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Abstract—We have established and rigorously
analyzed a new mathematical model that describes
the dynamics schistosomiasis infection. This model
incorporates several realistic features including
density-dependent births rate of snails and reduced
fecundity in snail hosts. Our qualitative analysis of
the deterministic model is made with respect to
the stability of the disease free equilibrium and
the unique endemic equilibrium. Some biological
consequences and control strategies are discussed.
We have derived the basic reproduction number
above which the infection will be controlled under
certain levels. We have shown that the disease free
equilibrium is globally asymptotically stable when
the basic reproduction number R0 is less than one.
We have proved the existence and global asymptotic
stability of an endemic steady state when R0 > 1.
This mathematical analysis of the model gives in-
sight about the effects of the reduced fecundity and
intermediate host density-dependent birth rate.

Finally, numerical simulations are performed to
illustrate the main results.

Keywords-Epidemic models; Nonlinear dynamical
systems; Monotone systems; Global stability; Repro-
duction number; Schistosomiasis.

I. INTRODUCTION

Mathematical modeling of the spread of infec-
tious diseases is an important instrument in the
comprehension of the dynamics of diseases and in
decision making processes regarding intervention
programs for controlling these diseases in many
countries.

The high prevalence of infectious diseases as
schistosomiasis has prompted the mathematical
modelers to deploy multiple infectious disease
models in recent years, and different mechanisms
have been suggested to explain their occurrence.
Schistosomiasis is transmitted by human contact
with contaminated fresh water (lakes and ponds,
rivers, dams) inhabited by snails carrying the
parasite. Many people die from schistosomiasis
disease every year. Schistosomiasis is the most
deadly NTD (Neglected Tropical Diseases), killing
an estimated 280, 000 people each year [20]. It
can result in liver damage and anemia, especially
among children [22].

It is found mostly in rural areas in tropical
and subtropical countries and infects humans and
other vertebrates, using snails in most cases as
intermediate hosts. Infection takes place when
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larvae of the parasite released by the intermediate
hosts, penetrate the skin of an individual when in
contact with infested water. In the body, the larvae
develop and cross over into adult schistosomes.
These parasites live in the blood vessels, where
the females lay their eggs. Some eggs out of the
body via the feces or urine and the parasitic life
cycle continues. Others are trapped in the tissues
of the body, causing an immune reaction in active
lesions and organs.

A possible method of struggle against schisto-
somiasis is to treat water bodies with a mollusci-
cide to minimize the number of snail intermediate
hosts, thus breaking the cycle of disease transmis-
sion [23], [24]. Beside this one, there are other
such that biological control, chemical mollusci-
cides, chemotherapy, and more permanent methods
such as the provision of safe water and sanitary
facilities [1], [6]. Control strategies focused on
intermediate hosts which are the sites of intense
proliferation of this parasite are seen as a priority
of the reduction of schistosomiasis transmission
[28].

Many researchers studied the dynamics of schis-
tosomiasis using systems similar to the one we
are interested [2], [7], [13], [14], [15], [16], [21].
That systems depend on the epidemiological for-
mulation, but also on the demographic process
incorporated into the model under different control
strategies. Almost all of the work to date on
schistosomiasis transmission has assumed constant
immigration in the snail population [25], [36] or
linear birth rates [26], [1], [27] not allowing the
possibility of the reduced fecundity of the infected
population snails. A drawback of the models with
birth and death rates proportional to the size of the
population are that the population size decreases or
increases exponentially, except in the special case
where births exactly balance deaths. Moreover,
researchers in laboratory reported the influence
of a trematode on life history traits of adult
Lymnaea elodes snails. It has been displayed re-
duced fecundity relative to uninfected snails [29].
To our knowledge, due to various considerations
of the factors related to the transmission of the

disease, impaired fertility and density-dependent
birth rate are not taken account simultaneously
with chemotherapy and chemical molluscicides as
control strategies.

We shall introduce and analyze a compartmental
model, which considers a host (human), interme-
diate host (snail) as well as free-living cercariae
and miracidia and their interaction. The model
focuses essentially on the aquatic life stages of
the parasite. A full mathematical analysis of the
model is derived. The aim focus of this paper
is to study the effect of chemotherapy combined
with chemical molluscicide as control strategies on
the dynamics of the model with density-dependent
birth rate and impaired fertility in snail host.

The paper is organized as follows. In Section II
we start by defining the mathematical framework
we use and focus on the different processes of
transmission that might be appropriate to under-
stand schistosomiasis. The main results are devel-
oped in Section III, including the determination of
R0 the basic reproductive number of the model
and the analysis of its stability properties. We
show that the disease-free equilibrium is global
asymptotic stability when the basic reproductive
number is less than one. When the basic reproduc-
tive number is larger than one, we prove the global
asymptotic stability of a unique endemic equilib-
rium by using some properties of K-monotone
systems (see [17]). Section IV is devoted to the
numerical analysis and control strategies.

Finally, in Section V, concluding remarks close
the paper.

II. MODEL DERIVATION

We build an evolutionary outcomes model of
interactions between a complex life-cycle parasite
schistosoma and its hosts (humans and snails). The
parasite populations at the free-living stages are
modeled explicitly through miracidia and cercarie.
The model consists of a system of ordinary differ-
ential equations.

Furthermore, it is admitted that the infected
snails did not recover from schistosomiasis that
their lifetimes are short compared to that of hu-
mans. The model sub-divides the total human
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population at time t, denoted by Nh(t), into the
following sub-populations of susceptible individ-
uals (Sh(t)) and individuals with schistosomiasis
symptoms (Ih(t)). So that

Nh(t) = Sh(t) + Ih(t).

The total snails population at time t, denoted
by Ns(t), is sub-divided into susceptible snails
(Ss(t)) and infectious snails (Is(t)). Thus,

Ns(t) = Ss(t) + Is(t).

Let Wm and Wp be the population of miracidia
and cercariae, respectively. This model assumes a
constant per capita rate of exposure between hosts
and sensitive parasites, where exposure and sus-
ceptibility to infection are regrouped in the trans-
mission coefficient. We considered the mass action
transmission model. We follow of the available
model for schistosomiasis [30] by incorporating
the human interaction.

Susceptible host snails increase through density-
dependent births with maximum rate bs and com-
petitive intensity c. Assume that individuals are
born uninfected. Infected hosts suffer from re-
duced fecundity (0 ≤ ρ < 1). Susceptible snails
die at background death rate ds, due to parasite
natural death rate dsε and the elimination rates θs
of snails and become infected at the per capita
infection rate βs, through contact with infectious
miracidia. Infected snails die at an elevated death
rate, ds, due to parasite natural death rate dsε
and the elimination rates θs of snails at which
is added the rate α due to parasite virulence.
The susceptible human population is increased by
the recruitment of individuals in the population
(assumed susceptible), at a rate Λ. The population
of individuals is further decreased by natural death
(at a rate dh). It is also assumed that infected
individuals have additional host mortality during
the given short time considered at the rate µ.
Susceptible humans become infected only through
contact with free-living pathogen cercariae in in-
fested water at the per capita infection rate βh
and recover at the per capita rate η. Free-living
miracidia are introduced into the aquatic environ-
ment at a per capita rate k, but they are depleted

during the infection process at the per capita rate
δ and die naturally if they do not find snails to
infect at the rate dm. Here, depletion of parasites
through transmission depends on total host density.
Infected snails will then free up second form of
larvae called cercariae at a rate γ to be able
to infect humans. Some cercariae also die at an
elevated death rate dc due to the natural death rate
dcε and cercariae elimination θc by the chemical
molluscicide.

The time evolution of the different populations
is governed by the following system of equations:



dSs
dt

= bs (Ss + ρ Is)(1− c (Ss + Is))

−
ds︷ ︸︸ ︷

(dsε + θs) Ss − βs SsWm,

dIs
dt

= βs SsWm − (dsε + θs + α) Is,

dWm

dt
= k Ih − δ (Ss + Is)Wm − dmWm,

dWc

dt
= γ Is−

dc︷ ︸︸ ︷
(dcε + θc) Wc,

dSh
dt

= Λ− βhWc Sh − dh Sh + η Ih,

dIh
dt

= βhWc Sh − (dh + µ+ η) Ih.

(1)
For convenience of simplicity, we denote

ds = dsε + θs, dc = dcε + θs.

The dynamics of the total snails population
(Ns = Ss + Is) is governed by

dNs

dt
= bs (Ss + ρ Is) (1− cNs)− dsNs − α Is

≤ bsNs − bs cN2
s − dsNs

≤
(
bs − ds
bs c

−Ns

)
bs cNs.

The dynamics of the total humans population
(Nh = Sh + Ih) is governed by

dNh

dt
= Λ− dhNh − µ Ih ≤

Λ

dh
.
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Thus the region

D = {(Ss, Is,Wm,Wc, Sh, Ih) ∈ R6
+ :

Ns ≤
bs − ds
c bs

, Wm ≥ 0, Wc ≥ 0, Nh ≤
Λ

dh
}

is a positively invariant set of system (1).
Furthermore, the model (1) is well-posed epi-

demiologically and we will consider dynamic be-
havior of model (1) on D.

III. MAIN RESULTS

In this section, we firstly derive the basic re-
production number for system (1) by the method
of next generation matrix formulated in [9], [5].
The basic reproduction number R0 is used to
assess the stability of the disease free equilibrium
and the endemic equilibrium. Then we derive
the asymptotic behavior of the system (1) by its
limiting system. Discussions of the relation of the
dynamics between (1) and its limiting system can
be found in [32], [33], [34]. In particular, there
holds the following significant result :

Lemma III.1. Consider the following two systems
dx

dt
= f(t, x),

dy

dt
= g(y),

where x, y ∈ Rn, f and g are continuous, satisfy
a local Lipschitz condition in any compact set
Ω ∈ Rn, and f(t, x) → g(x) as t → ∞, so that
the second system is the limit system for the first
system. Let Φ(t, t0, x0 and Φ(t, x) be solutions of
theses systems, respectively. Suppose that p ∈ Ω is
a locally asymptotically stable equilibrium of the
limit system and its attractive region is

W (p) = {y ∈ Ω|Φ(t, t0, y)→ p, t→ +∞}.

Let WΦ be the omega limit set of Φ(t, t0, x0). If
WΦ ∩W (p) 6= ∅, then limt→+∞Φ(t, t0, x0) = p.

This limiting system is the key to understanding
the global dynamics of system (1). By a method
due to Castillo-Chavez et al [31], the stability of
the disease free equilibrium of the proposed limit-
ing system is discussed. Moreover, the stability of
positive equilibrium of a proposed limiting system
of model (1) is analyzed theoretically thanks to
monotone dynamical system theory [11].

A. The reproduction number

The reproduction number is the expected num-
ber of secondary cases produced in a completely
susceptible population by a typical infective in-
dividual. It is easy to see that system (1) ad-
mits always a disease-free equilibrium, E0 =(
bs − ds
bs c

, 0, 0, 0,
Λ

µ

)
.

Let x = (Is, Ih,Wm,Wp, Ss, Sh)T . Then sys-
tem (1) can be written as

x′ = F(x)− V(x),

where F =


βs SsWm

βh ShWc

0
0
0
0

 , and

V =



(ds + α) Is

(µ+ dh + η) Ih

−k Ih + δ (Ss + Is)Wm + dmWm

−γ Is + dcWc

−bs (Ss − ρ Is)(1− c (Ss + Is))
+ds Ss + βs SsWm

−Λ + βhWc Sh + µ Ih + η Ih


.

We can get

F =


0 0

βs (bs − ds)
bs c

0

0 0 0
βh Λ

µ
0 0 0 0
0 0 0 0

 and

V =


α+ ds 0 0 0

0 η + µ 0 0

0 −k δ (bs − ds)
bs c

+ dm 0

−γ 0 0 dc


F V −1 is the next generation matrix for

model (1). It then follows that the spectral radius
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of matrix F V −1 is ρ(F V −1).
According to Theorem 2 in [18], the basic

reproduction number of model (1) is

R0 = ρ(F V −1)

=

√
β γ kΛ (bs − ds)βh

dh dc (ds + α) (η + µ+ dh) (bs (c dm + δ)− δds)

B. The local stability of the DFE

Before proceeding with the mathematical anal-
ysis of the model (1), the following simplification
would be made. To make the mathematical analy-
sis more tractable, we will consider the case where
the the disease-induced death and the parasite
virulence parameters in the model will be set to
zero. That is, from now on, it is assumed that
α = µ = 0 (it should be mentioned that such
assumption may not be appropriate in modeling
the transmission dynamics in hardest hit areas).
However, this assumption will be relaxed in the
numerical simulations section.

Without loss of generality (see [33], [32]), we
assume that our population of humans has reached
its limiting value, i.e, N∗h ≡

Λ
dh

(with α = µ = 0).

By eliminating the equation for
dSh
dt

, we get
from (1) the equivalent limiting system :

dSs
dt

= bs (Ss + ρ Is)(1− c (Ss + Is))

−ds Ss − βs SsWm,

dIs
dt

= βs SsWm − ds Is,

dWm

dt
= k Ih − δ (Ss + Is)Wm − dmWm,

dWc

dt
= γ Is − dcWc,

dIh
dt

= βhWc (N∗h − Ih)− (dh + η) Ih.

(2)
defined on

D0 = {(Ss, Is,Wm,Wc, Ih) ∈ R5
+ :

Ns ≤
bs − ds
c bs

, Wm ≥ 0, Wc ≥ 0, Ih ≤
Λ

dh
}
.

We now study the local behavior of the disease
free equilibrium for system (2), which also gives
the analogous behavior for system (1).

Proposition III.1. The DFE for limiting system (2)
E0 is LAS (locally asymptotically stable) ifR0 < 1
with ρ ≤ 1− ds/bs and is unstable if R0 > 1.

Proof: The Jacobian matrix of (2) at E0 is

J0 =

(
J11 J12

J21 J22

)
where,

J11 =

(
ds − bs (ρ+ 1)ds − bs

0 −ds

)
,

J12 =

βs (ds − bs)
bs c

0 0

βs (bs − ds)
bs c

0 0

 , J21 =

 0 0
0 γ
0 0

 ,

J22 =


δ ds − bs (δ + c dm)

bs c
0 k

0 −dc 0
0 Nhβh −η − dh

 .

Let us do the following transformation:

Js0 = T.J0.T

where,

T =


1 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

 .

Then, Js0 and J0 are similar. Js0 is a Metzler
matrix and we can write Js0 = F + V with

F=



0 bs − ds
βs (bs − ds)

bs c
0 0

0 0
βs (bs − ds)

bs c
0 0

0 0 0 0 k
0 γ 0 0 0
0 0 0 Nh βh 0


,
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V=


ds − bs−ρ ds 0 0 0

0 −ds 0 0 0

0 0 δ ds−bs(δ+c dm)
bs c

0 0

0 0 0 −dc 0
0 0 0 0 −η − dh

 .

We have F > 0 and V is Metzler stable, see
[3], [12], [10], [4]. Thanks to Varga’s Theorem
in [19]: s(J0) ≤ 0 iff ρ(−F V −1) ≤ 1. Since
ρ(−F V −1) = R4

0, we then deduce that E0 is LAS
if R0 < 1 and is unstable if R0 > 1.

C. Global stability of the DFE

The object of this subsection is to prove the
GAS result using the second generation approach
given in Castillo-Chavez et al [31]. Herein stated
to be self-contained.

Theorem III.1. If the system (2) can be written
in the form

dX

dt
= F (x, Z),

dZ

dt
= G(X,Z), G(x, Z) = 0,

where the components of X ∈ Rm denotes

the number of uninfected individuals and the
components of Z ∈ Rn the number of infected
individuals. let E0 = (x∗, 0) be the disease free
equilibrium of the system. Assume that

• For
dX

dt
= F (X, 0), X∗ is globally asymp-

totically stable (GAS),
• G(X,Z) = AZ − Ĝ(X,Z), Ĝ(X,Z) ≥ 0

for (X,Z) ∈ D, where A = DZ G(X∗, 0)
is an M-Matrix (the off diagonal of A are
nonnegative) and D the region where the
model makes biological sense.

Then the fixed E0 = (x∗, 0) is a globally
asymptotically stable equilibrium of model system
(2) provided that R0 < 1.

Applying Theorem III.1 to system (2) gives

Ĝ(X,Z) =


Wm βs (S∗ − Ss)

Wm δ (Is + Ss − S∗s )
0

Wc Ih βh

 .

Since, S ≤ S∗ ≡ N∗h thus Ĝ(X,Z) ≥ 0, and
by Theorem III.1, E0 is GAS.

We summarize the result in the following theo-
rem:

Theorem III.2. If R0 < 1 then the DFE is GAS.

D. Local Stability of the Endemic Equilibrium

We proceed to investigate the local stability of
the model. We use the following limiting system
(3) to obtain the information for the whole system.

Since the population size, Ns(t) (with α = µ =
0) also satisfies

Ns → N∗s :=
bs − ds
c bs

as t→∞. Using results

from Lemma III.1 , we can get analytical results by
considering the limiting system of (3) in which the
total population of snails and humans both have
reached the limiting states. Then, we obtain the
reduced limiting dynamical system:

dIs
dt

= βs (Ns − Is)Wm − ds Is,

dWm

dt
= k Ih − δ N∗s Wm − dmWm,

dWc

dt
= γ Is − dcWc,

dIh
dt

= βhWc (N∗h − Ih)− (dh + η) Ih.

(3)
The dynamics of system (1) can be focused on

this restricted region

D1 = {(Is,Wm,Wc, Ih) ∈ R4
+ :

Is ≤
bs − ds
c bs

, Wm ≥ 0, Wc ≥ 0, Ih ≤
Λ

dh
}

Clearly, the system (1) is asymptotic to the limiting
system (3). Thus, the dynamics of system (1)
are qualitatively equivalent to the dynamics of its
limiting system. The variation matrix of system (3)
at E∗ an equilibrium point is

J(E∗) =

 J11(E∗) J12(E∗)

J21(E∗) J22(E∗)

 ,

where,

J11(E∗) =

(
−W ∗m βs − ds (N∗s − I∗s )βs

0 −N∗s δ − dm

)
,
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J12(E∗) =

(
0 0
0 k

)
,

J21(E∗) =

(
γ 0
0 0

)
,

J22(E∗) =

(
−dc 0

(N∗h − I∗h)βh −η −W ∗c βh − dh

)

Theorem III.3. If R0 > 1, then the positive
endemic equilibrium E∗ of the limiting system (3)
is locally asymptotically stable.

Before proving Theorem III.3, we state the
following useful lemma :

Lemma III.2. (Kamkang [35], Proposition 3.1)
Let M be a square Metzler matrix written in block

form M =

(
A B
C D

)
, with A and D square

matrices. M is Metzler stable if only if matrices
A and D − C A−1B are metzler stable.

Proof of Theorem III.3: J(E∗) is a Metzler

matrix and we can write : J(E∗) =

(
A B
C D

)
,

where

A=

−W ∗m βs − ds (N∗s − I∗s )βs

0 −N∗s δ − dm

 ,

D=

 −dc 0

(N∗h − I∗h)βh −η −W ∗c βh − dh

 .

B=

(
0 0
0 k

)
, C=

(
γ 0
0 0

)
.

Clearly, A is a stable Metzler matrix. Then, after
some computations, we get

D − C A−1B =

 M11 M12

M21 M22

 .

where,
M11 = −dc,
M12 =

k (N∗s − I∗h)β γ

W ∗mN
∗
s β δ +N∗s ds δ +W ∗m β dm + ds dm

M21 = (N∗h − I∗h)βh, M22 = −η−W ∗c βh−dh.

D − C A−1B is a stable Metzler matrix iff

χ :=β γ k βh(I∗h −N∗s )(N∗h − I∗h)

+ dc (dm + δ N∗s ) (ds + βW ∗m)

. (W ∗c βh + η + dh) > 0.

The endemic equilibrium satisfies
βs (Is −Ns)Wm = −ds Is,

Wc =
γ

dc
Is.

k Ih = (δ Ns + dm)Wm.

(4)

Hence,

χ=−γ k βh
ds
Wm

Is(N
∗
h − I∗h) + dc (dm + δ N∗s )

. (ds + βsW
∗
m) (W ∗c βh + η + dh)

>−γ k βh
ds
Wm

Is(N
∗
h − I∗h)

+dc (dm + δ N∗s ) ds βh
γ Is
dc

> ds βh γ Is

[
− k

Wm
(N∗h − I∗h) + (dm + δ N∗s )

]
>ds βh γ Is

[
− k

Wm
I∗h + (dm + δ N∗s )

]
>ds βh γ Is

[
−Wm (δ Ns + dm)

Wm
I∗h

+ (dm + δ N∗s )
]
> 0,

which implies J(E∗) is a Metzler stable matrix.
Thus the unique endemic equilibrium is locally
assymptoticaly stable.

E. Global Stability of the Endemic Equilibrium

In this section we will establish the global
stability of the unique endemic equilibrium point
when R0 > 1. We shall use the properties of K-
monotone systems for the analysis of our system
(see [17]).
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Theorem III.4. If R0 > 1, then the positive en-
demic equilibrium state E∗ of the limiting system
(3) is globally asymptotically stable in the interior
of the set D1.

Proof: It is useful to be able to test mono-
tonicity directly in terms of vector fields. We
recall here a wider criterion to define monotonicity.
A system X = f(X) is said to be monotone
in the set K if there exists a diagonal matrix
H = diag(ε1, ε2, · · · , εn) where each εi is 1
or −1 such that the matrix product HDf(X)H
has only non positive values outside the diagonal
for any X (see Smith [17], Lemma 2.1). In the
above statement, Df(X) is the Jacobian matrix
of f and K is a convex set. The Jacobian of the
system (3), J(E∗), is a Metzler matrix and is
irreducible, which implies the strong monotonicity
of the system under a usual order defined by the
orthant

K = {(Is,Wm,Wc, Ih) ∈ R4
+ : Is, Wm, Wc, Ih > 0}

The significant result of convergence proved
by Hirsh in the late 1980s can be described in
our framework as follows : given an autonomous
system that is strongly monotone with respect
to some proper cone and assuming that there is
a unique equilibrium in an open set of points
with compact orbit closures, every initial condition
with bounded solution converges to the unique
equilibrium; (see Hirsh [11], theorem 10.3).

Thanks Hirsch’s theorem and the fact that we
have only one endemic equilibrium E∗ in D̊1

which is locally asymptotically stable when R0 >
1 we can conclude that E∗ is globally asymptoti-
cally stable in D̊1 when R0 > 1.

IV. NUMERICAL ANALYSIS AND CONTROL

STRATEGIES

In this section, we present some numerical
simulation results to confirm our analytical pre-
dictions on the global dynamics of the schisto-
somiasis models. The two selected control strate-
gies identified in this study against the spread of
schistosomiasis are snails reduction strategies and

chemotherapy treatments. Snail reduction strate-
gies include the elimination of snails as well as the
elimination of free-living cercariae using appro-
priate biological agents. The strategy of applying
chemotherapy treatments requires an effective drug
delivery as praziquantel to infected humans. In
order to examine the effects of these two classes
of anti-schistosomiasis strategies, the model (1) is
simulated using the set of parameter values given
in Table I.

The effect of chemical molluscicide is incorpo-
rated in our model by increasing the death rate
parameter of the snails and free-living cercariae at
the rate θs and θc, respectively. In other words,
a higher values in θs and θc serve to reduce the
number of snails and free-living cercariae, and thus
can be used to investigate the effects of chemical
molluscicide on the epidemic. Similarly, the effects
of the drug administration method are modelled by
increasing a recover rate η to the schistosomiasis.

The basic reproduction number can be applied
to measuring the control efforts needed to reduce
or eliminate an infection. Furthermore, since R0

is a decreasing function of θs, θc and η, the use of
any preventive strategy that can increase θs, θc or η
results in a reduction of schistosomiasis infections.

We, consequently, seek to compare the effects
of chemical molluscicide and drug administration
on the control of the spread of schistosomiasis in
humans. We first consider the original no-control
model by setting η = θs = θc = 0 in system
(1). We set the population size of initial conditions
as Ss(0) = 104; Is(0) = 5 × 104;Wm(0) =
5×103;Wc(0) = 9×103;Sh(0) = 2×103; Ih(0) =
550, and take the values of the parameters from
table I. It should be mentioned that some of these
parameters (e.g. θs, θc, η) are estimated in the con-
venience use. We pick the following conclusions
for the parameter values used.

The results in Fig. 1 show a marked increase in
the number of asymptotically infected snails and
infected humans at steady state with no control
strategies (θs ≈ θc ≈ η ≈ 0). With the same
configurations, we now add control measures and
simulate the control model (1). The simulation
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TABLE I
PARAMETER VALUES ESTIMED

Parameter Definition Default value Literature
source

bs Maximum birth rathe of hosts 0.06 day−1 [30]

ρ Relative fecundity of infected hosts 0.75 day−1 −−
c Strenght of density dependence on host birth rate 0.025 L day−1 −−
dh Nartural mortality rate of humans 0.0000384 day−1 −−
ds Natural mortality rate of snails 0.003 day−1 −−
µ Parasite dependent mortality of humans 0.0039 day−1 −−
dm Loss rate of free-living miracidia 2.5 day−1 −−
dc Loss rate of free-living cerscariae 2 day−1 −−
βs Rate at which the miracidia successfully infects a snail 0.615 L mir−1 day−1 −−
βh Rate at which susceptible humans get infected 0.406 L mir−1 day−1 [36]

α Parasite virulence on survival 0.007 day−1 [30]

γ Per capita production rate of cercariae by infected snails 100 cerc host−1 day−1 [36]

k Per capita production rate of miracidia by infected humans 0.00232 day−1 [36]

η Treatment rate of infected human 0.03 day−1 Estimated

δ Per capita depletion rate of miracidia 0.0039 day−1 [30]

θs, θc elimination rates of snails and cercariae, respectively 0.05 day−1 Estimated

Λ Recruitment rate for humans 8000 day−1 [36]

shown in Figure 2 demonstrate the effectiveness
of the control strategies adopted. We observe that
an epidemic outbreak occurs for some period of
time. For instance, if human recover at the rate
η = 0.9 and snails be eliminated at the rate
η = 0.05, then the number of asymptomatically
infected humans tend to zeros after a period of
time t ≈ 1050 days. Mention should be made
here of the fact that, in the last scenario, we have
values for each of the following parameters η, θs,
θc, so that R0 < 1. Fig. 3 and 4 also show that
the efficacy of snail elimination can be important
for such strategies to make a meaningful impact
in combatting schistosomiasis in humans.

V. SUMMARY AND CONCLUSIONS

In this paper, we have presented a stability
analysis of a schistosomiasis infection model that
explicitly includes density dependent births rate
and impaired fecundity in the snail host pop-
ulation. The model also captures the effect of
two control strategies: chemotherapy and snail

elimination by molluscicides. Six sub population
sizes were considered: human host susceptible and
infected, snail intermediate host susceptible and
infected, free-living miracidia and cercariae. It is
shown that the combination of chemotherapy and
snail elimination can be effective control strategy
that is there will not be an epidemic.

Mathematical properties of the model are ana-
lyzed and used to reduce the dimension of the sys-
tem under consideration. The reproductive number
R0 is then analytically and explicitly computed.
We proved that the disease-free steady state E0 is
globally asymptotically stable if R0 ≤ 1. We have
also established the global asymptotic stability of
the endemic equilibrium E∗ when it exists i.e.,
when R0 > 1 using some properties of monotone
systems.
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Fig. 1. Time evolution of the number of infected snails
population (a) and humans population (b) without control
strategies with parameter values defined in Table I: θc = 0,
θs = 0, η = 0. These parameters correspond to R0 > 1. The
initial condition is Ss = 10000, Is = 50000, Wm = 5000,
Wc = 9000, Sh = 2000, Ih = 550.
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Fig. 2. Effect of combined human treatment and snails
elimination on snails population (a) and humans population
behavior (b) with parameter values defined in Table I: θc =
10, θs = 0.05, η = 0.90. These parameters correspond to
R0 < 1. The initial condition is Ss = 10000, Is = 50000,
Wm = 5000, Wc = 9000, Sh = 2000, Ih = 550.
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Fig. 3. Effect of human treatment only, by drug administra-
tion, on snails population (a) and humans population behavior
(b) with parameter values defined in Table I: θc = 0, θs = 0,
η = 0.90. The initial condition is Ss = 10000, Is = 50000,
Wm = 5000, Wc = 9000, Sh = 2000, Ih = 550.
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Fig. 4. Effect of snails elimination only, by molluscicide,
on snails population (a) and humans population behavior (b)
with parameter values defined in Table I: θc = 10, θs = 0.05,
η = 0. The initial condition is Ss = 10000, Is = 50000,
Wm = 5000, Wc = 9000, Sh = 2000, Ih = 550.
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