters

are the dominating driving force in the problem,
we can generate different solutions, which may
prove useful in exploring the nature of physical
and biological phenomenon.

First, we let δ = 0 and Γ =
1

t
in (17). Solved

with (14-16) will give the following transforma-
tion.

u =
1

αt
+ f

(
x− ln(t)

α

)
,

v =
1

αt
+ g

(
x− ln(t)

α

)
,

φ1 = m

(
x− ln(t)

α

)
.

Neglecting solvent viscosity, µ2 = 0, reduces the
original system (8-10) to the following ODE,

µ1f
2(α− f)f ′

2 − µ1f3f ′′ (35)

−3k2α(2φ0f − 3α)(α− f)f ′ − ξf5 = 0.

with

m =
α

f
,

g =
αf

α− f
.

Again, if we assume the dominating force is the
viscosity and set k2 and ξ2 to zero, this can be
solved to give

f = κeλ(x−
ln(t)

α
) =

κ
α
√
tλ
eλx. (36)

The complete solution to (1-2) and (4-5) becomes

u =
1

αt
+

κ
α
√
tλ
eλx,

v =
1

αt
+

α

α− κ
α
√
tλ
eλx

κ
α
√
tλ
eλx,

φ1 =
κ
α
√
tλ
eλx,

φ2 = 1− κ
α
√
tλ
eλx.

If we assume friction and pressure dominate and
let µ1 = 0, the ODE yields no real solution without
further assumptions on the constants of integration.
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This may imply that viscosity is required for non-
constant solutions.

Another choice for (17) is to let δ remain
arbitrary and to consider ξ = 0, a requirement for
invariance to be satisfied. Again we consider cases
where the viscosity of the solvent is negligible,
µ2 = 0. Choosing Γ = 0 we find the following
transformation

u = f(xe−
δ

α
t)e

δ

α
t,

v = g(xe−
δ

α
t)e

δ

α
t,

φ1 = m(xe−
δ

α
t),

which reduces (8-10) to the following three
ODEs.

(αf − rδ)m′ + αmf ′ = 0,

−(αg − rδ)m′ + α(1−m)g′ = 0, (37)

(1−m)(µ1f
′ − k2m(2φ0 − 3m))m′

+µ1m(1−m)f ′′ = 0,

with r = xe−
δ

α
t. If both osmotic pressure and

viscosity are negligible such that k2 = 0 and µ1 =
0, then the following solution satisfies (37).

f = γe−λr + δ
λr − 1

λα
,

g =
(λr − 1)δeλr

λα(δeλr − 1)
+

κ

λα(δeλr − 1)
,

m = δeλr.

The complete solution to (1-2) and (4-5), is

u = γe−λxe
− δ
α
t

+ δ
λxe−

δ

α
t − 1

λα
e
δ

α
t,

v =
(λxe−

δ

α
t − 1)δeλxe

− δ
α
t

λα(δeλxe
− δ
α
t − 1)

+
κ

λα(δeλxe
− δ
α
t − 1)

(38)

φ1 = δeλxe
− δ
α
t

, (39)

φ2 = 1− φ1.

It should be noted that if either viscosity is
the dominating force with k2 = 0, or if osmotic

pressure is the dominating force with µ2 = 0,
then m, f , and g are constant. This implies that
friction is required for non-constant solutions. This
is different from before, where we found viscosity
to be the driving force for the model.

In summary, we have found that each solu-
tion requires a dominating force to generate non-
constant solutions. This gives flexibility in assess-
ing the two-phase model and suggests that exact
solutions may exist for many differing physical
phenomenon of interest. For example, it is possible
that the solution given by (39) can be matched to
results consistent to granular flow, since friction
as a necessary component for granular flow [25],
[26].

VI. DISCUSSION

In this work, we found an exact solution which
accurately replicates the results from a previously
found numerical results. It has been shown that
for α → ∞, the analytic solution found here
is exactly the perturbation solution found by Du
et. al. [10]. The exact solution has the benefit of
time dependence, which is useful for assessing
behavior of the two-phase system without the im-
plementation of numerical methods. Additionally,
we showed that many traveling wave solutions
arise from the two-phase problem. Due to the
time dependent general Galilei group, we have an
unlimited number of choices to adjust the speed
of the wave through time. These solutions also
require specific dominating forces to attain. It is
possible that such solutions only arise in specific
physical circumstances. Though some of these
solutions may be extraneous, further investigation
is warranted to determine their uses.

Although asymptotic and numerical methods
yield useful information concerning the behavior
of multi-phase systems, these methods require
substantial efforts. Exact solutions have the benefit
of being computationally inexpensive to simulate,
and with Lie symmetries, are relatively simple to
generate.

There are several directions for future analysis
that arise from this work. First, exploring the be-
havior of the additional solutions may give further

Biomath 1 (2015), 1503081, http://dx.doi.org/10.11145/j.biomath.2015.03.081 Page 12 of 14

http://dx.doi.org/10.11145/j.biomath.2015.03.081


D. A. Ekrutl, A Particular Solution for a Two-Phase Model ...

insights into the nature of dominating forces in
the two phase system. This may give insight into
specific physical phenomenon in which these addi-
tional solutions may be esoterically relevant. Also,
additional symmetries may exist, which could be
found using non-classical methods. Solutions aris-
ing from non-classical methods would then need to
be assessed to determine relevant matching phys-
ical or biological behavior. Additionally, biofilms
typically include growth terms to account for the
production of new network. It is possible that
symmetry solutions can capture this behavior as
well.

APPENDIX

Deriving the infinitesimals for the two-phase
model generates a large system of linear PDEs.
For this reason, we have provided details of the
process by way of an example in this appendix.
For further details, see [27].

Consider the following nonlinear first order
PDE

ut = u2x (40)

Under the transformation

t̄ = t+ εT (t, x, u) +O(ε2),

x̄ = x+ εX(t, x, u) +O(ε2),

ū = u+ εU(t, x, u) +O(ε2),

to order ε2 (40) becomes

Ut + utUu − ut (Tt + utTu)− ux (Xt + utXu)

− 2ux(Ux + uxUu − ut (Tx + uxTu)

− ux (Xx + uxXu)) = 0.

Using the original equation (40) to eliminate ut
and grouping coefficients of ux, we have

Ut + u2xUu − u2x
(
Tt + u2xTu

)
− ux

(
Xt + u2xXu

)
− 2ux(Ux + uxUu

− u2x (Tx + uxTu)− ux (Xx + uxXu))

= Ut − (Xx + 2Ux)ux + (2Xx − Tt − Uu)u2x

= (Xu + 2Tx)u3x + Tuu
4
x

= 0.

Invariance requires the coefficients of ux to be
zero, providing us with the following system.

U(t, x, u)t = 0,

X(t, x, u)x + 2U(t, x, u)x = 0,

2X(t, x, u)x − T (t, x, u)t − U(t, x, u)u = 0,

Xu + 2Tx = 0,

Tu = 0.

These are called the determining equations, be-
cause they determine the forms of the infinites-
imals. These are linear PDEs, which are easily
solved with standard techniques of integration. So,
we have the following form for the infinitesimals.

T (t, x, u) = c1 + c2t+ c3x+ c4t
2 + c5tx+ c6x

2,

X(t, x, u) = c7 + c8 + c9x+ c4tx+
1

2
k5x

2

− (2k3 + 2k5t− 4k6x)u,

U(t, x, u) = k10 −
1

2
k8x−

1

4
k4x

2

+ (2k9 − k2)u+ k5xu− 4k6u
2,

where ci and ki are arbitrary constants of inte-
gration. Together with the invariant surface con-
dition given by Tut + Xux = U we can find
a transformation to reduce (40) to an ODE. The
form for the transformation will vary depending
on choices for the constants ci and ki.
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